Data-driven detection of counterpressing in professional football A supervised machine learning task based on synchronized positional and event data with expert-based feature extraction
Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches wi...
Saved in:
Published in | Data mining and knowledge discovery Vol. 35; no. 5; pp. 2009 - 2049 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of
87.4
%
on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes. |
---|---|
AbstractList | Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of
$$87.4\%$$
87.4
%
on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes. Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of 87.4 % on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes. |
Author | Anzer, Gabriel Bauer, Pascal |
Author_xml | – sequence: 1 givenname: Pascal orcidid: 0000-0001-8613-6635 surname: Bauer fullname: Bauer, Pascal email: pascal.bauer@dfb.de organization: Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, DFB-Akademie, Deutscher Fußball-Bund e.V. (DFB) – sequence: 2 givenname: Gabriel orcidid: 0000-0003-3129-8359 surname: Anzer fullname: Anzer, Gabriel organization: Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, Sportec Solutions AG, subsidiary of the Deutsche Fußball Liga (DFL) |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKf9A9FMstnNHkv9hIIXBW8hm4-SsiYlSQX_van15KGneQfmGWaeOToPMViEboDcAiH9XQbSgcCEAq5tx3B_hmbA-xp493FeMxMt5gLIJZrnvCWEcMrIDC3vVVHYJP9lQ2Nssbr4GJroGh33odi0SzZnHzaND80uRXfoYlBT42Iso5qmK3Th1JTt9V9doPfHh7fVM16_Pr2slmus6QAFK2MNBa1HLVplKB8FA0XFCG6g0NKOm54ZRblth7ajoteDs453zoyDcINQbIHEca9OMedkndS-qMO1JSk_SSDyoEIeVciqQv6qkH1F6T90l_ynSt-nIXaEch0OG5vkNu5T_Tyfon4AwHd0vA |
CitedBy_id | crossref_primary_10_1007_s10618_021_00810_3 crossref_primary_10_1007_s12662_023_00900_y crossref_primary_10_1080_24733938_2023_2239766 crossref_primary_10_1109_ACCESS_2024_3402370 crossref_primary_10_1016_j_techfore_2022_121838 crossref_primary_10_3233_JSA_220620 crossref_primary_10_52082_jssm_2023_707 crossref_primary_10_1007_s11192_024_05171_4 crossref_primary_10_1111_ssqu_13364 crossref_primary_10_3389_fspor_2021_725431 crossref_primary_10_1155_2022_9497783 crossref_primary_10_1038_s41598_022_19948_1 crossref_primary_10_1155_2022_2839244 crossref_primary_10_1155_2022_3284156 crossref_primary_10_1007_s10994_024_06647_3 crossref_primary_10_3390_jfmk8020039 crossref_primary_10_1007_s10994_024_06585_0 crossref_primary_10_1080_02640414_2023_2268366 crossref_primary_10_1080_24748668_2025_2473799 crossref_primary_10_1080_24748668_2025_2462399 crossref_primary_10_1080_02640414_2024_2383065 crossref_primary_10_1177_17543371231194291 crossref_primary_10_1371_journal_pone_0293095 crossref_primary_10_1515_jqas_2022_0003 |
Cites_doi | 10.2307/2343726 10.1007/s10994-018-5725-1 10.1080/24748668.2013.11868633 10.5923/s.sports.201401.05 10.1038/s41597-019-0247-7 10.1109/access.2020.3040166 10.1109/tvcg.2019.2952129 10.3390/jtaer16030029 10.1177/1747954119879350 10.15388/na.2004.9.3.15154 10.1007/s12662-019-00579-0 10.1371/journal.pone.0168768 10.1007/s00438-019-01600-9 10.1057/s41272-020-00236-4 10.1007/s10618-017-0513-2 10.29007/4jjb 10.1145/3219819.3219832 10.1080/02640410903503640 10.1080/02640414.2013.879671. 10.1186/s40064-016-3108-2. 10.3389/fphy.2019.00098 10.2307/2554979. 10.1080/17461391.2020.1747552 10.24963/ijcai.2020/648. 10.3389/fpsyg.2018.02416. 10.1109/ICDM.2014.133 10.1145/2939672.2939785. 10.3233/jsa-170207. 10.3389/fspor.2021.624475. 10.5121/ijdms.2019.11101 10.1016/j.gsf.2020.03.007 10.1371/journal.pone.0179953 10.14198/jhse.2017.12.proc2.05. 10.5860/choice.193440. 10.1109/ICDMW.2014.167. |
ContentType | Journal Article |
Copyright | The Author(s) 2021 |
Copyright_xml | – notice: The Author(s) 2021 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10618-021-00763-7 |
DatabaseName | SpringerOpen CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 2049 |
ExternalDocumentID | 10_1007_s10618_021_00763_7 |
GrantInformation_xml | – fundername: Eberhard Karls Universität Tübingen (1020) |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-aded21ccbc84ad25b831a28b1f9214265d73da25e4946287c9fef56fdb98f98a3 |
IEDL.DBID | C6C |
ISSN | 1384-5810 |
IngestDate | Tue Jul 01 00:40:32 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Fri Feb 21 02:48:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Sports analytics Football (Soccer) Applied machine learning Positional and event data Tactical performance analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-aded21ccbc84ad25b831a28b1f9214265d73da25e4946287c9fef56fdb98f98a3 |
ORCID | 0000-0003-3129-8359 0000-0001-8613-6635 |
OpenAccessLink | https://doi.org/10.1007/s10618-021-00763-7 |
PageCount | 41 |
ParticipantIDs | crossref_citationtrail_10_1007_s10618_021_00763_7 crossref_primary_10_1007_s10618_021_00763_7 springer_journals_10_1007_s10618_021_00763_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210900 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2021 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Steiner (CR46) 2019 CR38 CR37 CR36 CR35 CR32 CR31 Yuan (CR33) 2020; 16 CR4 CR6 CR5 CR8 CR7 CR9 CR49 CR48 CR45 CR44 Andrienko (CR2) 2019 CR43 CR42 CR41 CR40 Brefeld, Lasek, Mair (CR10) 2019; 108 Grant (CR20) 1999; 17 Liu, Chen, Lin (CR30) 2020; 295 Antipov, Pokryshevskaya (CR3) 2020; 19 Andrienko (CR1) 2017; 31 Reep, Benjamin (CR39) 1968 CR19 CR18 CR17 CR16 CR15 CR14 CR13 CR12 CR11 Herold (CR21) 2019 Ibrahim (CR24) 2020 CR50 Kim (CR26) 2004; 9 CR29 CR27 Pappalardo (CR34) 2019; 6 CR23 CR22 Travassos (CR47) 2013; 13 Link, Lang, Seidenschwarz (CR28) 2016 Kempe (CR25) 2014; 4 K Liu (763_CR30) 2020; 295 763_CR40 763_CR41 AG Grant (763_CR20) 1999; 17 D Link (763_CR28) 2016 763_CR9 763_CR44 G Andrienko (763_CR1) 2017; 31 763_CR8 763_CR45 763_CR7 763_CR42 763_CR6 763_CR43 763_CR5 763_CR48 763_CR4 763_CR49 U Brefeld (763_CR10) 2019; 108 763_CR50 763_CR11 763_CR12 M Herold (763_CR21) 2019 763_CR15 763_CR16 763_CR13 EA Antipov (763_CR3) 2020; 19 763_CR14 L Ibrahim (763_CR24) 2020 M Kempe (763_CR25) 2014; 4 763_CR22 763_CR23 763_CR27 763_CR19 763_CR17 763_CR18 S Steiner (763_CR46) 2019 G Andrienko (763_CR2) 2019 M Yuan (763_CR33) 2020; 16 B Travassos (763_CR47) 2013; 13 S Kim (763_CR26) 2004; 9 763_CR31 763_CR32 763_CR37 763_CR38 763_CR35 763_CR36 L Pappalardo (763_CR34) 2019; 6 763_CR29 C Reep (763_CR39) 1968 |
References_xml | – ident: CR45 – ident: CR22 – year: 1968 ident: CR39 article-title: Skill and Chance in Association Football publication-title: J Royal Stat Soc Series A (General) doi: 10.2307/2343726 – ident: CR49 – volume: 108 start-page: 127 issue: 1 year: 2019 end-page: 147 ident: CR10 article-title: Probabilistic movement models and zones of control publication-title: Mach Learn doi: 10.1007/s10994-018-5725-1 – volume: 13 start-page: 83 issue: 1 year: 2013 end-page: 95 ident: CR47 article-title: Performance analysis in team sports: advances from an ecological dynamics approach publication-title: Int J Perform Anal Sport doi: 10.1080/24748668.2013.11868633 – ident: CR4 – volume: 4 start-page: 35 issue: 6A year: 2014 end-page: 41 ident: CR25 article-title: Possession vs. direct play: evaluating tactical behavior in elite soccer publication-title: Int J Sports Sci doi: 10.5923/s.sports.201401.05 – ident: CR16 – ident: CR12 – volume: 6 start-page: 236 issue: 1 year: 2019 ident: CR34 article-title: A public data set of spatio-temporal match events in soccer competitions publication-title: Scientific Data doi: 10.1038/s41597-019-0247-7 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR42 – year: 2020 ident: CR24 article-title: Explainable prediction of acute myocardial infarction using machine learning and shapley values publication-title: IEEE Access doi: 10.1109/access.2020.3040166 – year: 2019 ident: CR2 article-title: Constructing Spaces and Times for Tactical Analysis in Football publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/tvcg.2019.2952129 – ident: CR19 – volume: 16 start-page: 466 issue: 3 year: 2020 end-page: 490 ident: CR33 article-title: What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values publication-title: J Theor Appl Electron Commerce Res doi: 10.3390/jtaer16030029 – year: 2019 ident: CR21 article-title: Machine learning in men’s professional football: current applications and future directions for improving attacking play publication-title: Int J Sports Sci Coaching doi: 10.1177/1747954119879350 – ident: CR15 – ident: CR50 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – volume: 9 start-page: 233 issue: 3 year: 2004 end-page: 240 ident: CR26 article-title: Voronoi Analysis of a Soccer Game publication-title: Nonlinear Anal Model Control doi: 10.15388/na.2004.9.3.15154 – year: 2019 ident: CR46 article-title: Outplaying opponents-a differential perspective on passes using position data publication-title: German J Exerc Sport Res doi: 10.1007/s12662-019-00579-0 – ident: CR18 – ident: CR43 – ident: CR14 – year: 2016 ident: CR28 article-title: Real time quantification of dangerousity in football using spatiotemporal tracking data publication-title: PLoS ONE doi: 10.1371/journal.pone.0168768 – ident: CR37 – ident: CR6 – volume: 295 start-page: 13 issue: 1 year: 2020 end-page: 21 ident: CR30 article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites publication-title: Mole Genet Genom doi: 10.1007/s00438-019-01600-9 – ident: CR40 – ident: CR27 – ident: CR23 – ident: CR44 – ident: CR48 – ident: CR38 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 19 start-page: 355 issue: 5 year: 2020 end-page: 364 ident: CR3 article-title: Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values publication-title: J Revenue Pricing Manag doi: 10.1057/s41272-020-00236-4 – ident: CR7 – volume: 31 start-page: 1793 issue: 6 year: 2017 end-page: 1839 ident: CR1 article-title: Visual analysis of pressure in football publication-title: Data Mining Knowl Discov doi: 10.1007/s10618-017-0513-2 – ident: CR41 – volume: 17 start-page: 826 issue: 10 year: 1999 end-page: 827 ident: CR20 article-title: Analysis of the goals scored in the 1998 World Cup publication-title: J Sports Sci – ident: 763_CR18 doi: 10.29007/4jjb – ident: 763_CR14 – ident: 763_CR12 doi: 10.1145/3219819.3219832 – ident: 763_CR9 doi: 10.1080/02640410903503640 – volume: 19 start-page: 355 issue: 5 year: 2020 ident: 763_CR3 publication-title: J Revenue Pricing Manag doi: 10.1057/s41272-020-00236-4 – year: 2016 ident: 763_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0168768 – ident: 763_CR48 doi: 10.1080/02640414.2013.879671. – volume: 295 start-page: 13 issue: 1 year: 2020 ident: 763_CR30 publication-title: Mole Genet Genom doi: 10.1007/s00438-019-01600-9 – ident: 763_CR37 – ident: 763_CR40 doi: 10.1186/s40064-016-3108-2. – ident: 763_CR27 doi: 10.3389/fphy.2019.00098 – ident: 763_CR42 doi: 10.2307/2554979. – ident: 763_CR5 – ident: 763_CR19 doi: 10.1080/17461391.2020.1747552 – volume: 31 start-page: 1793 issue: 6 year: 2017 ident: 763_CR1 publication-title: Data Mining Knowl Discov doi: 10.1007/s10618-017-0513-2 – ident: 763_CR45 – volume: 108 start-page: 127 issue: 1 year: 2019 ident: 763_CR10 publication-title: Mach Learn doi: 10.1007/s10994-018-5725-1 – volume: 6 start-page: 236 issue: 1 year: 2019 ident: 763_CR34 publication-title: Scientific Data doi: 10.1038/s41597-019-0247-7 – ident: 763_CR17 – ident: 763_CR38 – year: 2019 ident: 763_CR2 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/tvcg.2019.2952129 – volume: 16 start-page: 466 issue: 3 year: 2020 ident: 763_CR33 publication-title: J Theor Appl Electron Commerce Res doi: 10.3390/jtaer16030029 – ident: 763_CR13 doi: 10.24963/ijcai.2020/648. – ident: 763_CR35 – ident: 763_CR43 doi: 10.3389/fpsyg.2018.02416. – ident: 763_CR6 doi: 10.1109/ICDM.2014.133 – ident: 763_CR31 – volume: 17 start-page: 826 issue: 10 year: 1999 ident: 763_CR20 publication-title: J Sports Sci – ident: 763_CR11 doi: 10.1145/2939672.2939785. – ident: 763_CR41 – year: 1968 ident: 763_CR39 publication-title: J Royal Stat Soc Series A (General) doi: 10.2307/2343726 – ident: 763_CR8 – volume: 13 start-page: 83 issue: 1 year: 2013 ident: 763_CR47 publication-title: Int J Perform Anal Sport doi: 10.1080/24748668.2013.11868633 – ident: 763_CR44 – ident: 763_CR16 – ident: 763_CR15 doi: 10.3233/jsa-170207. – ident: 763_CR4 doi: 10.3389/fspor.2021.624475. – ident: 763_CR32 – year: 2019 ident: 763_CR21 publication-title: Int J Sports Sci Coaching doi: 10.1177/1747954119879350 – year: 2020 ident: 763_CR24 publication-title: IEEE Access doi: 10.1109/access.2020.3040166 – ident: 763_CR49 doi: 10.5121/ijdms.2019.11101 – ident: 763_CR50 doi: 10.1016/j.gsf.2020.03.007 – ident: 763_CR22 – volume: 4 start-page: 35 issue: 6A year: 2014 ident: 763_CR25 publication-title: Int J Sports Sci doi: 10.5923/s.sports.201401.05 – volume: 9 start-page: 233 issue: 3 year: 2004 ident: 763_CR26 publication-title: Nonlinear Anal Model Control doi: 10.15388/na.2004.9.3.15154 – ident: 763_CR29 doi: 10.1371/journal.pone.0179953 – year: 2019 ident: 763_CR46 publication-title: German J Exerc Sport Res doi: 10.1007/s12662-019-00579-0 – ident: 763_CR36 doi: 10.14198/jhse.2017.12.proc2.05. – ident: 763_CR23 doi: 10.5860/choice.193440. – ident: 763_CR7 doi: 10.1109/ICDMW.2014.167. |
SSID | ssj0005230 |
Score | 2.4841778 |
Snippet | Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2009 |
SubjectTerms | Application Papers Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Information Storage and Retrieval Physics Sports Analytics Statistics for Engineering |
Subtitle | A supervised machine learning task based on synchronized positional and event data with expert-based feature extraction |
Title | Data-driven detection of counterpressing in professional football |
URI | https://link.springer.com/article/10.1007/s10618-021-00763-7 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6IXjxYyrOj5GDNw00TdMkxzI3h6InB_NU8gnCaMdW_3-btNNNRPDS00sLr3l5Sd7v93sA3GBL6qwrBaLcSZRIzBFXPq6sxnXsSa2D2v7zSzqZJo8zOmtlcjwX5kf93lPc0nq8BxL4ohFBbBd0KSbMt2kYpsMNOAdpGME8qb-Lo5Yg8_s7tpPQdgU0JJbxEThod4Qwa37hMdixRQ8crrstwDb4emAvgDX16gRk97KSyCz9QgWNrQKaqoClg6HzQwARrvwdAHwv4GJDewO6sqyUnM9PwXQ8eh1OUNsKAelY4ApJY02MtVaaJ9LEVHGCZcwVdsJrpqXUMGJkTG0iPNmUaeGso6kzSnAnuCRnoFOUhT0HkJE4ctRYkbI0UZKqRPgzoFKRZCySuA_w2je5bnXCfbuKef6tcOz9mdf-zIM_c9YHt19jFo1Kxp_Wd2uX523ErP4wv_if-SXY96tKgwO7Ap1q-WGv641DpQagmz28PY0GYebUz2mcfQIMMLnb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfTioyrWZw560oUm-0oOHopaWrU9WehtzROEshW7Iv4ff6hJuqstiODB-2zY_TKTmex8MwNwinVovS5nQUwNDyKOaUCFsystsbU9LqXvtt8fJN1hdDuKRzX4qGphPNu9Skn6k3qu2C2xKzlKgUsfhUFaUinv9PubvahNL3vXdlfPCOncPFx1g3KWQCAJw0XAlVYESykkjbgisaAh5oQKbJhrOpbEKg0VJ7GOmKvWTCUz2sSJUYJRwygP7bpLsGyDD-psZ0jac0SScFaLTCP7xbhVlub8_M6L7m8x9-pdWmcT1stYFLVnyrMFNZ03YKOa84BKs2_AiqeJyuk2tK95wQP14o5IpHTheVw5mhjkZ054-uLU_X1ATzl6nuv6gcxkUgg-Hu_A8F-A24V6Psn1HqA0JC0TK82SNIkEj0XE3O1TiBZP0xbHTcAVNpksO5S7QRnj7Lu3ssMzs3hmHs8sbcL51zPPs_4cv0pfVJBnpa1OfxHf_5v4Cax2H_r32X1vcHcAa8Rvu2OjHUK9eHnVRzZ8KcSx1x4Ej_-trp-JsPmD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58oHjxLb7NQU-6tMm-koOH0lpaX3hQ8LbmCULZlnZF_Ff-RJN0V1uQggfvs2F3MpPJ7HzzDcAp1qGNupwFMTU8iDimARXOr7TE1ve4lJ5t_-4-6TxF18_x8xx8Vr0wHu1elSTHPQ2OpSkvagNlahONb4ld1cELXCkpDNISVnmjP95t0ja67LbsDp8R0r56bHaCcq5AIAnDRcCVVgRLKSSNuCKxoCHmhApsmCMgS2KVhoqTWEfMdW6mkhlt4sQowahhlId23XlYtJkRduleM2lOgErCcV8yjezX43rZpvP7O0-Hwuk6rA9v7XVYLe-lqDE2pA2Y0_kmrFUzH1B5BGzCkoeMytEWNFq84IEauuMSKV14TFeO-gb5-RMeyjhyfyLQa44GEwwgyPT7heC93jY8_YvidmAh7-d6F1AakrqJlWZJmkSCxyJiLhMVos7TtM7xHuBKN5ks2crd0Ixe9sOz7PSZWX1mXp9Zugfn388MxlwdM6UvKpVnpd-OZojv_038BJYfWu3stnt_cwArxO-6A6YdwkIxfNNH9iZTiGNvPAhe_ttavwBhHP2p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+detection+of+counterpressing+in+professional+football&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bauer%2C+Pascal&rft.au=Anzer%2C+Gabriel&rft.date=2021-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=35&rft.issue=5&rft.spage=2009&rft.epage=2049&rft_id=info:doi/10.1007%2Fs10618-021-00763-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_021_00763_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |