Touch Gesture and Emotion Recognition Using Decomposed Spatiotemporal Convolutions
Touch is one of the most essential and effective means to convey affective feelings and intentions in human communication. For a social robot, the ability to recognize human touch gestures and emotions could help realize efficient and natural human-robot interaction. To this end, an affective touch...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Touch is one of the most essential and effective means to convey affective feelings and intentions in human communication. For a social robot, the ability to recognize human touch gestures and emotions could help realize efficient and natural human-robot interaction. To this end, an affective touch gesture dataset involving ten kinds of touch gestures and 12 kinds of discrete emotions was built by using a pressure sensor array, in which the acquired touch gesture samples are three-dimensional (3-D) spatiotemporal signals that include the shape appearance and motion dynamics. Due to the excellent performance of convolutional neural networks (CNNs), spatiotemporal CNNs have been effectively verified by researchers for 3-D signal classification. However, the large number of parameters and the high complexity of training 3-D convolution kernels remain to be solved. In this article, a decomposed spatiotemporal convolution was designed for feature representation from the raw touch gesture samples. Specifically, the 3-D kernel was factorized into three 1-D kernels by tensor decomposition. The proposed convolution has a simpler but deeper architecture than standard 3-D convolution, which improves the nonlinear expression ability of the model. Besides, the computation cost can be reduced without compromising recognition accuracy. Using a user-dependent test mode, the proposed method yields the accuracies of up to 92.41% and 72.47% for touch gesture and emotion recognitions, respectively. Experimental results demonstrate the effectiveness of the proposed method, and at the same time, preliminarily verify the feasibility of robot perceiving human emotions through touch. |
---|---|
AbstractList | Touch is one of the most essential and effective means to convey affective feelings and intentions in human communication. For a social robot, the ability to recognize human touch gestures and emotions could help realize efficient and natural human-robot interaction. To this end, an affective touch gesture dataset involving ten kinds of touch gestures and 12 kinds of discrete emotions was built by using a pressure sensor array, in which the acquired touch gesture samples are three-dimensional (3-D) spatiotemporal signals that include the shape appearance and motion dynamics. Due to the excellent performance of convolutional neural networks (CNNs), spatiotemporal CNNs have been effectively verified by researchers for 3-D signal classification. However, the large number of parameters and the high complexity of training 3-D convolution kernels remain to be solved. In this article, a decomposed spatiotemporal convolution was designed for feature representation from the raw touch gesture samples. Specifically, the 3-D kernel was factorized into three 1-D kernels by tensor decomposition. The proposed convolution has a simpler but deeper architecture than standard 3-D convolution, which improves the nonlinear expression ability of the model. Besides, the computation cost can be reduced without compromising recognition accuracy. Using a user-dependent test mode, the proposed method yields the accuracies of up to 92.41% and 72.47% for touch gesture and emotion recognitions, respectively. Experimental results demonstrate the effectiveness of the proposed method, and at the same time, preliminarily verify the feasibility of robot perceiving human emotions through touch. |
Author | Yang, Tian-Hao Wang, Ya-Xin Li, Yun-Kai Hou, Hui-Rang Meng, Qing-Hao |
Author_xml | – sequence: 1 givenname: Yun-Kai orcidid: 0000-0001-8152-1403 surname: Li fullname: Li, Yun-Kai email: yunkai_li1995@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Qing-Hao orcidid: 0000-0002-9915-7088 surname: Meng fullname: Meng, Qing-Hao email: qh_meng@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Tian-Hao orcidid: 0000-0003-2640-0531 surname: Yang fullname: Yang, Tian-Hao email: 3015203055@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Ya-Xin orcidid: 0000-0002-8735-2994 surname: Wang fullname: Wang, Ya-Xin email: wangyaxin714@163.com organization: Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 5 givenname: Hui-Rang orcidid: 0000-0002-4608-273X surname: Hou fullname: Hou, Hui-Rang email: houhuirang@tju.edu.cn organization: Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China |
BookMark | eNp9UM9LwzAYDTLBOb0LXgqeO_OjSdqjzDkHE2Fu55ClX2dHl8ykFfzvTd3w4MHT9-u97_HeJRpYZwGhG4LHhODifjV_GVNM6ZiRTDKWn6Eh4VymhRB0gIYYkzwtMi4u0GUIO4yxFJkcouXKdeY9mUFoOw-JtmUy3bu2djZZgnFbW__061DbbfIYN_uDC1AmbwcdDy3E0esmmTj76Zqux4YrdF7pJsD1qY7Q-mm6mjyni9fZfPKwSA0tSJvqUhtgcoPZRgJwWWYZw5gyrjc5BQOCV4QzzioCoE0RLVFDpcwpo8AqDGyE7o5_D959dNGA2rnO2yipqGAMZ5IIHlH4iDLeheChUgdf77X_UgSrPjkVk1N9cuqUXKSIPxRTt71d23pdN_8Rb4_EGgB-dQqJBckF-wYFD320 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_3389_fnins_2023_1216181 crossref_primary_10_1109_JPROC_2023_3272780 crossref_primary_10_1088_2631_8695_acc515 crossref_primary_10_1109_TIM_2024_3373045 crossref_primary_10_1109_TII_2022_3174063 crossref_primary_10_1109_JSEN_2022_3187776 crossref_primary_10_1109_TFUZZ_2024_3373125 |
Cites_doi | 10.1007/s12369-013-0223-x 10.1080/02699939208411068 10.1037/0022-3514.57.3.493 10.1007/s12369-011-0126-7 10.1016/j.neucom.2018.08.042 10.1016/j.ijhcs.2006.11.006 10.1037/a0016108 10.21437/Interspeech.2008-192 10.1126/sciadv.aba4294 10.1109/TII.2018.2862912 10.1016/j.patrec.2014.10.016 10.1109/ICRA.2017.7989267 10.1016/j.engappai.2020.103670 10.1109/TPAMI.2017.2712608 10.1126/scirobotics.aao6760 10.1007/s12193-016-0232-9 10.1109/TIM.2021.3077967 10.1109/CVPR.2018.00716 10.1109/TAFFC.2017.2740923 10.1145/2818346.2830599 10.1145/2663204.2663242 10.1109/ICCV.2015.522 10.1109/TCDS.2018.2809434 10.1155/2018/6973103 10.1109/CVPR.2018.00675 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3147338 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 9 |
ExternalDocumentID | 10_1109_TIM_2022_3147338 9706186 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2021M692390 funderid: 10.13039/501100002858 – fundername: Tianjin Natural Science Foundation grantid: 20JCZDJC00150; 20JCYBJC00320 funderid: 10.13039/501100006606 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-adace37b03b7ee57d44300235ab82ece65f15353f1eeac93382c2778232e3f0e3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:07:44 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 03:07:10 EDT 2025 Wed Aug 27 02:49:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-adace37b03b7ee57d44300235ab82ece65f15353f1eeac93382c2778232e3f0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4608-273X 0000-0003-2640-0531 0000-0001-8152-1403 0000-0002-9915-7088 0000-0002-8735-2994 |
PQID | 2633047165 |
PQPubID | 85462 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2633047165 crossref_citationtrail_10_1109_TIM_2022_3147338 ieee_primary_9706186 crossref_primary_10_1109_TIM_2022_3147338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref20 ref22 ref21 Howard (ref25) 2017 ref8 ref7 ref9 ref4 ref3 ref6 van der Maaten (ref27) 2008; 9 ref5 |
References_xml | – ident: ref17 doi: 10.1007/s12369-013-0223-x – ident: ref19 doi: 10.1080/02699939208411068 – ident: ref18 doi: 10.1037/0022-3514.57.3.493 – ident: ref4 doi: 10.1007/s12369-011-0126-7 – ident: ref14 doi: 10.1016/j.neucom.2018.08.042 – ident: ref23 doi: 10.1016/j.ijhcs.2006.11.006 – ident: ref2 doi: 10.1037/a0016108 – ident: ref22 doi: 10.21437/Interspeech.2008-192 – volume: 9 start-page: 2579 year: 2008 ident: ref27 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref8 doi: 10.1126/sciadv.aba4294 – ident: ref16 doi: 10.1109/TII.2018.2862912 – ident: ref11 doi: 10.1016/j.patrec.2014.10.016 – ident: ref13 doi: 10.1109/ICRA.2017.7989267 – ident: ref7 doi: 10.1016/j.engappai.2020.103670 – ident: ref21 doi: 10.1109/TPAMI.2017.2712608 – ident: ref1 doi: 10.1126/scirobotics.aao6760 – ident: ref9 doi: 10.1007/s12193-016-0232-9 – ident: ref6 doi: 10.1109/TIM.2021.3077967 – ident: ref26 doi: 10.1109/CVPR.2018.00716 – ident: ref24 doi: 10.1109/TAFFC.2017.2740923 – ident: ref10 doi: 10.1145/2818346.2830599 – year: 2017 ident: ref25 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref5 doi: 10.1145/2663204.2663242 – ident: ref20 doi: 10.1109/ICCV.2015.522 – ident: ref3 doi: 10.1109/TCDS.2018.2809434 – ident: ref12 doi: 10.1155/2018/6973103 – ident: ref15 doi: 10.1109/CVPR.2018.00675 |
SSID | ssj0007647 |
Score | 2.4072971 |
Snippet | Touch is one of the most essential and effective means to convey affective feelings and intentions in human communication. For a social robot, the ability to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Artificial neural networks Decomposed spatiotemporal convolution Decomposition Emotion recognition Emotions Human communication Human performance human–robot tactile interaction Kernels Pressure sensors Robots Sensor arrays Service robots Signal classification Spatiotemporal phenomena Tensors Three-dimensional displays touch gesture recognition |
Title | Touch Gesture and Emotion Recognition Using Decomposed Spatiotemporal Convolutions |
URI | https://ieeexplore.ieee.org/document/9706186 https://www.proquest.com/docview/2633047165 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsLtpkrb2KL6F9aAreCtJOkVQWnG3Hvz1TtJ2ERXxlkMSwkwymUm--QbgIKRbB49NGKSmSAMVcR6YUOpAWh3aY8N1yF2-8_A2vnpQN4_R4wwcTXNhENGDz7Dvmv4vP69s7Z7KBmnCHb37LMxS4Nbkak2tbhKrhh8zpANMXkH3JcnTweh6SIGgEBSfqkS6TJQvV5CvqfLDEPvb5WIZht26GlDJc7-emL79-EbZ-N-Fr8BS62ayk2ZfrMIMlmuw-IV8cA3mPfjTjtfhblTV9old0rrqN2S6zNl5U92H3XX4Imp7dAE7Q4dCr8aYs3uPxm7JrV7YaVW-dxt5Ax4uzkenV0FbayGwIg0ngc61RZkYLk2CGCW5UtJz4WhDyrQYRwXZxkgWIZKpTkmKwoqEFC0FyoKj3IS5sipxC5hFcrIMeTpKFUrlqYkwFzbWWmgVU6sHg078mW2JyF09jJfMByQ8zUhhmVNY1iqsB4fTEa8NCccffded_Kf9WtH3YLfTcNae0nEmYveaQxFjtP37qB1YcHM3Ty67MDd5q3GPnJCJ2fe77xNRjNi- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RrarCgbY8xAKlPvRSqdl1bCfZHBGPLpTlQBeJW2Q7EyGBEsRuOPDrGTvJClGEuPngKNaMPQ_7m28AfobkdXBkwiA1RRqoiPPAhFIH0urQjgzXIXf1zpPzeHypTq-iqyX4vaiFQUQPPsOBG_q3_LyytbsqG6YJd_TuH-Aj-f1INNVaC7ubxKphyAzpCFNc0D1K8nQ4PZlQKigEZagqka4W5ZkT8l1V_jPF3r8cf4FJt7IGVnIzqOdmYB9fkDa-d-lfYbUNNNl-szO-wRKWa7DyjH5wDT55-KedrcPFtKrtNftD66rvkekyZ0dNfx920SGMaOzxBewQHQ69mmHO_nk8dktvdcsOqvKh28obcHl8ND0YB223hcCKNJwHOtcWZWK4NAlilORKSc-Gow2p02IcFWQdI1mESMY6JSkKKxJStRQoC45yE3plVeIWMIsUZhmKdZQqlMpTE2EubKy10CqmUR-Gnfgz21KRu44Yt5lPSXiakcIyp7CsVVgffi2-uGtoON6Yu-7kv5jXir4Pu52Gs_aczjIRu_scyhmj7de_-gGfx9PJWXZ2cv53B5bdf5oLmF3oze9r_E4hydzs-Z34BMvk3Ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Touch+Gesture+and+Emotion+Recognition+Using+Decomposed+Spatiotemporal+Convolutions&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Yun-Kai&rft.au=Meng%2C+Qing-Hao&rft.au=Yang%2C+Tian-Hao&rft.au=Wang%2C+Ya-Xin&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2022.3147338&rft.externalDocID=9706186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |