Data-Driven Lightweight Interest Point Selection for Large-Scale Visual Search

With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 20; no. 10; pp. 2774 - 2787
Main Authors Gao, Feng, Zhang, Xinfeng, Huang, Yicheng, Luo, Yong, Li, Xiaoming, Duan, Ling-Yu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e.g., memory, bandwidth, storage, etc.), interest point selection is crucial to generate robust compact descriptors for high-efficiency visual analysis by selecting and aggregating the most discriminative local feature descriptors, which has been demonstrated in the state-of-the-art low bit rate visual search works. In this paper, we propose a data-driven lightweight interest point selection approach to significantly improve the performance of visual search, while ameliorating the efficiency of extracting feature descriptors. Comprehensive experimental results over benchmarks have shown that the proposed interest point selection algorithm has significantly improved image matching and retrieval performance in the completed MPEG Compact Descriptors for Visual Search (CDVS) standard as well as the emerging MPEG Compact Descriptors for Video Analytics (CDVA) standard, say 20% mAP gain by data-driven selection against random selection of interest points. In particular, the presented data-driven interest point selection has been adopted by MPEG-CDVS and MPEG-CDVA as a normative technique to improve the aggregation of handcrafted features, which has contributed to the combination of handcrafted features and deep learning (CNN) features as well.
AbstractList With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e.g., memory, bandwidth, storage, etc.), interest point selection is crucial to generate robust compact descriptors for high-efficiency visual analysis by selecting and aggregating the most discriminative local feature descriptors, which has been demonstrated in the state-of-the-art low bit rate visual search works. In this paper, we propose a data-driven lightweight interest point selection approach to significantly improve the performance of visual search, while ameliorating the efficiency of extracting feature descriptors. Comprehensive experimental results over benchmarks have shown that the proposed interest point selection algorithm has significantly improved image matching and retrieval performance in the completed MPEG Compact Descriptors for Visual Search (CDVS) standard as well as the emerging MPEG Compact Descriptors for Video Analytics (CDVA) standard, say 20% mAP gain by data-driven selection against random selection of interest points. In particular, the presented data-driven interest point selection has been adopted by MPEG-CDVS and MPEG-CDVA as a normative technique to improve the aggregation of handcrafted features, which has contributed to the combination of handcrafted features and deep learning (CNN) features as well.
Author Duan, Ling-Yu
Zhang, Xinfeng
Luo, Yong
Gao, Feng
Li, Xiaoming
Huang, Yicheng
Author_xml – sequence: 1
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  email: gaof@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China
– sequence: 2
  givenname: Xinfeng
  orcidid: 0000-0002-7517-3868
  surname: Zhang
  fullname: Zhang, Xinfeng
  email: xinfengz@usc.edu
  organization: Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Yicheng
  surname: Huang
  fullname: Huang, Yicheng
  email: anorange0409@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0002-2296-6370
  surname: Luo
  fullname: Luo, Yong
  email: yluo180@gmail.com
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 5
  givenname: Xiaoming
  surname: Li
  fullname: Li, Xiaoming
  email: lxm@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Institute of Network Computing and Information Systems, Peking University, Beijing, China
– sequence: 6
  givenname: Ling-Yu
  orcidid: 0000-0002-4491-2023
  surname: Duan
  fullname: Duan, Ling-Yu
  email: lingyu@pku.edu.cn
  organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China
BookMark eNp9kM1PwkAQxTcGEwG9m3hp4rk4sy277dGAHyRFTUCvm-12gCW1xe2i8b-3DcSDBy8zc_i9eTNvwHpVXRFjlwgjREhvlvP5iAMmI55gAshPWB_TGEMAKXvtPOYQphzhjA2aZguA8Rhknz1Ntdfh1NlPqoLMrjf-i7oazCpPjhofvNS28sGCSjLe1lWwql2QabemcGF0ScGbbfa6bAHtzOacna502dDFsQ_Z6_3dcvIYZs8Ps8ltFhqeog_1uEhlkUsuQBOaNC5yI3VeYEpJWmAs4nxMiGhkLoUQkgwlOacoEQVwHcfRkF0f9u5c_bFvz1Tbeu-q1lJxRIlCYtRRcKCMq5vG0UrtnH3X7lshqC411aamutTUMbVWIv5IjPW6e9w7bcv_hFcHoSWiX58k4tAC0Q9CVnsN
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_1109_TMM_2019_2918729
crossref_primary_10_1109_ACCESS_2019_2962268
crossref_primary_10_1109_TIP_2020_3016485
crossref_primary_10_1109_TMM_2022_3233245
Cites_doi 10.1016/j.cviu.2007.09.014
10.1109/TIP.2018.2794203
10.1109/TMM.2016.2645404
10.1007/s11263-017-1016-8
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIP.2015.2500034
10.1109/TMM.2016.2532601
10.1109/TNNLS.2013.2238682
10.1023/B:VISI.0000029664.99615.94
10.1109/TMM.2015.2436813
10.1007/BF00994018
10.1109/TMM.2015.2419973
10.1109/TMM.2017.2713410
10.1109/TCSVT.2017.2748382
10.1016/j.patcog.2014.04.007
10.1109/MSP.2011.940881
10.1145/358669.358692
10.1109/TIP.2015.2495116
10.1109/LSP.2013.2296532
10.1109/TKDE.2015.2445757
10.1109/TIP.2015.2421309
10.1016/j.patrec.2015.04.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2018.2818012
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 2787
ExternalDocumentID 10_1109_TMM_2018_2818012
8320818
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFB1001501
  funderid: 10.13039/501100012166
– fundername: Ng Teng Fong Charitable Foundation
– fundername: National Natural Science Foundation of China
  grantid: 61661146005; U1611461; 61390515
  funderid: 10.13039/501100001809
– fundername: PKU-NTU Joint Research Institute (JRI)
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-a5d97db7260ae1c94dbc7abd19e89d1464b5e111c7b76667ece8b2e386d02a443
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Sun Jun 29 16:41:52 EDT 2025
Tue Jul 01 01:54:31 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Wed Aug 27 08:34:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a5d97db7260ae1c94dbc7abd19e89d1464b5e111c7b76667ece8b2e386d02a443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2296-6370
0000-0002-7517-3868
0000-0002-4491-2023
PQID 2117167134
PQPubID 75737
PageCount 14
ParticipantIDs proquest_journals_2117167134
crossref_citationtrail_10_1109_TMM_2018_2818012
crossref_primary_10_1109_TMM_2018_2818012
ieee_primary_8320818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References tibshirani (ref36) 1996; 58
ref15
yu (ref34) 0
ref52
buoncompagni (ref19) 2015
alcantarilla (ref22) 2012
ref11
ref10
li (ref23) 0
rublee (ref8) 0
liaw (ref42) 2002; 2
ref16
kim (ref30) 0
zhou (ref29) 0; 2
ref18
guyon (ref35) 2003; 3
ref51
turcot (ref25) 0
ref41
duan (ref12) 2017
calonder (ref20) 0
liu (ref47) 0
huiskes (ref48) 0
ref7
ref4
ref3
ref6
ref5
dorkó (ref27) 0; 1
ref40
lou (ref14) 0
tolias (ref13) 0
ref37
knopp (ref24) 0
cheok (ref17) 2012
ref32
mukherjee (ref21) 0
ref2
ref1
ref39
ref38
philbin (ref45) 0
leutenegger (ref9) 0
hartmann (ref50) 0
dymczyk (ref31) 0
jegou (ref44) 0
(ref43) 2011
ref26
francini (ref49) 2013
yu (ref33) 0
demirci (ref28) 0
philbin (ref46) 0
References_xml – start-page: 527
  year: 0
  ident: ref48
  article-title: New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative
  publication-title: Proc ACM Int Conf Multimedia Inf Retrieval
– start-page: 572
  year: 0
  ident: ref31
  article-title: Will it last? Learning stable features for long-term visual localization
  publication-title: Proc IEEE 4th Int 3D Vis
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref35
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1016/j.cviu.2007.09.014
– start-page: 2548
  year: 0
  ident: ref9
  article-title: Brisk: Binary robust invariant scalable keypoints
  publication-title: Proc IEEE Int Conf Comput Vis
– year: 0
  ident: ref13
  article-title: Particular object retrieval with integral max-pooling of CNN activations
– start-page: 276
  year: 0
  ident: ref47
  article-title: Depth-based local feature selection for mobile visual search
  publication-title: Proc IEEE Int Conf Image Process
– start-page: 420
  year: 0
  ident: ref14
  article-title: Compact deep invariant descriptors for video retrieval
  publication-title: Proc Data Compression Conf
– ident: ref51
  doi: 10.1109/TIP.2018.2794203
– ident: ref3
  doi: 10.1109/TMM.2016.2645404
– ident: ref15
  doi: 10.1007/s11263-017-1016-8
– volume: 2
  start-page: 85
  year: 0
  ident: ref29
  article-title: A classification-based visual odometry approach
  publication-title: Proc IEEE 8th Int Conf Intell Human-Mach Syst Cybern
– volume: 58
  start-page: 267
  year: 1996
  ident: ref36
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Statist Soc B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2
  start-page: 18
  year: 2002
  ident: ref42
  article-title: Classification and regression by randomforest
  publication-title: R News
– year: 2013
  ident: ref49
  publication-title: CDVS Telecom Italia Response to CE1 Interest Point Detection
– ident: ref10
  doi: 10.1109/TIP.2015.2500034
– ident: ref32
  doi: 10.1109/TMM.2016.2532601
– start-page: 2109
  year: 0
  ident: ref25
  article-title: Better matching with fewer features: The selection of useful features in large database recognition problems
  publication-title: Proc IEEE 12th Int Conf Comput Vis Workshops
– ident: ref38
  doi: 10.1109/TNNLS.2013.2238682
– start-page: 209
  year: 2015
  ident: ref19
  article-title: Saliency-based keypoint reduction for augmented-reality applications in smart cities
  publication-title: Proc
– start-page: 1
  year: 0
  ident: ref21
  article-title: Salient keypoint selection for object representation
  publication-title: Proc 22nd Nat Conf Commun
– start-page: 4320
  year: 0
  ident: ref33
  article-title: Efficient object instance search using fuzzy objects matching
  publication-title: Proc of 31st
– ident: ref6
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref1
  doi: 10.1109/TMM.2015.2436813
– ident: ref41
  doi: 10.1007/BF00994018
– ident: ref2
  doi: 10.1109/TMM.2015.2419973
– ident: ref52
  doi: 10.1109/TMM.2017.2713410
– year: 2017
  ident: ref12
  article-title: Compact descriptors for video analysis: The emerging MPEG standard
– start-page: 778
  year: 0
  ident: ref20
  article-title: Brief: Binary robust independent elementary features
  publication-title: Proc 11th Eur Conf Comput Vis
– start-page: 9
  year: 0
  ident: ref50
  article-title: Predicting matchability
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– year: 2012
  ident: ref17
  publication-title: CDVS Telecom Italia?s Response to CE1 ? Interest Point Detection
– year: 2011
  ident: ref43
  publication-title: Evaluation Framework for Compact Descriptors for Visual Search
– start-page: 6374
  year: 0
  ident: ref23
  article-title: RGBD relocalisation using pairwise geometry and concise key point sets
  publication-title: Proc IEEE Int Conf Robot Autom
– start-page: 214
  year: 2012
  ident: ref22
  article-title: Kaze features
  publication-title: Proc Eur Conf Comput Vis
– ident: ref4
  doi: 10.1109/TCSVT.2017.2748382
– ident: ref26
  doi: 10.1016/j.patcog.2014.04.007
– volume: 1
  start-page: 634
  year: 0
  ident: ref27
  article-title: Selection of scale-invariant parts for object class recognition
  publication-title: Proc IEEE 9th Int Conf Comput Vis
– start-page: 304
  year: 0
  ident: ref44
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc 10th Eur Conf Comput Vis
– ident: ref5
  doi: 10.1109/MSP.2011.940881
– start-page: 1
  year: 0
  ident: ref46
  article-title: Lost in quantization: Improving particular object retrieval in large scale image databases
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref16
  doi: 10.1145/358669.358692
– ident: ref37
  doi: 10.1109/TIP.2015.2495116
– ident: ref11
  doi: 10.1109/LSP.2013.2296532
– start-page: 17
  year: 0
  ident: ref28
  article-title: Object recognition by distortion-free graph embedding and random forest
  publication-title: Proc IEEE 10th Int Conf Semantic Comput
– ident: ref40
  doi: 10.1109/TKDE.2015.2445757
– start-page: 2564
  year: 0
  ident: ref8
  article-title: Orb: An efficient alternative to SIFT or SURF
  publication-title: Proc IEEE Int Conf Comput Vis
– start-page: 748
  year: 0
  ident: ref24
  article-title: Avoiding confusing features in place recognition
  publication-title: Proc Computer Vision
– ident: ref39
  doi: 10.1109/TIP.2015.2421309
– start-page: 1170
  year: 0
  ident: ref30
  article-title: Predicting good features for image GEO-localization using per-bundle VLAD
  publication-title: Proc IEEE Int Conf Comput Vis
– start-page: 3195
  year: 0
  ident: ref34
  article-title: Hope: Hierarchical object prototype encoding for efficient object instance search in videos
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 1
  year: 0
  ident: ref45
  article-title: Object retrieval with large vocabularies and fast spatial matching
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref18
  doi: 10.1016/j.patrec.2015.04.019
SSID ssj0014507
Score 2.270503
Snippet With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2774
SubjectTerms classification
compact descriptors
Encoding
Feature extraction
Feature recognition
feature selection
interest point selection
Lightweight
Machine learning
MPEG encoders
MPEG-CDVA
MPEG-CDVS
Object recognition
Performance enhancement
Proposals
Redundancy
regression
Searching
Transform coding
Video compression
Visual databases
Visual discrimination
Visual search
Visual task performance
Visualization
Weight reduction
Title Data-Driven Lightweight Interest Point Selection for Large-Scale Visual Search
URI https://ieeexplore.ieee.org/document/8320818
https://www.proquest.com/docview/2117167134
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oJz1YV6xWycGLYNpZkpnJUawiYotQK70N2YSitKJTBH-9L5kFN8TbDCSZMF-W9yXvvQ_g-AFN4oRzTSMrBHVaDlTEQlLDZJgIlinu9VMGw-RqzK4nfLIEp00sjLXWO5_Zrnv0d_lmrhfuqKyHo89lYFuGZSRuZaxWc2PAuA-Nxu0ooAJ5TH0lGYje3WDgfLiyrst8FITRly3Ia6r8WIj97nLZgkHdr9Kp5LG7KFRXv39L2fjfjm_AemVmkrNyXGzCkp1tQauWcCDVjN6CtU_5CLdh2JeFpP0XtwKSG0fb3_zJKfHnhthtcjufzgoy8uI5iChBk5fcOGdyOkKwLbmfvi7wu6UT8w6MLy_uzq9oJbhAdSTCgkpuRGpUihxH2lALZpROpTKhsJkwuKYyxS0ujjpVKUKcWm0zFdk4S0wQScbiXViZzWd2D0hs4kBiYxLNR4asRerQZPgeOg0WyYM29GoMcl1lI3eiGE-5ZyWByBG13KGWV6i14aSp8Vxm4vij7LYDoSlX_f82dGqY82qqvubIgJEzupDa_d9rHcCqa7v04OvASvGysIdoiRTqyA_BD-su2CM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH64HNSDu1jXHLwIpp0tnclR1FK1UwRb8TZkE4rSSjtF8Nf7kpkpboi3GUgmYb7kLcl77wM4eUKTuMmYooHhnFouB8pDLqiOhN_kUSKZ409Ju812P7p5ZI9zcDbLhTHGuOAzU7eP7i5fj9TUHpU1cPXZCmzzsIh6nwVFttbsziBiLjkaFZJHOXoy1aWkxxu9NLVRXEnd1j7y_OCLEnKsKj9EsdMvrTVIq5kVYSXP9Wku6-r9W9HG_059HVZLQ5OcFytjA-bMcBPWKhIHUu7pTVj5VJFwC7qXIhf0cmxlIOlYx_3NnZ0Sd3KI0yZ3o8EwJ_eOPgcxJWj0ko4NJ6f3CLchD4PJFMctwpi3od-66l20aUm5QFXA_ZwKpnmsZYxejjC-4pGWKhZS-9wkXKNUjSQzKB5VLGMEOTbKJDIwYdLUXiCiKNyBheFoaHaBhDr0BH5MoAGJaHGhfJ3gu29ZWATzatCoMMhUWY_c0mK8ZM4v8XiGqGUWtaxErQansx6vRS2OP9puWRBm7cr_X4ODCuas3KyTDH1g9BptUu3e772OYandSztZ57p7uw_Ldpwinu8AFvLx1ByiXZLLI7ccPwBehdtt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Lightweight+Interest+Point+Selection+for+Large-Scale+Visual+Search&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Gao%2C+Feng&rft.au=Zhang%2C+Xinfeng&rft.au=Huang%2C+Yicheng&rft.au=Luo%2C+Yong&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=20&rft.issue=10&rft.spage=2774&rft_id=info:doi/10.1109%2FTMM.2018.2818012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon