Thermal Modeling and Analysis of Active and End Windings of Enclosed Permanent-Magnet Synchronous In-Wheel Motor Based on Multi-Block Method

This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 35; no. 1; pp. 85 - 94
Main Authors Tang, Yue, Chen, Lei, Chai, Feng, Chen, Tanci
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) in-wheel motor is taken as an example. Firstly, the temperature distribution of the active windings in the slot is calculated by a multi-block 2-D temperature field model, which is verified by the model built according to the reality. The numerical results of blocks model agree well with those of the real model. Secondly, a 3-D temperature field model with the end windings is built on the 2-D blocks model. Furthermore, to include the air inside the motor, computational fluid dynamics (CFD) has been utilized, and the numerical results are experimentally verified. Finally, the distribution of the heat transfer coefficient (HTC) of the end windings and the influence of rotor speed on the HTC are investigated. These HTCs acquired from CFD results and empirical formulas are compared and analyzed carefully.
AbstractList This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat conduction of active windings and heat convection of end windings. To verify the validity of this model, a 20/24 poles/slots permanent magnet (PM) in-wheel motor is taken as an example. Firstly, the temperature distribution of the active windings in the slot is calculated by a multi-block 2-D temperature field model, which is verified by the model built according to the reality. The numerical results of blocks model agree well with those of the real model. Secondly, a 3-D temperature field model with the end windings is built on the 2-D blocks model. Furthermore, to include the air inside the motor, computational fluid dynamics (CFD) has been utilized, and the numerical results are experimentally verified. Finally, the distribution of the heat transfer coefficient (HTC) of the end windings and the influence of rotor speed on the HTC are investigated. These HTCs acquired from CFD results and empirical formulas are compared and analyzed carefully.
Author Chen, Tanci
Tang, Yue
Chai, Feng
Chen, Lei
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0003-2064-0366
  surname: Tang
  fullname: Tang, Yue
  email: tangyue5@126.com
  organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-9612-4408
  surname: Chen
  fullname: Chen, Lei
  email: hitchenlei@hit.edu.cn
  organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Feng
  orcidid: 0000-0003-4402-3362
  surname: Chai
  fullname: Chai, Feng
  email: chaifeng@163.com
  organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Tanci
  surname: Chen
  fullname: Chen, Tanci
  email: tanci-chen@outlook.com
  organization: Department of Electrical Engineering, Harbin Institute of Technology, Harbin, China
BookMark eNp9kE1LAzEQhoMoWKt3wUvA89Z8rsmxlvoBFgULHpdsdtZG10STVOh_8Ee7a8WDBw9hIPM-M8xzgHZ98IDQMSUTSok-W85nE0aonjAtSq7EDhpRKVVBiNS7aESUkoXSpd5HByk9E0KFZHSEPpcriK-mw4vQQOf8Eza-wVNvuk1yCYcWT212H_D9Pe_fo_NNH_tuzb3tQoIG3w8zPPhcLMyTh4wfNt6uYvBhnfCNLx5XAMOKHCK-MAMRPF6su-yKiy7YF7yAvArNIdprTZfg6KeO0fJyvpxdF7d3Vzez6W1hmaa5MGXbV2rhnAjLWsNrrhlhxp4LIQWTZa0YJYwRzWqjAFrZ-zA1LTmHWgg-RqfbsW8xvK8h5eo5rGN_cqoYl1oTzpTuU-U2ZWNIKUJbWZdNdsHnaFxXUVIN4qtefDWIr37E9yD5A75F92ri5j_kZIs4APiNK1VySTj_AiQnj9s
CODEN ITCNE4
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_121605
crossref_primary_10_1109_TEC_2021_3118930
crossref_primary_10_1109_TIE_2023_3325557
crossref_primary_10_1007_s12239_024_00046_2
crossref_primary_10_1007_s40997_024_00755_0
crossref_primary_10_1016_j_applthermaleng_2023_120499
crossref_primary_10_1139_tcsme_2022_0010
crossref_primary_10_1080_01457632_2024_2437890
crossref_primary_10_3390_en16031527
crossref_primary_10_1109_ACCESS_2024_3354983
crossref_primary_10_1109_TPEL_2024_3382300
crossref_primary_10_1109_TEC_2020_3013190
crossref_primary_10_3390_electronics14040815
crossref_primary_10_1109_TEC_2021_3130475
crossref_primary_10_1109_TIA_2021_3064779
crossref_primary_10_1016_j_applthermaleng_2024_125006
crossref_primary_10_1049_elp2_12141
crossref_primary_10_2528_PIERC23061402
crossref_primary_10_1049_elp2_12028
crossref_primary_10_1049_smt2_12099
crossref_primary_10_1016_j_tsep_2020_100552
crossref_primary_10_1109_TEC_2023_3291436
crossref_primary_10_1109_TIE_2021_3123644
crossref_primary_10_3390_en14185652
crossref_primary_10_1109_ACCESS_2020_3019483
crossref_primary_10_1109_TIE_2022_3203675
crossref_primary_10_3390_en18061521
crossref_primary_10_1109_TTE_2021_3106909
crossref_primary_10_1016_j_applthermaleng_2021_117758
crossref_primary_10_30941_CESTEMS_2022_00032
crossref_primary_10_1016_j_etran_2024_100353
crossref_primary_10_1016_j_ijthermalsci_2024_109586
crossref_primary_10_1109_TEC_2024_3419129
Cites_doi 10.1109/ICELMACH.2016.7732787
10.1109/TIA.2013.2263271
10.1109/TIA.2012.2227053
10.1109/TIE.2010.2093485
10.1109/TIE.2018.2844795
10.1109/IEMDC.2017.8002407
10.1109/TMAG.2011.2159013
10.1109/ECCE.2010.5617810
10.1109/TIE.2015.2438051
10.1109/ICEMS.2014.7014088
10.1109/TIA.2016.2582730
10.1109/TEC.2015.2424400
10.1109/ACCESS.2018.2887143
10.1109/TEC.2005.847979
10.1109/ICELMACH.2016.7732720
10.1109/TIE.2015.2500188
10.3390/en9100818
10.1109/TIE.2016.2625242
10.1109/TMAG.2011.2174433
10.1109/TIE.2008.2011622
10.1109/TMAG.2010.2043928
10.1109/TIA.2008.926233
10.1109/TIE.2017.2650871
10.1109/TIE.2017.2748051
10.1109/IECON.2017.8216345
10.1109/TIE.2011.2161656
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TEC.2019.2946384
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0059
EndPage 94
ExternalDocumentID 10_1109_TEC_2019_2946384
8863503
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51761135112; 51677039
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-a6f2911ce704c2fa3b39202ac74454256b821022092ba8eef5384ab1633eb443
IEDL.DBID RIE
ISSN 0885-8969
IngestDate Sun Jun 29 16:09:29 EDT 2025
Tue Jul 01 02:53:21 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Wed Aug 27 02:36:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a6f2911ce704c2fa3b39202ac74454256b821022092ba8eef5384ab1633eb443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2064-0366
0000-0003-4402-3362
0000-0002-9612-4408
PQID 2359903289
PQPubID 85443
PageCount 10
ParticipantIDs proquest_journals_2359903289
crossref_primary_10_1109_TEC_2019_2946384
ieee_primary_8863503
crossref_citationtrail_10_1109_TEC_2019_2946384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-March
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on energy conversion
PublicationTitleAbbrev TEC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
(ref31) 2019
(ref2) 2019
li (ref30) 2014
ref23
ref26
pyrhönen (ref20) 2014
ref25
ref22
ref21
zhang (ref27) 2014; 34
ref29
ref8
xu (ref28) 2019; 66
ref7
ref9
ref4
ref3
ref6
ref5
wen (ref24) 2013; 17
References_xml – ident: ref11
  doi: 10.1109/ICELMACH.2016.7732787
– ident: ref6
  doi: 10.1109/TIA.2013.2263271
– ident: ref1
  doi: 10.1109/TIA.2012.2227053
– ident: ref13
  doi: 10.1109/TIE.2010.2093485
– volume: 66
  start-page: 2976
  year: 2019
  ident: ref28
  article-title: A loss separation method of high speed magnetic levitated PMSM based on drag system experiment without torque meter
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2844795
– ident: ref8
  doi: 10.1109/IEMDC.2017.8002407
– ident: ref12
  doi: 10.1109/TMAG.2011.2159013
– ident: ref32
  doi: 10.1109/ECCE.2010.5617810
– ident: ref23
  doi: 10.1109/TIE.2015.2438051
– ident: ref15
  doi: 10.1109/ICEMS.2014.7014088
– ident: ref7
  doi: 10.1109/TIA.2016.2582730
– ident: ref10
  doi: 10.1109/TEC.2015.2424400
– ident: ref5
  doi: 10.1109/ACCESS.2018.2887143
– ident: ref19
  doi: 10.1109/TEC.2005.847979
– ident: ref3
  doi: 10.1109/ICELMACH.2016.7732720
– ident: ref22
  doi: 10.1109/TIE.2015.2500188
– ident: ref18
  doi: 10.3390/en9100818
– ident: ref16
  doi: 10.1109/TIE.2016.2625242
– ident: ref26
  doi: 10.1109/TMAG.2011.2174433
– ident: ref21
  doi: 10.1109/TIE.2008.2011622
– year: 2019
  ident: ref2
  article-title: Protean's Motor Technology
– start-page: 534
  year: 2014
  ident: ref20
  publication-title: Design of Rotating Electrical Machines
– start-page: 2380
  year: 2014
  ident: ref30
  article-title: Research on motor iron losses and temperature field calculation for mini electric vehicle
  publication-title: Proc Int Conf Elect Mach Syst
– ident: ref17
  doi: 10.1109/TMAG.2010.2043928
– year: 2019
  ident: ref31
– ident: ref14
  doi: 10.1109/TIA.2008.926233
– volume: 34
  start-page: 1874
  year: 2014
  ident: ref27
  article-title: Temperature rise calculations of high density permanent magnet motors based on multi-domain co-simulation
  publication-title: Proc Chin Soc Elect Eng
– volume: 17
  start-page: 79
  year: 2013
  ident: ref24
  article-title: Numerical calculation and optimization of fluid flow field of external fan of high voltage asynchronous motors
  publication-title: Elect Mach Control
– ident: ref25
  doi: 10.1109/TIE.2017.2650871
– ident: ref9
  doi: 10.1109/TIE.2017.2748051
– ident: ref29
  doi: 10.1109/IECON.2017.8216345
– ident: ref4
  doi: 10.1109/TIE.2011.2161656
SSID ssj0014521
Score 2.4904358
Snippet This paper presents an accurate modeling method to investigate the thermal performance of the windings under steady state. The model considers the heat...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Aerodynamics
Atmospheric modeling
Coils (windings)
Computational fluid dynamics
Computational fluid dynamics (CFD)
Conduction heating
Conductive heat transfer
Conductivity
Copper
Empirical analysis
finite element method (FEM)
Heat
heat transfer coefficient (HTC)
Heat transfer coefficients
Heating systems
in-wheel motor
Insulation
Mathematical models
Permanent magnets
Rotor speed
Steady state models
Temperature distribution
temperature field
Thermal analysis
Thermal conductivity
Three dimensional models
Two dimensional models
Windings
Title Thermal Modeling and Analysis of Active and End Windings of Enclosed Permanent-Magnet Synchronous In-Wheel Motor Based on Multi-Block Method
URI https://ieeexplore.ieee.org/document/8863503
https://www.proquest.com/docview/2359903289
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB7Ukx7cxboxBy-CadPJS5s5qlSqUBGs2FuYmb6ItEzEpgf9Df5o30yT4oZ4CAnJbPC9eUvmLYwd60gihkIFQmZkoGgyUBLtXKCM1EaIDLSPkOvdtLr3cD2IBwvsdB4Lg4je-Qzr7tGf5Q9zM3W_yhpJQuLRpfZcJMNtFqs1PzGA2MdY0aaJg0S2ZHUkGcpGv3PhfLhkXUggcoMvIsjXVPnBiL10uVxjvWpdM6eSUX1a6Lp5-5ay8b8LX2erpZrJz2Z0scEW0G6ylU_JB7fYO1EIceUxd-XQXFA6V3bIqyQlPM_4meeF_nWHrocnHwHjP3WsGecTHPJbN4al2YOeerRY8LtXa1zC3Xw64Vc2IGaPbgoy7fm5cj1yy33Ub3BOcnTEe76E9TbrX3b6F92grM0QGCGbRaBaGd2bBtshGJGpiEAXhLlpA8TEB1o68cZkKIVWCWJGjBWUJu0vQg0Q7bAlm1vcZTwBJJ1EZqAQQAHoyDRpFEWUQrqrCGusUaGVmjJvuSufMU69_RLKlPBNHb5piW-Nncx7PM9ydvzRdsvBNW9XIlVjBxVBpOWmnqQiikl2R2Si7v3ea58tC2eOexe1A7ZUvEzxkHSWQh95Yv0A2uvnMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4heigc-uChhtJ2D1wq4cRZj4P3CCgoFIwqEQQ3a3czRlWidUWcQ_sb-qM7u7EjSlHVg2XL3pf0zc7DOw-AA5MooljqSKqSDRTDBkpmvAuUVcZKWaIJEXL51WB0g1_u0rs1OFzFwhBRcD6jrn8MZ_mTyi78r7JelrF49Kk9X7DcT-UyWmt1ZoBpiLLibZNGmRqo9lAyVr3x8NR7camuVMgEh38IoVBV5S9WHOTL2WvI25Ut3Uqm3UVtuvbnk6SN_7v0N_CqUTTF8ZIy3sIauS3YfJR-cBt-MY0wX54JXxDNh6UL7SaiTVMiqlIcB24YXg_5uv0WYmDCp6Gzs2pOE_HVj-F49ijX945qcf3DWZ9yt1rMxbmLmN2Tn4KNe3GifY_KiRD3G52wJJ2KPBSx3oHx2XB8Ooqa6gyRlapfR3pQ8r1v6ShGK0udMOySUbdHiClzgoHJgjkZK2l0RlQya0VtWP9LyCAmu7DuKkfvQGRIrJWoEjUhakST2D6PoplWWHuVcQd6LVqFbTKX-wIasyJYMLEqGN_C41s0-Hbg86rH92XWjn-03fZwrdo1SHVgvyWIotnW80ImKUvvhI3Uved7fYKXo3F-WVyeX128hw3pjfPgsLYP6_XDgj6wBlObj4FwfwMUk-p9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+Modeling+and+Analysis+of+Active+and+End+Windings+of+Enclosed+Permanent-Magnet+Synchronous+In-Wheel+Motor+Based+on+Multi-Block+Method&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Tang%2C+Yue&rft.au=Chen%2C+Lei&rft.au=Chai%2C+Feng&rft.au=Chen%2C+Tanci&rft.date=2020-03-01&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=35&rft.issue=1&rft.spage=85&rft.epage=94&rft_id=info:doi/10.1109%2FTEC.2019.2946384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEC_2019_2946384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon