Data-driven detection of counterpressing in professional football A supervised machine learning task based on synchronized positional and event data with expert-based feature extraction

Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches wi...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 35; no. 5; pp. 2009 - 2049
Main Authors Bauer, Pascal, Anzer, Gabriel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of 87.4 % on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes.
AbstractList Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of $$87.4\%$$ 87.4 % on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes.
Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing video footage. The purpose of this paper is not only to automatically identify this strategy, but also to derive metrics that support coaches with the analysis of transition situations. Additionally, we want to infer objective influence factors for its success and assess the validity of peer-created rules of thumb established in by practitioners. Based on a combination of positional and event data we detect counterpressing situations as a supervised machine learning task. Together, with professional match-analysis experts we discussed and consolidated a consistent definition, extracted 134 features and manually labeled more than 20, 000 defensive transition situations from 97 professional football matches. The extreme gradient boosting model—with an area under the curve of 87.4 % on the labeled test data—enabled us to judge how quickly teams can win the ball back with counterpressing strategies, how many shots they create or allow immediately afterwards and to determine what the most important success drivers are. We applied this automatic detection on all matches from six full seasons of the German Bundesliga and quantified the defensive and offensive consequences when applying counterpressing for each team. Automating the task saves analysts a tremendous amount of time, standardizes the otherwise subjective task, and allows to identify trends within larger data-sets. We present an effective way of how the detection and the lessons learned from this investigation are integrated effectively into common match-analysis processes.
Author Anzer, Gabriel
Bauer, Pascal
Author_xml – sequence: 1
  givenname: Pascal
  orcidid: 0000-0001-8613-6635
  surname: Bauer
  fullname: Bauer, Pascal
  email: pascal.bauer@dfb.de
  organization: Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, DFB-Akademie, Deutscher Fußball-Bund e.V. (DFB)
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0003-3129-8359
  surname: Anzer
  fullname: Anzer, Gabriel
  organization: Department of Sport Psychology and Research Methods, Institute of Sports Science, University of Tübingen, Sportec Solutions AG, subsidiary of the Deutsche Fußball Liga (DFL)
BookMark eNp9kE1LAzEQhoMo2Fb_gKf9A9FMstnNHkv9hIIXBW8hm4-SsiYlSQX_van15KGneQfmGWaeOToPMViEboDcAiH9XQbSgcCEAq5tx3B_hmbA-xp493FeMxMt5gLIJZrnvCWEcMrIDC3vVVHYJP9lQ2Nssbr4GJroGh33odi0SzZnHzaND80uRXfoYlBT42Iso5qmK3Th1JTt9V9doPfHh7fVM16_Pr2slmus6QAFK2MNBa1HLVplKB8FA0XFCG6g0NKOm54ZRblth7ajoteDs453zoyDcINQbIHEca9OMedkndS-qMO1JSk_SSDyoEIeVciqQv6qkH1F6T90l_ynSt-nIXaEch0OG5vkNu5T_Tyfon4AwHd0vA
CitedBy_id crossref_primary_10_1007_s10618_021_00810_3
crossref_primary_10_1007_s12662_023_00900_y
crossref_primary_10_1080_24733938_2023_2239766
crossref_primary_10_1109_ACCESS_2024_3402370
crossref_primary_10_1016_j_techfore_2022_121838
crossref_primary_10_3233_JSA_220620
crossref_primary_10_52082_jssm_2023_707
crossref_primary_10_1007_s11192_024_05171_4
crossref_primary_10_1111_ssqu_13364
crossref_primary_10_3389_fspor_2021_725431
crossref_primary_10_1155_2022_9497783
crossref_primary_10_1038_s41598_022_19948_1
crossref_primary_10_1155_2022_2839244
crossref_primary_10_1155_2022_3284156
crossref_primary_10_1007_s10994_024_06647_3
crossref_primary_10_3390_jfmk8020039
crossref_primary_10_1007_s10994_024_06585_0
crossref_primary_10_1080_02640414_2023_2268366
crossref_primary_10_1080_24748668_2025_2473799
crossref_primary_10_1080_24748668_2025_2462399
crossref_primary_10_1080_02640414_2024_2383065
crossref_primary_10_1177_17543371231194291
crossref_primary_10_1371_journal_pone_0293095
crossref_primary_10_1515_jqas_2022_0003
Cites_doi 10.2307/2343726
10.1007/s10994-018-5725-1
10.1080/24748668.2013.11868633
10.5923/s.sports.201401.05
10.1038/s41597-019-0247-7
10.1109/access.2020.3040166
10.1109/tvcg.2019.2952129
10.3390/jtaer16030029
10.1177/1747954119879350
10.15388/na.2004.9.3.15154
10.1007/s12662-019-00579-0
10.1371/journal.pone.0168768
10.1007/s00438-019-01600-9
10.1057/s41272-020-00236-4
10.1007/s10618-017-0513-2
10.29007/4jjb
10.1145/3219819.3219832
10.1080/02640410903503640
10.1080/02640414.2013.879671.
10.1186/s40064-016-3108-2.
10.3389/fphy.2019.00098
10.2307/2554979.
10.1080/17461391.2020.1747552
10.24963/ijcai.2020/648.
10.3389/fpsyg.2018.02416.
10.1109/ICDM.2014.133
10.1145/2939672.2939785.
10.3233/jsa-170207.
10.3389/fspor.2021.624475.
10.5121/ijdms.2019.11101
10.1016/j.gsf.2020.03.007
10.1371/journal.pone.0179953
10.14198/jhse.2017.12.proc2.05.
10.5860/choice.193440.
10.1109/ICDMW.2014.167.
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10618-021-00763-7
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 2049
ExternalDocumentID 10_1007_s10618_021_00763_7
GrantInformation_xml – fundername: Eberhard Karls Universität Tübingen (1020)
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-aded21ccbc84ad25b831a28b1f9214265d73da25e4946287c9fef56fdb98f98a3
IEDL.DBID C6C
ISSN 1384-5810
IngestDate Tue Jul 01 00:40:32 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 21 02:48:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sports analytics
Football (Soccer)
Applied machine learning
Positional and event data
Tactical performance analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-aded21ccbc84ad25b831a28b1f9214265d73da25e4946287c9fef56fdb98f98a3
ORCID 0000-0003-3129-8359
0000-0001-8613-6635
OpenAccessLink https://doi.org/10.1007/s10618-021-00763-7
PageCount 41
ParticipantIDs crossref_citationtrail_10_1007_s10618_021_00763_7
crossref_primary_10_1007_s10618_021_00763_7
springer_journals_10_1007_s10618_021_00763_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References Steiner (CR46) 2019
CR38
CR37
CR36
CR35
CR32
CR31
Yuan (CR33) 2020; 16
CR4
CR6
CR5
CR8
CR7
CR9
CR49
CR48
CR45
CR44
Andrienko (CR2) 2019
CR43
CR42
CR41
CR40
Brefeld, Lasek, Mair (CR10) 2019; 108
Grant (CR20) 1999; 17
Liu, Chen, Lin (CR30) 2020; 295
Antipov, Pokryshevskaya (CR3) 2020; 19
Andrienko (CR1) 2017; 31
Reep, Benjamin (CR39) 1968
CR19
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR11
Herold (CR21) 2019
Ibrahim (CR24) 2020
CR50
Kim (CR26) 2004; 9
CR29
CR27
Pappalardo (CR34) 2019; 6
CR23
CR22
Travassos (CR47) 2013; 13
Link, Lang, Seidenschwarz (CR28) 2016
Kempe (CR25) 2014; 4
K Liu (763_CR30) 2020; 295
763_CR40
763_CR41
AG Grant (763_CR20) 1999; 17
D Link (763_CR28) 2016
763_CR9
763_CR44
G Andrienko (763_CR1) 2017; 31
763_CR8
763_CR45
763_CR7
763_CR42
763_CR6
763_CR43
763_CR5
763_CR48
763_CR4
763_CR49
U Brefeld (763_CR10) 2019; 108
763_CR50
763_CR11
763_CR12
M Herold (763_CR21) 2019
763_CR15
763_CR16
763_CR13
EA Antipov (763_CR3) 2020; 19
763_CR14
L Ibrahim (763_CR24) 2020
M Kempe (763_CR25) 2014; 4
763_CR22
763_CR23
763_CR27
763_CR19
763_CR17
763_CR18
S Steiner (763_CR46) 2019
G Andrienko (763_CR2) 2019
M Yuan (763_CR33) 2020; 16
B Travassos (763_CR47) 2013; 13
S Kim (763_CR26) 2004; 9
763_CR31
763_CR32
763_CR37
763_CR38
763_CR35
763_CR36
L Pappalardo (763_CR34) 2019; 6
763_CR29
C Reep (763_CR39) 1968
References_xml – ident: CR45
– ident: CR22
– year: 1968
  ident: CR39
  article-title: Skill and Chance in Association Football
  publication-title: J Royal Stat Soc Series A (General)
  doi: 10.2307/2343726
– ident: CR49
– volume: 108
  start-page: 127
  issue: 1
  year: 2019
  end-page: 147
  ident: CR10
  article-title: Probabilistic movement models and zones of control
  publication-title: Mach Learn
  doi: 10.1007/s10994-018-5725-1
– volume: 13
  start-page: 83
  issue: 1
  year: 2013
  end-page: 95
  ident: CR47
  article-title: Performance analysis in team sports: advances from an ecological dynamics approach
  publication-title: Int J Perform Anal Sport
  doi: 10.1080/24748668.2013.11868633
– ident: CR4
– volume: 4
  start-page: 35
  issue: 6A
  year: 2014
  end-page: 41
  ident: CR25
  article-title: Possession vs. direct play: evaluating tactical behavior in elite soccer
  publication-title: Int J Sports Sci
  doi: 10.5923/s.sports.201401.05
– ident: CR16
– ident: CR12
– volume: 6
  start-page: 236
  issue: 1
  year: 2019
  ident: CR34
  article-title: A public data set of spatio-temporal match events in soccer competitions
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0247-7
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR42
– year: 2020
  ident: CR24
  article-title: Explainable prediction of acute myocardial infarction using machine learning and shapley values
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3040166
– year: 2019
  ident: CR2
  article-title: Constructing Spaces and Times for Tactical Analysis in Football
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/tvcg.2019.2952129
– ident: CR19
– volume: 16
  start-page: 466
  issue: 3
  year: 2020
  end-page: 490
  ident: CR33
  article-title: What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values
  publication-title: J Theor Appl Electron Commerce Res
  doi: 10.3390/jtaer16030029
– year: 2019
  ident: CR21
  article-title: Machine learning in men’s professional football: current applications and future directions for improving attacking play
  publication-title: Int J Sports Sci Coaching
  doi: 10.1177/1747954119879350
– ident: CR15
– ident: CR50
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– volume: 9
  start-page: 233
  issue: 3
  year: 2004
  end-page: 240
  ident: CR26
  article-title: Voronoi Analysis of a Soccer Game
  publication-title: Nonlinear Anal Model Control
  doi: 10.15388/na.2004.9.3.15154
– year: 2019
  ident: CR46
  article-title: Outplaying opponents-a differential perspective on passes using position data
  publication-title: German J Exerc Sport Res
  doi: 10.1007/s12662-019-00579-0
– ident: CR18
– ident: CR43
– ident: CR14
– year: 2016
  ident: CR28
  article-title: Real time quantification of dangerousity in football using spatiotemporal tracking data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0168768
– ident: CR37
– ident: CR6
– volume: 295
  start-page: 13
  issue: 1
  year: 2020
  end-page: 21
  ident: CR30
  article-title: XG-PseU: an eXtreme Gradient Boosting based method for identifying pseudouridine sites
  publication-title: Mole Genet Genom
  doi: 10.1007/s00438-019-01600-9
– ident: CR40
– ident: CR27
– ident: CR23
– ident: CR44
– ident: CR48
– ident: CR38
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 19
  start-page: 355
  issue: 5
  year: 2020
  end-page: 364
  ident: CR3
  article-title: Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values
  publication-title: J Revenue Pricing Manag
  doi: 10.1057/s41272-020-00236-4
– ident: CR7
– volume: 31
  start-page: 1793
  issue: 6
  year: 2017
  end-page: 1839
  ident: CR1
  article-title: Visual analysis of pressure in football
  publication-title: Data Mining Knowl Discov
  doi: 10.1007/s10618-017-0513-2
– ident: CR41
– volume: 17
  start-page: 826
  issue: 10
  year: 1999
  end-page: 827
  ident: CR20
  article-title: Analysis of the goals scored in the 1998 World Cup
  publication-title: J Sports Sci
– ident: 763_CR18
  doi: 10.29007/4jjb
– ident: 763_CR14
– ident: 763_CR12
  doi: 10.1145/3219819.3219832
– ident: 763_CR9
  doi: 10.1080/02640410903503640
– volume: 19
  start-page: 355
  issue: 5
  year: 2020
  ident: 763_CR3
  publication-title: J Revenue Pricing Manag
  doi: 10.1057/s41272-020-00236-4
– year: 2016
  ident: 763_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0168768
– ident: 763_CR48
  doi: 10.1080/02640414.2013.879671.
– volume: 295
  start-page: 13
  issue: 1
  year: 2020
  ident: 763_CR30
  publication-title: Mole Genet Genom
  doi: 10.1007/s00438-019-01600-9
– ident: 763_CR37
– ident: 763_CR40
  doi: 10.1186/s40064-016-3108-2.
– ident: 763_CR27
  doi: 10.3389/fphy.2019.00098
– ident: 763_CR42
  doi: 10.2307/2554979.
– ident: 763_CR5
– ident: 763_CR19
  doi: 10.1080/17461391.2020.1747552
– volume: 31
  start-page: 1793
  issue: 6
  year: 2017
  ident: 763_CR1
  publication-title: Data Mining Knowl Discov
  doi: 10.1007/s10618-017-0513-2
– ident: 763_CR45
– volume: 108
  start-page: 127
  issue: 1
  year: 2019
  ident: 763_CR10
  publication-title: Mach Learn
  doi: 10.1007/s10994-018-5725-1
– volume: 6
  start-page: 236
  issue: 1
  year: 2019
  ident: 763_CR34
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0247-7
– ident: 763_CR17
– ident: 763_CR38
– year: 2019
  ident: 763_CR2
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/tvcg.2019.2952129
– volume: 16
  start-page: 466
  issue: 3
  year: 2020
  ident: 763_CR33
  publication-title: J Theor Appl Electron Commerce Res
  doi: 10.3390/jtaer16030029
– ident: 763_CR13
  doi: 10.24963/ijcai.2020/648.
– ident: 763_CR35
– ident: 763_CR43
  doi: 10.3389/fpsyg.2018.02416.
– ident: 763_CR6
  doi: 10.1109/ICDM.2014.133
– ident: 763_CR31
– volume: 17
  start-page: 826
  issue: 10
  year: 1999
  ident: 763_CR20
  publication-title: J Sports Sci
– ident: 763_CR11
  doi: 10.1145/2939672.2939785.
– ident: 763_CR41
– year: 1968
  ident: 763_CR39
  publication-title: J Royal Stat Soc Series A (General)
  doi: 10.2307/2343726
– ident: 763_CR8
– volume: 13
  start-page: 83
  issue: 1
  year: 2013
  ident: 763_CR47
  publication-title: Int J Perform Anal Sport
  doi: 10.1080/24748668.2013.11868633
– ident: 763_CR44
– ident: 763_CR16
– ident: 763_CR15
  doi: 10.3233/jsa-170207.
– ident: 763_CR4
  doi: 10.3389/fspor.2021.624475.
– ident: 763_CR32
– year: 2019
  ident: 763_CR21
  publication-title: Int J Sports Sci Coaching
  doi: 10.1177/1747954119879350
– year: 2020
  ident: 763_CR24
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3040166
– ident: 763_CR49
  doi: 10.5121/ijdms.2019.11101
– ident: 763_CR50
  doi: 10.1016/j.gsf.2020.03.007
– ident: 763_CR22
– volume: 4
  start-page: 35
  issue: 6A
  year: 2014
  ident: 763_CR25
  publication-title: Int J Sports Sci
  doi: 10.5923/s.sports.201401.05
– volume: 9
  start-page: 233
  issue: 3
  year: 2004
  ident: 763_CR26
  publication-title: Nonlinear Anal Model Control
  doi: 10.15388/na.2004.9.3.15154
– ident: 763_CR29
  doi: 10.1371/journal.pone.0179953
– year: 2019
  ident: 763_CR46
  publication-title: German J Exerc Sport Res
  doi: 10.1007/s12662-019-00579-0
– ident: 763_CR36
  doi: 10.14198/jhse.2017.12.proc2.05.
– ident: 763_CR23
  doi: 10.5860/choice.193440.
– ident: 763_CR7
  doi: 10.1109/ICDMW.2014.167.
SSID ssj0005230
Score 2.4841778
Snippet Detecting counterpressing is an important task for any professional match-analyst in football (soccer), but is being done exclusively manually by observing...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2009
SubjectTerms Application Papers
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Physics
Sports Analytics
Statistics for Engineering
Subtitle A supervised machine learning task based on synchronized positional and event data with expert-based feature extraction
Title Data-driven detection of counterpressing in professional football
URI https://link.springer.com/article/10.1007/s10618-021-00763-7
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6IXjxYyrOj5GDNw00TdMkxzI3h6InB_NU8gnCaMdW_3-btNNNRPDS00sLr3l5Sd7v93sA3GBL6qwrBaLcSZRIzBFXPq6sxnXsSa2D2v7zSzqZJo8zOmtlcjwX5kf93lPc0nq8BxL4ohFBbBd0KSbMt2kYpsMNOAdpGME8qb-Lo5Yg8_s7tpPQdgU0JJbxEThod4Qwa37hMdixRQ8crrstwDb4emAvgDX16gRk97KSyCz9QgWNrQKaqoClg6HzQwARrvwdAHwv4GJDewO6sqyUnM9PwXQ8eh1OUNsKAelY4ApJY02MtVaaJ9LEVHGCZcwVdsJrpqXUMGJkTG0iPNmUaeGso6kzSnAnuCRnoFOUhT0HkJE4ctRYkbI0UZKqRPgzoFKRZCySuA_w2je5bnXCfbuKef6tcOz9mdf-zIM_c9YHt19jFo1Kxp_Wd2uX523ErP4wv_if-SXY96tKgwO7Ap1q-WGv641DpQagmz28PY0GYebUz2mcfQIMMLnb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qRfTioyrWZw560oUm-0oOHopaWrU9WehtzROEshW7Iv4ff6hJuqstiODB-2zY_TKTmex8MwNwinVovS5nQUwNDyKOaUCFsystsbU9LqXvtt8fJN1hdDuKRzX4qGphPNu9Skn6k3qu2C2xKzlKgUsfhUFaUinv9PubvahNL3vXdlfPCOncPFx1g3KWQCAJw0XAlVYESykkjbgisaAh5oQKbJhrOpbEKg0VJ7GOmKvWTCUz2sSJUYJRwygP7bpLsGyDD-psZ0jac0SScFaLTCP7xbhVlub8_M6L7m8x9-pdWmcT1stYFLVnyrMFNZ03YKOa84BKs2_AiqeJyuk2tK95wQP14o5IpHTheVw5mhjkZ054-uLU_X1ATzl6nuv6gcxkUgg-Hu_A8F-A24V6Psn1HqA0JC0TK82SNIkEj0XE3O1TiBZP0xbHTcAVNpksO5S7QRnj7Lu3ssMzs3hmHs8sbcL51zPPs_4cv0pfVJBnpa1OfxHf_5v4Cax2H_r32X1vcHcAa8Rvu2OjHUK9eHnVRzZ8KcSx1x4Ej_-trp-JsPmD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58oHjxLb7NQU-6tMm-koOH0lpaX3hQ8LbmCULZlnZF_Ff-RJN0V1uQggfvs2F3MpPJ7HzzDcAp1qGNupwFMTU8iDimARXOr7TE1ve4lJ5t_-4-6TxF18_x8xx8Vr0wHu1elSTHPQ2OpSkvagNlahONb4ld1cELXCkpDNISVnmjP95t0ja67LbsDp8R0r56bHaCcq5AIAnDRcCVVgRLKSSNuCKxoCHmhApsmCMgS2KVhoqTWEfMdW6mkhlt4sQowahhlId23XlYtJkRduleM2lOgErCcV8yjezX43rZpvP7O0-Hwuk6rA9v7XVYLe-lqDE2pA2Y0_kmrFUzH1B5BGzCkoeMytEWNFq84IEauuMSKV14TFeO-gb5-RMeyjhyfyLQa44GEwwgyPT7heC93jY8_YvidmAh7-d6F1AakrqJlWZJmkSCxyJiLhMVos7TtM7xHuBKN5ks2crd0Ixe9sOz7PSZWX1mXp9Zugfn388MxlwdM6UvKpVnpd-OZojv_038BJYfWu3stnt_cwArxO-6A6YdwkIxfNNH9iZTiGNvPAhe_ttavwBhHP2p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+detection+of+counterpressing+in+professional+football&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bauer%2C+Pascal&rft.au=Anzer%2C+Gabriel&rft.date=2021-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=35&rft.issue=5&rft.spage=2009&rft.epage=2049&rft_id=info:doi/10.1007%2Fs10618-021-00763-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_021_00763_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon