Power Control Based on Deep Reinforcement Learning for Spectrum Sharing
In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 19; no. 6; pp. 4209 - 4219 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network (DNN) is introduced into RL to solve high dimensional problems. In this paper, we first construct an information interaction model among primary user (PU), secondary user (SU) and wireless sensors in a cognitive radio system. In the model, the SU is unable to get the power allocation information of the PU, and needs to use the received signal strengths (RSSs) of the wireless sensors to adjust its own power. The PU allocates transmit power relying on its power control scheme. We propose an asynchronous advantage actor critic (A3C)-based power control of SU that is a parallel actor-learners framework with root mean square prop (RMSProp) optimization. Multiple SUs learn power control scheme simultaneously on different CPU threads, reducing neural network gradient update interdependence. To further improve the efficiency of spectrum sharing, the distributed proximal policy optimization (DPPO)-based power control is proposed which is an asynchronous variant of actor-critic with adaptive moment (Adam) optimization. It enables the network to converge quickly. After several power adjustments, the PU and the SU meet quality of service (QoS) requirements and achieve spectrum sharing. |
---|---|
AbstractList | In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network (DNN) is introduced into RL to solve high dimensional problems. In this paper, we first construct an information interaction model among primary user (PU), secondary user (SU) and wireless sensors in a cognitive radio system. In the model, the SU is unable to get the power allocation information of the PU, and needs to use the received signal strengths (RSSs) of the wireless sensors to adjust its own power. The PU allocates transmit power relying on its power control scheme. We propose an asynchronous advantage actor critic (A3C)-based power control of SU that is a parallel actor-learners framework with root mean square prop (RMSProp) optimization. Multiple SUs learn power control scheme simultaneously on different CPU threads, reducing neural network gradient update interdependence. To further improve the efficiency of spectrum sharing, the distributed proximal policy optimization (DPPO)-based power control is proposed which is an asynchronous variant of actor-critic with adaptive moment (Adam) optimization. It enables the network to converge quickly. After several power adjustments, the PU and the SU meet quality of service (QoS) requirements and achieve spectrum sharing. |
Author | Leung, Victor C. M. Zhang, Haijun Huangfu, Wei Long, Keping Yang, Ning |
Author_xml | – sequence: 1 givenname: Haijun orcidid: 0000-0002-0236-6482 surname: Zhang fullname: Zhang, Haijun email: haijunzhang@ieee.org organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Ning surname: Yang fullname: Yang, Ning email: b20170322@xs.ustb.edu.cn organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Wei orcidid: 0000-0003-2887-8395 surname: Huangfu fullname: Huangfu, Wei email: huangfuwei@ustb.edu.cn organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Keping surname: Long fullname: Long, Keping email: longkeping@ustb.edu.cn organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China – sequence: 5 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. email: vleung@ieee.org organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
BookMark | eNp9UMFKAzEUDFLBtnoXvAQ8b31JdrPZo1atQkGxFY8hzb7VLW2yZreIf2-WFg8ePL3HMDNv3ozIwHmHhJwzmDAGxdXybTrhwGHCC8UEhyMyZFmmEs5TNeh3IRPGc3lCRm27BmC5zLIhmT37Lwx06l0X_IbemBZL6h29RWzoC9au8sHiFl1H52iCq907jRBdNGi7sNvSxYcJETwlx5XZtHh2mGPyen-3nD4k86fZ4_R6nlhesC4xBa_6dFCWBvNcgjS5sAwkz4xiCguhuOSmMCovreB5iqW0AJldWbEyUogxudz7NsF_7rDt9NrvgosnNU-jM1M8lZEl9ywbfNsGrLStO9PV_Zem3mgGui9Nx9J0X5o-lBaF8EfYhHprwvd_kou9pEbEX3oBMQYw8QPZV3fD |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1051_jnwpu_20213951077 crossref_primary_10_1109_TAES_2024_3418944 crossref_primary_10_1016_j_phycom_2023_102240 crossref_primary_10_1109_TWC_2023_3305567 crossref_primary_10_1109_TVT_2021_3107734 crossref_primary_10_1016_j_comcom_2023_07_005 crossref_primary_10_1109_TITS_2021_3118557 crossref_primary_10_1109_TWC_2024_3513980 crossref_primary_10_1109_JSTSP_2022_3229567 crossref_primary_10_1049_ntw2_12096 crossref_primary_10_1109_COMST_2024_3405075 crossref_primary_10_1109_MVT_2020_3015184 crossref_primary_10_1109_TVT_2024_3486156 crossref_primary_10_1109_MNET_007_2200286 crossref_primary_10_3390_s23052622 crossref_primary_10_1016_j_jnca_2023_103770 crossref_primary_10_1109_ACCESS_2021_3122331 crossref_primary_10_1109_ACCESS_2020_2996665 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1109_JIOT_2021_3112907 crossref_primary_10_1002_ett_4352 crossref_primary_10_1002_ett_4470 crossref_primary_10_1016_j_phycom_2023_102270 crossref_primary_10_1109_ACCESS_2021_3069707 crossref_primary_10_1049_cmu2_12741 crossref_primary_10_1109_OJCOMS_2023_3238569 crossref_primary_10_3390_electronics12030512 crossref_primary_10_1109_TNET_2023_3274354 crossref_primary_10_1109_JIOT_2023_3349255 crossref_primary_10_1109_MNET_101_2100054 crossref_primary_10_1016_j_dsp_2022_103708 crossref_primary_10_1109_JSEN_2024_3369038 crossref_primary_10_1109_TVT_2023_3298514 crossref_primary_10_1016_j_engappai_2023_107672 crossref_primary_10_1109_JSAC_2022_3227097 crossref_primary_10_3390_app10124236 crossref_primary_10_1007_s11432_022_3566_4 crossref_primary_10_1186_s13638_022_02124_4 crossref_primary_10_1109_ACCESS_2021_3099803 crossref_primary_10_1016_j_sciaf_2024_e02523 crossref_primary_10_1109_ACCESS_2023_3243068 crossref_primary_10_1109_JIOT_2021_3065368 crossref_primary_10_1109_TCOMM_2023_3274145 crossref_primary_10_1109_TVT_2022_3230041 crossref_primary_10_1109_ACCESS_2021_3114335 crossref_primary_10_1016_j_cja_2024_09_033 crossref_primary_10_1109_TCCN_2022_3142727 crossref_primary_10_3390_rs15030712 crossref_primary_10_1109_TWC_2022_3162704 crossref_primary_10_1109_TWC_2022_3230872 crossref_primary_10_3390_s24237750 crossref_primary_10_1109_JIOT_2020_3025365 crossref_primary_10_1109_TCOMM_2024_3405355 crossref_primary_10_1109_JIOT_2023_3283775 crossref_primary_10_1109_COMST_2022_3224279 crossref_primary_10_1016_j_comcom_2024_107993 crossref_primary_10_1109_TWC_2022_3185545 crossref_primary_10_1016_j_apenergy_2023_121358 crossref_primary_10_1109_MWC_001_2200315 crossref_primary_10_1109_TVT_2022_3227197 crossref_primary_10_1016_j_dcan_2021_09_013 crossref_primary_10_1109_TWC_2024_3383807 crossref_primary_10_1109_MWC_008_2200504 crossref_primary_10_1109_JIOT_2023_3281678 crossref_primary_10_1109_LCOMM_2023_3348098 crossref_primary_10_1016_j_phycom_2023_102054 crossref_primary_10_1109_ACCESS_2024_3352034 crossref_primary_10_1109_JIOT_2023_3275818 crossref_primary_10_1109_TWC_2022_3230407 crossref_primary_10_3390_app11020716 crossref_primary_10_3390_electronics14010192 crossref_primary_10_1109_TWC_2023_3330999 crossref_primary_10_1109_TWC_2023_3272348 crossref_primary_10_1109_TCCN_2021_3116251 crossref_primary_10_3390_s20185216 crossref_primary_10_1109_TWC_2020_3043009 crossref_primary_10_1109_TWC_2022_3231379 crossref_primary_10_1088_1402_4896_ad8cb2 crossref_primary_10_1007_s11277_021_08448_6 crossref_primary_10_1109_JIOT_2024_3416371 crossref_primary_10_3233_IDT_240122 crossref_primary_10_1109_JIOT_2023_3320434 crossref_primary_10_1109_TCOMM_2022_3221422 crossref_primary_10_1109_JSAC_2022_3158696 crossref_primary_10_1109_LWC_2021_3084213 crossref_primary_10_1109_TVT_2021_3135885 |
Cites_doi | 10.1109/JSAC.2017.2720898 10.1038/nature14236 10.1007/BF01098870 10.1109/MWC.2016.1500356WC 10.1109/GLOCOM.2018.8647438 10.1109/TCOMM.2017.2763623 10.1109/TVT.2009.2037912 10.1109/TVT.2018.2855683 10.1109/JSAC.2018.2864373 10.1109/TNSM.2018.2866533 10.1109/MNET.2019.1900172 10.1109/ACCESS.2019.2918275 10.1109/TCCN.2017.2776138 10.1109/TVT.2017.2751641 10.1109/TGCN.2018.2874397 10.1109/JIOT.2017.2759728 10.1109/TWC.2011.100811.101381 10.1109/TWC.2018.2879433 10.1016/j.comnet.2008.04.002 10.1109/TCOMM.2016.2594759 10.1109/JIOT.2018.2872441 10.1109/TSP.2018.2866382 10.1109/JSAC.2019.2904358 10.1109/JSAC.2018.2825559 10.1109/JIOT.2018.2882583 10.1109/ICDCS.2017.123 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2020.2981320 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 4219 |
ExternalDocumentID | 10_1109_TWC_2020_2981320 9046301 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61822104; 61771044 funderid: 10.13039/501100001809 – fundername: Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing funderid: 10.13039/501100008778 – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B170003 funderid: 10.13039/501100013314 – fundername: Fundamental Research Funds for the Central Universities grantid: FRF-TP-19-002C1; RC1631 funderid: 10.13039/501100012226 – fundername: Beijing Natural Science Foundation grantid: L172025; L172049 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-a92f13200ddae77606a73c10625a818e938262a9a87dc3274ed6c005cbc3ba633 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:21:17 EDT 2025 Tue Jul 01 04:13:27 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 Wed Aug 27 02:38:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a92f13200ddae77606a73c10625a818e938262a9a87dc3274ed6c005cbc3ba633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0236-6482 0000-0003-3529-2640 0000-0003-2887-8395 |
PQID | 2413218246 |
PQPubID | 105736 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2413218246 crossref_citationtrail_10_1109_TWC_2020_2981320 ieee_primary_9046301 crossref_primary_10_1109_TWC_2020_2981320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-June 2020-6-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 tijmen (ref24) 2012; 4 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 niu (ref23) 2011 ref19 ref26 kingma (ref25) 2015 watkins (ref18) 1989 mnih (ref21) 2016 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 schulman (ref22) 2017 mnih (ref20) 2015; 518 |
References_xml | – ident: ref15 doi: 10.1109/JSAC.2017.2720898 – volume: 518 start-page: 529 year: 2015 ident: ref20 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref17 doi: 10.1007/BF01098870 – ident: ref3 doi: 10.1109/MWC.2016.1500356WC – ident: ref7 doi: 10.1109/GLOCOM.2018.8647438 – ident: ref19 doi: 10.1109/TCOMM.2017.2763623 – ident: ref12 doi: 10.1109/TVT.2009.2037912 – ident: ref10 doi: 10.1109/TVT.2018.2855683 – start-page: 1928 year: 2016 ident: ref21 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref32 doi: 10.1109/JSAC.2018.2864373 – ident: ref2 doi: 10.1109/TNSM.2018.2866533 – volume: 4 start-page: 26 year: 2012 ident: ref24 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude publication-title: Neural Networks and Machine Learning – year: 1989 ident: ref18 article-title: Learning from delayed rewards – ident: ref4 doi: 10.1109/MNET.2019.1900172 – year: 2017 ident: ref22 article-title: Proximal policy optimization algorithms publication-title: arXiv 1707 06347 – ident: ref5 doi: 10.1109/ACCESS.2019.2918275 – ident: ref9 doi: 10.1109/TCCN.2017.2776138 – ident: ref26 doi: 10.1109/TVT.2017.2751641 – start-page: 1 year: 2015 ident: ref25 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Representations – ident: ref1 doi: 10.1109/TGCN.2018.2874397 – ident: ref27 doi: 10.1109/JIOT.2017.2759728 – ident: ref11 doi: 10.1109/TWC.2011.100811.101381 – ident: ref28 doi: 10.1109/TWC.2018.2879433 – start-page: 693 year: 2011 ident: ref23 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.1016/j.comnet.2008.04.002 – ident: ref13 doi: 10.1109/TCOMM.2016.2594759 – ident: ref6 doi: 10.1109/JIOT.2018.2872441 – ident: ref8 doi: 10.1109/TSP.2018.2866382 – ident: ref30 doi: 10.1109/JSAC.2019.2904358 – ident: ref14 doi: 10.1109/JSAC.2018.2825559 – ident: ref31 doi: 10.1109/JIOT.2018.2882583 – ident: ref29 doi: 10.1109/ICDCS.2017.123 |
SSID | ssj0017655 |
Score | 2.6112382 |
Snippet | In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4209 |
SubjectTerms | Adaptive control Artificial intelligence Artificial neural networks Cognitive radio cognitive radio network Deep reinforcement learning (DRL) Energy conversion efficiency Interaction models Machine learning Neural networks Optimization Power control Quality of service Resource management Sensors spectrum sharing Wireless communication Wireless communications Wireless networks Wireless sensor networks |
Title | Power Control Based on Deep Reinforcement Learning for Spectrum Sharing |
URI | https://ieeexplore.ieee.org/document/9046301 https://www.proquest.com/docview/2413218246 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgNRCDgXLggkS3rmmT5gjjMSENIbSJ3aokTTkA3QTdhV-PnXYVLyFuVZRUkR3Hdmx_JuS4z7kQjCsvMpn2wkgbTyMCrYh0xlWmDTMY0R3d8uEkvJlG0wY5rWthrLUu-cx28dPF8tOZWeBTWU8ivBUWa62A41bWatURA8Fdh1MQYOwrI-qQpC9744cBOIKB3w1kjBXDX1SQ66ny4yJ22uVqg4yW-yqTSp66i0J3zfs3yMb_bnyTrFdmJj0rz8UWadh8m6x9Ah9skes7bJBGB2WuOj0HdZbSWU4vrJ3Te-sQVY17PKQVCOsjhSGKHeuL18ULRaxnGNwhk6vL8WDoVW0VPBPIfuEpGWRIBj9NlRUCPBglmAHXMIgUqG8rGbgcgZIqFqlh4LXalBsQVgOM04oztkua-Sy3e4TGSschXFHaZxqEXysVZwpsMBVmqVW23ya9JaUTU2GOY-uL58T5Hr5MgDcJ8iapeNMmJ_WKeYm38cfcFpK6nldRuU06S2YmlUC-JRg-RLD6kO__vuqArOK_yyywDmkCIe0h2BuFPnIH7QODt9Bg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYmOAAHXgMxnjlwQaJb10fSHmE8BmwTQpvYrUrSlAOwIdgu_HrstKt4CXGrokSN7Di2Y_szwGGTcyF8Lp1QZ8oJQqUdRQi0IlQZl5nSvqaIbrfH24PgehgOK3Bc1sIYY2zymanTp43lp2M9paeyRkzwVlSsNY96P_Tyaq0yZiC47XGKIkydZUQZlHTjRv--ha6g59a9OKKa4S9KyHZV-XEVW_1ysQLd2c7ytJLH-nSi6vr9G2jjf7e-CsuFoclO8pOxBhUzWoelT_CDVbi8pRZprJVnq7NTVGgpG4_YmTEv7M5YTFVtnw9ZAcP6wHCIUc_6yev0mRHaMw5uwODivN9qO0VjBUd7cXPiyNjLiAxumkojBPowUvganUMvlKjATeyj0-HJWEYi1T76rSblGsVVI-uU5L6_CXOj8chsAYukigK8pJTrKxR_JWWUSbTCZJClRppmDRozSie6QB2n5hdPifU-3DhB3iTEm6TgTQ2OyhUvOeLGH3OrROpyXkHlGuzOmJkUIvmWUACR4OoDvv37qgNYaPe7naRz1bvZgUX6T54TtgtzSFSzh9bHRO3bQ_cBkpfTqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Control+Based+on+Deep+Reinforcement+Learning+for+Spectrum+Sharing&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Haijun&rft.au=Yang%2C+Ning&rft.au=Huangfu%2C+Wei&rft.au=Long%2C+Keping&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=19&rft.issue=6&rft.spage=4209&rft.epage=4219&rft_id=info:doi/10.1109%2FTWC.2020.2981320&rft.externalDocID=9046301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |