Power Control Based on Deep Reinforcement Learning for Spectrum Sharing

In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 6; pp. 4209 - 4219
Main Authors Zhang, Haijun, Yang, Ning, Huangfu, Wei, Long, Keping, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network (DNN) is introduced into RL to solve high dimensional problems. In this paper, we first construct an information interaction model among primary user (PU), secondary user (SU) and wireless sensors in a cognitive radio system. In the model, the SU is unable to get the power allocation information of the PU, and needs to use the received signal strengths (RSSs) of the wireless sensors to adjust its own power. The PU allocates transmit power relying on its power control scheme. We propose an asynchronous advantage actor critic (A3C)-based power control of SU that is a parallel actor-learners framework with root mean square prop (RMSProp) optimization. Multiple SUs learn power control scheme simultaneously on different CPU threads, reducing neural network gradient update interdependence. To further improve the efficiency of spectrum sharing, the distributed proximal policy optimization (DPPO)-based power control is proposed which is an asynchronous variant of actor-critic with adaptive moment (Adam) optimization. It enables the network to converge quickly. After several power adjustments, the PU and the SU meet quality of service (QoS) requirements and achieve spectrum sharing.
AbstractList In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network. However, traditional RL cannot solve the continuous and high dimensional problems. To handle these problems, the concept of deep neural network (DNN) is introduced into RL to solve high dimensional problems. In this paper, we first construct an information interaction model among primary user (PU), secondary user (SU) and wireless sensors in a cognitive radio system. In the model, the SU is unable to get the power allocation information of the PU, and needs to use the received signal strengths (RSSs) of the wireless sensors to adjust its own power. The PU allocates transmit power relying on its power control scheme. We propose an asynchronous advantage actor critic (A3C)-based power control of SU that is a parallel actor-learners framework with root mean square prop (RMSProp) optimization. Multiple SUs learn power control scheme simultaneously on different CPU threads, reducing neural network gradient update interdependence. To further improve the efficiency of spectrum sharing, the distributed proximal policy optimization (DPPO)-based power control is proposed which is an asynchronous variant of actor-critic with adaptive moment (Adam) optimization. It enables the network to converge quickly. After several power adjustments, the PU and the SU meet quality of service (QoS) requirements and achieve spectrum sharing.
Author Leung, Victor C. M.
Zhang, Haijun
Huangfu, Wei
Long, Keping
Yang, Ning
Author_xml – sequence: 1
  givenname: Haijun
  orcidid: 0000-0002-0236-6482
  surname: Zhang
  fullname: Zhang, Haijun
  email: haijunzhang@ieee.org
  organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  email: b20170322@xs.ustb.edu.cn
  organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-2887-8395
  surname: Huangfu
  fullname: Huangfu, Wei
  email: huangfuwei@ustb.edu.cn
  organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Keping
  surname: Long
  fullname: Long, Keping
  email: longkeping@ustb.edu.cn
  organization: Institute of Artificial Intelligence, the Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, China
– sequence: 5
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  email: vleung@ieee.org
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9UMFKAzEUDFLBtnoXvAQ8b31JdrPZo1atQkGxFY8hzb7VLW2yZreIf2-WFg8ePL3HMDNv3ozIwHmHhJwzmDAGxdXybTrhwGHCC8UEhyMyZFmmEs5TNeh3IRPGc3lCRm27BmC5zLIhmT37Lwx06l0X_IbemBZL6h29RWzoC9au8sHiFl1H52iCq907jRBdNGi7sNvSxYcJETwlx5XZtHh2mGPyen-3nD4k86fZ4_R6nlhesC4xBa_6dFCWBvNcgjS5sAwkz4xiCguhuOSmMCovreB5iqW0AJldWbEyUogxudz7NsF_7rDt9NrvgosnNU-jM1M8lZEl9ywbfNsGrLStO9PV_Zem3mgGui9Nx9J0X5o-lBaF8EfYhHprwvd_kou9pEbEX3oBMQYw8QPZV3fD
CODEN ITWCAX
CitedBy_id crossref_primary_10_1051_jnwpu_20213951077
crossref_primary_10_1109_TAES_2024_3418944
crossref_primary_10_1016_j_phycom_2023_102240
crossref_primary_10_1109_TWC_2023_3305567
crossref_primary_10_1109_TVT_2021_3107734
crossref_primary_10_1016_j_comcom_2023_07_005
crossref_primary_10_1109_TITS_2021_3118557
crossref_primary_10_1109_TWC_2024_3513980
crossref_primary_10_1109_JSTSP_2022_3229567
crossref_primary_10_1049_ntw2_12096
crossref_primary_10_1109_COMST_2024_3405075
crossref_primary_10_1109_MVT_2020_3015184
crossref_primary_10_1109_TVT_2024_3486156
crossref_primary_10_1109_MNET_007_2200286
crossref_primary_10_3390_s23052622
crossref_primary_10_1016_j_jnca_2023_103770
crossref_primary_10_1109_ACCESS_2021_3122331
crossref_primary_10_1109_ACCESS_2020_2996665
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_JIOT_2021_3112907
crossref_primary_10_1002_ett_4352
crossref_primary_10_1002_ett_4470
crossref_primary_10_1016_j_phycom_2023_102270
crossref_primary_10_1109_ACCESS_2021_3069707
crossref_primary_10_1049_cmu2_12741
crossref_primary_10_1109_OJCOMS_2023_3238569
crossref_primary_10_3390_electronics12030512
crossref_primary_10_1109_TNET_2023_3274354
crossref_primary_10_1109_JIOT_2023_3349255
crossref_primary_10_1109_MNET_101_2100054
crossref_primary_10_1016_j_dsp_2022_103708
crossref_primary_10_1109_JSEN_2024_3369038
crossref_primary_10_1109_TVT_2023_3298514
crossref_primary_10_1016_j_engappai_2023_107672
crossref_primary_10_1109_JSAC_2022_3227097
crossref_primary_10_3390_app10124236
crossref_primary_10_1007_s11432_022_3566_4
crossref_primary_10_1186_s13638_022_02124_4
crossref_primary_10_1109_ACCESS_2021_3099803
crossref_primary_10_1016_j_sciaf_2024_e02523
crossref_primary_10_1109_ACCESS_2023_3243068
crossref_primary_10_1109_JIOT_2021_3065368
crossref_primary_10_1109_TCOMM_2023_3274145
crossref_primary_10_1109_TVT_2022_3230041
crossref_primary_10_1109_ACCESS_2021_3114335
crossref_primary_10_1016_j_cja_2024_09_033
crossref_primary_10_1109_TCCN_2022_3142727
crossref_primary_10_3390_rs15030712
crossref_primary_10_1109_TWC_2022_3162704
crossref_primary_10_1109_TWC_2022_3230872
crossref_primary_10_3390_s24237750
crossref_primary_10_1109_JIOT_2020_3025365
crossref_primary_10_1109_TCOMM_2024_3405355
crossref_primary_10_1109_JIOT_2023_3283775
crossref_primary_10_1109_COMST_2022_3224279
crossref_primary_10_1016_j_comcom_2024_107993
crossref_primary_10_1109_TWC_2022_3185545
crossref_primary_10_1016_j_apenergy_2023_121358
crossref_primary_10_1109_MWC_001_2200315
crossref_primary_10_1109_TVT_2022_3227197
crossref_primary_10_1016_j_dcan_2021_09_013
crossref_primary_10_1109_TWC_2024_3383807
crossref_primary_10_1109_MWC_008_2200504
crossref_primary_10_1109_JIOT_2023_3281678
crossref_primary_10_1109_LCOMM_2023_3348098
crossref_primary_10_1016_j_phycom_2023_102054
crossref_primary_10_1109_ACCESS_2024_3352034
crossref_primary_10_1109_JIOT_2023_3275818
crossref_primary_10_1109_TWC_2022_3230407
crossref_primary_10_3390_app11020716
crossref_primary_10_3390_electronics14010192
crossref_primary_10_1109_TWC_2023_3330999
crossref_primary_10_1109_TWC_2023_3272348
crossref_primary_10_1109_TCCN_2021_3116251
crossref_primary_10_3390_s20185216
crossref_primary_10_1109_TWC_2020_3043009
crossref_primary_10_1109_TWC_2022_3231379
crossref_primary_10_1088_1402_4896_ad8cb2
crossref_primary_10_1007_s11277_021_08448_6
crossref_primary_10_1109_JIOT_2024_3416371
crossref_primary_10_3233_IDT_240122
crossref_primary_10_1109_JIOT_2023_3320434
crossref_primary_10_1109_TCOMM_2022_3221422
crossref_primary_10_1109_JSAC_2022_3158696
crossref_primary_10_1109_LWC_2021_3084213
crossref_primary_10_1109_TVT_2021_3135885
Cites_doi 10.1109/JSAC.2017.2720898
10.1038/nature14236
10.1007/BF01098870
10.1109/MWC.2016.1500356WC
10.1109/GLOCOM.2018.8647438
10.1109/TCOMM.2017.2763623
10.1109/TVT.2009.2037912
10.1109/TVT.2018.2855683
10.1109/JSAC.2018.2864373
10.1109/TNSM.2018.2866533
10.1109/MNET.2019.1900172
10.1109/ACCESS.2019.2918275
10.1109/TCCN.2017.2776138
10.1109/TVT.2017.2751641
10.1109/TGCN.2018.2874397
10.1109/JIOT.2017.2759728
10.1109/TWC.2011.100811.101381
10.1109/TWC.2018.2879433
10.1016/j.comnet.2008.04.002
10.1109/TCOMM.2016.2594759
10.1109/JIOT.2018.2872441
10.1109/TSP.2018.2866382
10.1109/JSAC.2019.2904358
10.1109/JSAC.2018.2825559
10.1109/JIOT.2018.2882583
10.1109/ICDCS.2017.123
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2020.2981320
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 4219
ExternalDocumentID 10_1109_TWC_2020_2981320
9046301
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61822104; 61771044
  funderid: 10.13039/501100001809
– fundername: Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing
  funderid: 10.13039/501100008778
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B170003
  funderid: 10.13039/501100013314
– fundername: Fundamental Research Funds for the Central Universities
  grantid: FRF-TP-19-002C1; RC1631
  funderid: 10.13039/501100012226
– fundername: Beijing Natural Science Foundation
  grantid: L172025; L172049
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-a92f13200ddae77606a73c10625a818e938262a9a87dc3274ed6c005cbc3ba633
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:21:17 EDT 2025
Tue Jul 01 04:13:27 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Wed Aug 27 02:38:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a92f13200ddae77606a73c10625a818e938262a9a87dc3274ed6c005cbc3ba633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0236-6482
0000-0003-3529-2640
0000-0003-2887-8395
PQID 2413218246
PQPubID 105736
PageCount 11
ParticipantIDs proquest_journals_2413218246
crossref_citationtrail_10_1109_TWC_2020_2981320
ieee_primary_9046301
crossref_primary_10_1109_TWC_2020_2981320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-June
2020-6-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
tijmen (ref24) 2012; 4
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
niu (ref23) 2011
ref19
ref26
kingma (ref25) 2015
watkins (ref18) 1989
mnih (ref21) 2016
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
schulman (ref22) 2017
mnih (ref20) 2015; 518
References_xml – ident: ref15
  doi: 10.1109/JSAC.2017.2720898
– volume: 518
  start-page: 529
  year: 2015
  ident: ref20
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref17
  doi: 10.1007/BF01098870
– ident: ref3
  doi: 10.1109/MWC.2016.1500356WC
– ident: ref7
  doi: 10.1109/GLOCOM.2018.8647438
– ident: ref19
  doi: 10.1109/TCOMM.2017.2763623
– ident: ref12
  doi: 10.1109/TVT.2009.2037912
– ident: ref10
  doi: 10.1109/TVT.2018.2855683
– start-page: 1928
  year: 2016
  ident: ref21
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref32
  doi: 10.1109/JSAC.2018.2864373
– ident: ref2
  doi: 10.1109/TNSM.2018.2866533
– volume: 4
  start-page: 26
  year: 2012
  ident: ref24
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: Neural Networks and Machine Learning
– year: 1989
  ident: ref18
  article-title: Learning from delayed rewards
– ident: ref4
  doi: 10.1109/MNET.2019.1900172
– year: 2017
  ident: ref22
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv 1707 06347
– ident: ref5
  doi: 10.1109/ACCESS.2019.2918275
– ident: ref9
  doi: 10.1109/TCCN.2017.2776138
– ident: ref26
  doi: 10.1109/TVT.2017.2751641
– start-page: 1
  year: 2015
  ident: ref25
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref1
  doi: 10.1109/TGCN.2018.2874397
– ident: ref27
  doi: 10.1109/JIOT.2017.2759728
– ident: ref11
  doi: 10.1109/TWC.2011.100811.101381
– ident: ref28
  doi: 10.1109/TWC.2018.2879433
– start-page: 693
  year: 2011
  ident: ref23
  article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1016/j.comnet.2008.04.002
– ident: ref13
  doi: 10.1109/TCOMM.2016.2594759
– ident: ref6
  doi: 10.1109/JIOT.2018.2872441
– ident: ref8
  doi: 10.1109/TSP.2018.2866382
– ident: ref30
  doi: 10.1109/JSAC.2019.2904358
– ident: ref14
  doi: 10.1109/JSAC.2018.2825559
– ident: ref31
  doi: 10.1109/JIOT.2018.2882583
– ident: ref29
  doi: 10.1109/ICDCS.2017.123
SSID ssj0017655
Score 2.6112382
Snippet In the current researches, artificial intelligence (AI) plays a crucial role in resource management for the next generation wireless communication network....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4209
SubjectTerms Adaptive control
Artificial intelligence
Artificial neural networks
Cognitive radio
cognitive radio network
Deep reinforcement learning (DRL)
Energy conversion efficiency
Interaction models
Machine learning
Neural networks
Optimization
Power control
Quality of service
Resource management
Sensors
spectrum sharing
Wireless communication
Wireless communications
Wireless networks
Wireless sensor networks
Title Power Control Based on Deep Reinforcement Learning for Spectrum Sharing
URI https://ieeexplore.ieee.org/document/9046301
https://www.proquest.com/docview/2413218246
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTnDgNRCDgXLggkS3rmmT5gjjMSENIbSJ3aokTTkA3QTdhV-PnXYVLyFuVZRUkR3Hdmx_JuS4z7kQjCsvMpn2wkgbTyMCrYh0xlWmDTMY0R3d8uEkvJlG0wY5rWthrLUu-cx28dPF8tOZWeBTWU8ivBUWa62A41bWatURA8Fdh1MQYOwrI-qQpC9744cBOIKB3w1kjBXDX1SQ66ny4yJ22uVqg4yW-yqTSp66i0J3zfs3yMb_bnyTrFdmJj0rz8UWadh8m6x9Ah9skes7bJBGB2WuOj0HdZbSWU4vrJ3Te-sQVY17PKQVCOsjhSGKHeuL18ULRaxnGNwhk6vL8WDoVW0VPBPIfuEpGWRIBj9NlRUCPBglmAHXMIgUqG8rGbgcgZIqFqlh4LXalBsQVgOM04oztkua-Sy3e4TGSschXFHaZxqEXysVZwpsMBVmqVW23ya9JaUTU2GOY-uL58T5Hr5MgDcJ8iapeNMmJ_WKeYm38cfcFpK6nldRuU06S2YmlUC-JRg-RLD6kO__vuqArOK_yyywDmkCIe0h2BuFPnIH7QODt9Bg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYmOAAHXgMxnjlwQaJb10fSHmE8BmwTQpvYrUrSlAOwIdgu_HrstKt4CXGrokSN7Di2Y_szwGGTcyF8Lp1QZ8oJQqUdRQi0IlQZl5nSvqaIbrfH24PgehgOK3Bc1sIYY2zymanTp43lp2M9paeyRkzwVlSsNY96P_Tyaq0yZiC47XGKIkydZUQZlHTjRv--ha6g59a9OKKa4S9KyHZV-XEVW_1ysQLd2c7ytJLH-nSi6vr9G2jjf7e-CsuFoclO8pOxBhUzWoelT_CDVbi8pRZprJVnq7NTVGgpG4_YmTEv7M5YTFVtnw9ZAcP6wHCIUc_6yev0mRHaMw5uwODivN9qO0VjBUd7cXPiyNjLiAxumkojBPowUvganUMvlKjATeyj0-HJWEYi1T76rSblGsVVI-uU5L6_CXOj8chsAYukigK8pJTrKxR_JWWUSbTCZJClRppmDRozSie6QB2n5hdPifU-3DhB3iTEm6TgTQ2OyhUvOeLGH3OrROpyXkHlGuzOmJkUIvmWUACR4OoDvv37qgNYaPe7naRz1bvZgUX6T54TtgtzSFSzh9bHRO3bQ_cBkpfTqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Control+Based+on+Deep+Reinforcement+Learning+for+Spectrum+Sharing&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhang%2C+Haijun&rft.au=Yang%2C+Ning&rft.au=Huangfu%2C+Wei&rft.au=Long%2C+Keping&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=19&rft.issue=6&rft.spage=4209&rft.epage=4219&rft_id=info:doi/10.1109%2FTWC.2020.2981320&rft.externalDocID=9046301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon