Thermal Modeling and Analysis of Active and End Windings of Enclosed Permanent-Magnet Synchronous In-Wheel Motor Based on Multi-Block Method
This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) i...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 35; no. 1; pp. 85 - 94 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) in-wheel motor is taken as an example. Firstly, the temperature distribution of the active windings in the slot is calculated by a multi-block 2-D temperature field model, which is verified by the model built according to the reality. The numerical results of blocks model agree well with those of the real model. Secondly, a 3-D temperature field model with the end windings is built on the 2-D blocks model. Furthermore, to include the air inside the motor, computational fluid dynamics (CFD) has been utilized, and the numerical results are experimentally verified. Finally, the distribution of the heat transfer coefficient (HTC) of the end windings and the influence of rotor speed on the HTC are investigated. These HTCs acquired from CFD results and empirical formulas are compared and analyzed carefully. |
---|---|
AbstractList | This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) in-wheel motor is taken as an example. Firstly, the temperature distribution of the active windings in the slot is calculated by a multi-block 2-D temperature field model, which is verified by the model built according to the reality. The numerical results of blocks model agree well with those of the real model. Secondly, a 3-D temperature field model with the end windings is built on the 2-D blocks model. Furthermore, to include the air inside the motor, computational fluid dynamics (CFD) has been utilized, and the numerical results are experimentally verified. Finally, the distribution of the heat transfer coefficient (HTC) of the end windings and the influence of rotor speed on the HTC are investigated. These HTCs acquired from CFD results and empirical formulas are compared and analyzed carefully. |
Author | Chen, Tanci Tang, Yue Chai, Feng Chen, Lei |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0003-2064-0366 surname: Tang fullname: Tang, Yue email: tangyue5@126.com organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Lei orcidid: 0000-0002-9612-4408 surname: Chen fullname: Chen, Lei email: hitchenlei@hit.edu.cn organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Feng orcidid: 0000-0003-4402-3362 surname: Chai fullname: Chai, Feng email: chaifeng@163.com organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Tanci surname: Chen fullname: Chen, Tanci email: tanci-chen@outlook.com organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China |
BookMark | eNp9kE1LAzEQhoMoWKt3wUvA89Z8rsmxlvoBFgULHpdsdtZG10STVOh_8Ee7a8WDBw9hIPM-M8xzgHZ98IDQMSUTSok-W85nE0aonjAtSq7EDhpRKVVBiNS7aESUkoXSpd5HByk9E0KFZHSEPpcriK-mw4vQQOf8Eza-wVNvuk1yCYcWT212H_D9Pe_fo_NNH_tuzb3tQoIG3w8zPPhcLMyTh4wfNt6uYvBhnfCNLx5XAMOKHCK-MAMRPF6su-yKiy7YF7yAvArNIdprTZfg6KeO0fJyvpxdF7d3Vzez6W1hmaa5MGXbV2rhnAjLWsNrrhlhxp4LIQWTZa0YJYwRzWqjAFrZ-zA1LTmHWgg-RqfbsW8xvK8h5eo5rGN_cqoYl1oTzpTuU-U2ZWNIKUJbWZdNdsHnaFxXUVIN4qtefDWIr37E9yD5A75F92ri5j_kZIs4APiNK1VySTj_AiQnj9s |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_121605 crossref_primary_10_1109_TEC_2021_3118930 crossref_primary_10_1109_TIE_2023_3325557 crossref_primary_10_1007_s12239_024_00046_2 crossref_primary_10_1007_s40997_024_00755_0 crossref_primary_10_1016_j_applthermaleng_2023_120499 crossref_primary_10_1139_tcsme_2022_0010 crossref_primary_10_1080_01457632_2024_2437890 crossref_primary_10_3390_en16031527 crossref_primary_10_1109_ACCESS_2024_3354983 crossref_primary_10_1109_TPEL_2024_3382300 crossref_primary_10_1109_TEC_2020_3013190 crossref_primary_10_3390_electronics14040815 crossref_primary_10_1109_TEC_2021_3130475 crossref_primary_10_1109_TIA_2021_3064779 crossref_primary_10_1016_j_applthermaleng_2024_125006 crossref_primary_10_1049_elp2_12141 crossref_primary_10_2528_PIERC23061402 crossref_primary_10_1049_elp2_12028 crossref_primary_10_1049_smt2_12099 crossref_primary_10_1016_j_tsep_2020_100552 crossref_primary_10_1109_TEC_2023_3291436 crossref_primary_10_1109_TIE_2021_3123644 crossref_primary_10_3390_en14185652 crossref_primary_10_1109_ACCESS_2020_3019483 crossref_primary_10_1109_TIE_2022_3203675 crossref_primary_10_3390_en18061521 crossref_primary_10_1109_TTE_2021_3106909 crossref_primary_10_1016_j_applthermaleng_2021_117758 crossref_primary_10_30941_CESTEMS_2022_00032 crossref_primary_10_1016_j_etran_2024_100353 crossref_primary_10_1016_j_ijthermalsci_2024_109586 crossref_primary_10_1109_TEC_2024_3419129 |
Cites_doi | 10.1109/ICELMACH.2016.7732787 10.1109/TIA.2013.2263271 10.1109/TIA.2012.2227053 10.1109/TIE.2010.2093485 10.1109/TIE.2018.2844795 10.1109/IEMDC.2017.8002407 10.1109/TMAG.2011.2159013 10.1109/ECCE.2010.5617810 10.1109/TIE.2015.2438051 10.1109/ICEMS.2014.7014088 10.1109/TIA.2016.2582730 10.1109/TEC.2015.2424400 10.1109/ACCESS.2018.2887143 10.1109/TEC.2005.847979 10.1109/ICELMACH.2016.7732720 10.1109/TIE.2015.2500188 10.3390/en9100818 10.1109/TIE.2016.2625242 10.1109/TMAG.2011.2174433 10.1109/TIE.2008.2011622 10.1109/TMAG.2010.2043928 10.1109/TIA.2008.926233 10.1109/TIE.2017.2650871 10.1109/TIE.2017.2748051 10.1109/IECON.2017.8216345 10.1109/TIE.2011.2161656 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2019.2946384 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 94 |
ExternalDocumentID | 10_1109_TEC_2019_2946384 8863503 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51761135112; 51677039 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-a6f2911ce704c2fa3b39202ac74454256b821022092ba8eef5384ab1633eb443 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Sun Jun 29 16:09:29 EDT 2025 Tue Jul 01 02:53:21 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Wed Aug 27 02:36:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a6f2911ce704c2fa3b39202ac74454256b821022092ba8eef5384ab1633eb443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2064-0366 0000-0003-4402-3362 0000-0002-9612-4408 |
PQID | 2359903289 |
PQPubID | 85443 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2359903289 crossref_primary_10_1109_TEC_2019_2946384 ieee_primary_8863503 crossref_citationtrail_10_1109_TEC_2019_2946384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-March 2020-3-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref32 ref10 ref1 ref17 ref16 ref19 ref18 (ref31) 2019 (ref2) 2019 li (ref30) 2014 ref23 ref26 pyrhönen (ref20) 2014 ref25 ref22 ref21 zhang (ref27) 2014; 34 ref29 ref8 xu (ref28) 2019; 66 ref7 ref9 ref4 ref3 ref6 ref5 wen (ref24) 2013; 17 |
References_xml | – ident: ref11 doi: 10.1109/ICELMACH.2016.7732787 – ident: ref6 doi: 10.1109/TIA.2013.2263271 – ident: ref1 doi: 10.1109/TIA.2012.2227053 – ident: ref13 doi: 10.1109/TIE.2010.2093485 – volume: 66 start-page: 2976 year: 2019 ident: ref28 article-title: A loss separation method of high speed magnetic levitated PMSM based on drag system experiment without torque meter publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2844795 – ident: ref8 doi: 10.1109/IEMDC.2017.8002407 – ident: ref12 doi: 10.1109/TMAG.2011.2159013 – ident: ref32 doi: 10.1109/ECCE.2010.5617810 – ident: ref23 doi: 10.1109/TIE.2015.2438051 – ident: ref15 doi: 10.1109/ICEMS.2014.7014088 – ident: ref7 doi: 10.1109/TIA.2016.2582730 – ident: ref10 doi: 10.1109/TEC.2015.2424400 – ident: ref5 doi: 10.1109/ACCESS.2018.2887143 – ident: ref19 doi: 10.1109/TEC.2005.847979 – ident: ref3 doi: 10.1109/ICELMACH.2016.7732720 – ident: ref22 doi: 10.1109/TIE.2015.2500188 – ident: ref18 doi: 10.3390/en9100818 – ident: ref16 doi: 10.1109/TIE.2016.2625242 – ident: ref26 doi: 10.1109/TMAG.2011.2174433 – ident: ref21 doi: 10.1109/TIE.2008.2011622 – year: 2019 ident: ref2 article-title: Protean's Motor Technology – start-page: 534 year: 2014 ident: ref20 publication-title: Design of Rotating Electrical Machines – start-page: 2380 year: 2014 ident: ref30 article-title: Research on motor iron losses and temperature field calculation for mini electric vehicle publication-title: Proc Int Conf Elect Mach Syst – ident: ref17 doi: 10.1109/TMAG.2010.2043928 – year: 2019 ident: ref31 – ident: ref14 doi: 10.1109/TIA.2008.926233 – volume: 34 start-page: 1874 year: 2014 ident: ref27 article-title: Temperature rise calculations of high density permanent magnet motors based on multi-domain co-simulation publication-title: Proc Chin Soc Elect Eng – volume: 17 start-page: 79 year: 2013 ident: ref24 article-title: Numerical calculation and optimization of fluid flow field of external fan of high voltage asynchronous motors publication-title: Elect Mach Control – ident: ref25 doi: 10.1109/TIE.2017.2650871 – ident: ref9 doi: 10.1109/TIE.2017.2748051 – ident: ref29 doi: 10.1109/IECON.2017.8216345 – ident: ref4 doi: 10.1109/TIE.2011.2161656 |
SSID | ssj0014521 |
Score | 2.4904358 |
Snippet | This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Aerodynamics Atmospheric modeling Coils (windings) Computational fluid dynamics Computational fluid dynamics (CFD) Conduction heating Conductive heat transfer Conductivity Copper Empirical analysis finite element method (FEM) Heat heat transfer coefficient (HTC) Heat transfer coefficients Heating systems in-wheel motor Insulation Mathematical models Permanent magnets Rotor speed Steady state models Temperature distribution temperature field Thermal analysis Thermal conductivity Three dimensional models Two dimensional models Windings |
Title | Thermal Modeling and Analysis of Active and End Windings of Enclosed Permanent-Magnet Synchronous In-Wheel Motor Based on Multi-Block Method |
URI | https://ieeexplore.ieee.org/document/8863503 https://www.proquest.com/docview/2359903289 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB7Ukx7cxboxBy-CadPJS5s5qlSqUBGs2FuYmb6ItEzEpgf9Df5o30yT4oZ4CAnJbPC9eUvmLYwd60gihkIFQmZkoGgyUBLtXKCM1EaIDLSPkOvdtLr3cD2IBwvsdB4Lg4je-Qzr7tGf5Q9zM3W_yhpJQuLRpfZcJMNtFqs1PzGA2MdY0aaJg0S2ZHUkGcpGv3PhfLhkXUggcoMvIsjXVPnBiL10uVxjvWpdM6eSUX1a6Lp5-5ay8b8LX2erpZrJz2Z0scEW0G6ylU_JB7fYO1EIceUxd-XQXFA6V3bIqyQlPM_4meeF_nWHrocnHwHjP3WsGecTHPJbN4al2YOeerRY8LtXa1zC3Xw64Vc2IGaPbgoy7fm5cj1yy33Ub3BOcnTEe76E9TbrX3b6F92grM0QGCGbRaBaGd2bBtshGJGpiEAXhLlpA8TEB1o68cZkKIVWCWJGjBWUJu0vQg0Q7bAlm1vcZTwBJJ1EZqAQQAHoyDRpFEWUQrqrCGusUaGVmjJvuSufMU69_RLKlPBNHb5piW-Nncx7PM9ydvzRdsvBNW9XIlVjBxVBpOWmnqQiikl2R2Si7v3ea58tC2eOexe1A7ZUvEzxkHSWQh95Yv0A2uvnMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4heigc-uChhtJ2D1wq4cRZj4P3CCgoFIwqEQQ3a3czRlWidUWcQ_sb-qM7u7EjSlHVg2XL3pf0zc7DOw-AA5MooljqSKqSDRTDBkpmvAuUVcZKWaIJEXL51WB0g1_u0rs1OFzFwhBRcD6jrn8MZ_mTyi78r7JelrF49Kk9X7DcT-UyWmt1ZoBpiLLibZNGmRqo9lAyVr3x8NR7camuVMgEh38IoVBV5S9WHOTL2WvI25Ut3Uqm3UVtuvbnk6SN_7v0N_CqUTTF8ZIy3sIauS3YfJR-cBt-MY0wX54JXxDNh6UL7SaiTVMiqlIcB24YXg_5uv0WYmDCp6Gzs2pOE_HVj-F49ijX945qcf3DWZ9yt1rMxbmLmN2Tn4KNe3GifY_KiRD3G52wJJ2KPBSx3oHx2XB8Ooqa6gyRlapfR3pQ8r1v6ShGK0udMOySUbdHiClzgoHJgjkZK2l0RlQya0VtWP9LyCAmu7DuKkfvQGRIrJWoEjUhakST2D6PoplWWHuVcQd6LVqFbTKX-wIasyJYMLEqGN_C41s0-Hbg86rH92XWjn-03fZwrdo1SHVgvyWIotnW80ImKUvvhI3Uved7fYKXo3F-WVyeX128hw3pjfPgsLYP6_XDgj6wBlObj4FwfwMUk-p9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Modeling+and+Analysis+of+Active+and+End+Windings+of+Enclosed+Permanent-Magnet+Synchronous+In-Wheel+Motor+Based+on+Multi-Block+Method&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Tang%2C+Yue&rft.au=Chen%2C+Lei&rft.au=Chai%2C+Feng&rft.au=Chen%2C+Tanci&rft.date=2020-03-01&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=35&rft.issue=1&rft.spage=85&rft.epage=94&rft_id=info:doi/10.1109%2FTEC.2019.2946384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEC_2019_2946384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |