Data-Driven Lightweight Interest Point Selection for Large-Scale Visual Search
With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e...
Saved in:
Published in | IEEE transactions on multimedia Vol. 20; no. 10; pp. 2774 - 2787 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e.g., memory, bandwidth, storage, etc.), interest point selection is crucial to generate robust compact descriptors for high-efficiency visual analysis by selecting and aggregating the most discriminative local feature descriptors, which has been demonstrated in the state-of-the-art low bit rate visual search works. In this paper, we propose a data-driven lightweight interest point selection approach to significantly improve the performance of visual search, while ameliorating the efficiency of extracting feature descriptors. Comprehensive experimental results over benchmarks have shown that the proposed interest point selection algorithm has significantly improved image matching and retrieval performance in the completed MPEG Compact Descriptors for Visual Search (CDVS) standard as well as the emerging MPEG Compact Descriptors for Video Analytics (CDVA) standard, say 20% mAP gain by data-driven selection against random selection of interest points. In particular, the presented data-driven interest point selection has been adopted by MPEG-CDVS and MPEG-CDVA as a normative technique to improve the aggregation of handcrafted features, which has contributed to the combination of handcrafted features and deep learning (CNN) features as well. |
---|---|
AbstractList | With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the visual feature descriptors to search or recognize the images or frames with target objects or events. Subject to the constraints of resources (e.g., memory, bandwidth, storage, etc.), interest point selection is crucial to generate robust compact descriptors for high-efficiency visual analysis by selecting and aggregating the most discriminative local feature descriptors, which has been demonstrated in the state-of-the-art low bit rate visual search works. In this paper, we propose a data-driven lightweight interest point selection approach to significantly improve the performance of visual search, while ameliorating the efficiency of extracting feature descriptors. Comprehensive experimental results over benchmarks have shown that the proposed interest point selection algorithm has significantly improved image matching and retrieval performance in the completed MPEG Compact Descriptors for Visual Search (CDVS) standard as well as the emerging MPEG Compact Descriptors for Video Analytics (CDVA) standard, say 20% mAP gain by data-driven selection against random selection of interest points. In particular, the presented data-driven interest point selection has been adopted by MPEG-CDVS and MPEG-CDVA as a normative technique to improve the aggregation of handcrafted features, which has contributed to the combination of handcrafted features and deep learning (CNN) features as well. |
Author | Duan, Ling-Yu Zhang, Xinfeng Luo, Yong Gao, Feng Li, Xiaoming Huang, Yicheng |
Author_xml | – sequence: 1 givenname: Feng surname: Gao fullname: Gao, Feng email: gaof@pku.edu.cn organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China – sequence: 2 givenname: Xinfeng orcidid: 0000-0002-7517-3868 surname: Zhang fullname: Zhang, Xinfeng email: xinfengz@usc.edu organization: Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: Yicheng surname: Huang fullname: Huang, Yicheng email: anorange0409@pku.edu.cn organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China – sequence: 4 givenname: Yong orcidid: 0000-0002-2296-6370 surname: Luo fullname: Luo, Yong email: yluo180@gmail.com organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 5 givenname: Xiaoming surname: Li fullname: Li, Xiaoming email: lxm@pku.edu.cn organization: School of Electronics Engineering and Computer Science, Institute of Network Computing and Information Systems, Peking University, Beijing, China – sequence: 6 givenname: Ling-Yu orcidid: 0000-0002-4491-2023 surname: Duan fullname: Duan, Ling-Yu email: lingyu@pku.edu.cn organization: School of Electronics Engineering and Computer Science, Institute of Digital Media, Peking University, Beijing, China |
BookMark | eNp9kM1PwkAQxTcGEwG9m3hp4rk4sy277dGAHyRFTUCvm-12gCW1xe2i8b-3DcSDBy8zc_i9eTNvwHpVXRFjlwgjREhvlvP5iAMmI55gAshPWB_TGEMAKXvtPOYQphzhjA2aZguA8Rhknz1Ntdfh1NlPqoLMrjf-i7oazCpPjhofvNS28sGCSjLe1lWwql2QabemcGF0ScGbbfa6bAHtzOacna502dDFsQ_Z6_3dcvIYZs8Ps8ltFhqeog_1uEhlkUsuQBOaNC5yI3VeYEpJWmAs4nxMiGhkLoUQkgwlOacoEQVwHcfRkF0f9u5c_bFvz1Tbeu-q1lJxRIlCYtRRcKCMq5vG0UrtnH3X7lshqC411aamutTUMbVWIv5IjPW6e9w7bcv_hFcHoSWiX58k4tAC0Q9CVnsN |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_1109_TMM_2019_2918729 crossref_primary_10_1109_ACCESS_2019_2962268 crossref_primary_10_1109_TIP_2020_3016485 crossref_primary_10_1109_TMM_2022_3233245 |
Cites_doi | 10.1016/j.cviu.2007.09.014 10.1109/TIP.2018.2794203 10.1109/TMM.2016.2645404 10.1007/s11263-017-1016-8 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TIP.2015.2500034 10.1109/TMM.2016.2532601 10.1109/TNNLS.2013.2238682 10.1023/B:VISI.0000029664.99615.94 10.1109/TMM.2015.2436813 10.1007/BF00994018 10.1109/TMM.2015.2419973 10.1109/TMM.2017.2713410 10.1109/TCSVT.2017.2748382 10.1016/j.patcog.2014.04.007 10.1109/MSP.2011.940881 10.1145/358669.358692 10.1109/TIP.2015.2495116 10.1109/LSP.2013.2296532 10.1109/TKDE.2015.2445757 10.1109/TIP.2015.2421309 10.1016/j.patrec.2015.04.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2018.2818012 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 2787 |
ExternalDocumentID | 10_1109_TMM_2018_2818012 8320818 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2016YFB1001501 funderid: 10.13039/501100012166 – fundername: Ng Teng Fong Charitable Foundation – fundername: National Natural Science Foundation of China grantid: 61661146005; U1611461; 61390515 funderid: 10.13039/501100001809 – fundername: PKU-NTU Joint Research Institute (JRI) |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-a5d97db7260ae1c94dbc7abd19e89d1464b5e111c7b76667ece8b2e386d02a443 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Sun Jun 29 16:41:52 EDT 2025 Tue Jul 01 01:54:31 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Wed Aug 27 08:34:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a5d97db7260ae1c94dbc7abd19e89d1464b5e111c7b76667ece8b2e386d02a443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2296-6370 0000-0002-7517-3868 0000-0002-4491-2023 |
PQID | 2117167134 |
PQPubID | 75737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2117167134 crossref_citationtrail_10_1109_TMM_2018_2818012 crossref_primary_10_1109_TMM_2018_2818012 ieee_primary_8320818 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | tibshirani (ref36) 1996; 58 ref15 yu (ref34) 0 ref52 buoncompagni (ref19) 2015 alcantarilla (ref22) 2012 ref11 ref10 li (ref23) 0 rublee (ref8) 0 liaw (ref42) 2002; 2 ref16 kim (ref30) 0 zhou (ref29) 0; 2 ref18 guyon (ref35) 2003; 3 ref51 turcot (ref25) 0 ref41 duan (ref12) 2017 calonder (ref20) 0 liu (ref47) 0 huiskes (ref48) 0 ref7 ref4 ref3 ref6 ref5 dorkó (ref27) 0; 1 ref40 lou (ref14) 0 tolias (ref13) 0 ref37 knopp (ref24) 0 cheok (ref17) 2012 ref32 mukherjee (ref21) 0 ref2 ref1 ref39 ref38 philbin (ref45) 0 leutenegger (ref9) 0 hartmann (ref50) 0 dymczyk (ref31) 0 jegou (ref44) 0 (ref43) 2011 ref26 francini (ref49) 2013 yu (ref33) 0 demirci (ref28) 0 philbin (ref46) 0 |
References_xml | – start-page: 527 year: 0 ident: ref48 article-title: New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative publication-title: Proc ACM Int Conf Multimedia Inf Retrieval – start-page: 572 year: 0 ident: ref31 article-title: Will it last? Learning stable features for long-term visual localization publication-title: Proc IEEE 4th Int 3D Vis – volume: 3 start-page: 1157 year: 2003 ident: ref35 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref7 doi: 10.1016/j.cviu.2007.09.014 – start-page: 2548 year: 0 ident: ref9 article-title: Brisk: Binary robust invariant scalable keypoints publication-title: Proc IEEE Int Conf Comput Vis – year: 0 ident: ref13 article-title: Particular object retrieval with integral max-pooling of CNN activations – start-page: 276 year: 0 ident: ref47 article-title: Depth-based local feature selection for mobile visual search publication-title: Proc IEEE Int Conf Image Process – start-page: 420 year: 0 ident: ref14 article-title: Compact deep invariant descriptors for video retrieval publication-title: Proc Data Compression Conf – ident: ref51 doi: 10.1109/TIP.2018.2794203 – ident: ref3 doi: 10.1109/TMM.2016.2645404 – ident: ref15 doi: 10.1007/s11263-017-1016-8 – volume: 2 start-page: 85 year: 0 ident: ref29 article-title: A classification-based visual odometry approach publication-title: Proc IEEE 8th Int Conf Intell Human-Mach Syst Cybern – volume: 58 start-page: 267 year: 1996 ident: ref36 article-title: Regression shrinkage and selection via the lasso publication-title: J R Statist Soc B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 2 start-page: 18 year: 2002 ident: ref42 article-title: Classification and regression by randomforest publication-title: R News – year: 2013 ident: ref49 publication-title: CDVS Telecom Italia Response to CE1 Interest Point Detection – ident: ref10 doi: 10.1109/TIP.2015.2500034 – ident: ref32 doi: 10.1109/TMM.2016.2532601 – start-page: 2109 year: 0 ident: ref25 article-title: Better matching with fewer features: The selection of useful features in large database recognition problems publication-title: Proc IEEE 12th Int Conf Comput Vis Workshops – ident: ref38 doi: 10.1109/TNNLS.2013.2238682 – start-page: 209 year: 2015 ident: ref19 article-title: Saliency-based keypoint reduction for augmented-reality applications in smart cities publication-title: Proc – start-page: 1 year: 0 ident: ref21 article-title: Salient keypoint selection for object representation publication-title: Proc 22nd Nat Conf Commun – start-page: 4320 year: 0 ident: ref33 article-title: Efficient object instance search using fuzzy objects matching publication-title: Proc of 31st – ident: ref6 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref1 doi: 10.1109/TMM.2015.2436813 – ident: ref41 doi: 10.1007/BF00994018 – ident: ref2 doi: 10.1109/TMM.2015.2419973 – ident: ref52 doi: 10.1109/TMM.2017.2713410 – year: 2017 ident: ref12 article-title: Compact descriptors for video analysis: The emerging MPEG standard – start-page: 778 year: 0 ident: ref20 article-title: Brief: Binary robust independent elementary features publication-title: Proc 11th Eur Conf Comput Vis – start-page: 9 year: 0 ident: ref50 article-title: Predicting matchability publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – year: 2012 ident: ref17 publication-title: CDVS Telecom Italia?s Response to CE1 ? Interest Point Detection – year: 2011 ident: ref43 publication-title: Evaluation Framework for Compact Descriptors for Visual Search – start-page: 6374 year: 0 ident: ref23 article-title: RGBD relocalisation using pairwise geometry and concise key point sets publication-title: Proc IEEE Int Conf Robot Autom – start-page: 214 year: 2012 ident: ref22 article-title: Kaze features publication-title: Proc Eur Conf Comput Vis – ident: ref4 doi: 10.1109/TCSVT.2017.2748382 – ident: ref26 doi: 10.1016/j.patcog.2014.04.007 – volume: 1 start-page: 634 year: 0 ident: ref27 article-title: Selection of scale-invariant parts for object class recognition publication-title: Proc IEEE 9th Int Conf Comput Vis – start-page: 304 year: 0 ident: ref44 article-title: Hamming embedding and weak geometric consistency for large scale image search publication-title: Proc 10th Eur Conf Comput Vis – ident: ref5 doi: 10.1109/MSP.2011.940881 – start-page: 1 year: 0 ident: ref46 article-title: Lost in quantization: Improving particular object retrieval in large scale image databases publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref16 doi: 10.1145/358669.358692 – ident: ref37 doi: 10.1109/TIP.2015.2495116 – ident: ref11 doi: 10.1109/LSP.2013.2296532 – start-page: 17 year: 0 ident: ref28 article-title: Object recognition by distortion-free graph embedding and random forest publication-title: Proc IEEE 10th Int Conf Semantic Comput – ident: ref40 doi: 10.1109/TKDE.2015.2445757 – start-page: 2564 year: 0 ident: ref8 article-title: Orb: An efficient alternative to SIFT or SURF publication-title: Proc IEEE Int Conf Comput Vis – start-page: 748 year: 0 ident: ref24 article-title: Avoiding confusing features in place recognition publication-title: Proc Computer Vision – ident: ref39 doi: 10.1109/TIP.2015.2421309 – start-page: 1170 year: 0 ident: ref30 article-title: Predicting good features for image GEO-localization using per-bundle VLAD publication-title: Proc IEEE Int Conf Comput Vis – start-page: 3195 year: 0 ident: ref34 article-title: Hope: Hierarchical object prototype encoding for efficient object instance search in videos publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 1 year: 0 ident: ref45 article-title: Object retrieval with large vocabularies and fast spatial matching publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref18 doi: 10.1016/j.patrec.2015.04.019 |
SSID | ssj0014507 |
Score | 2.270503 |
Snippet | With the explosive increase of images and videos, visual analysis has become an essential technique in dealing with the big visual data, which utilizes the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2774 |
SubjectTerms | classification compact descriptors Encoding Feature extraction Feature recognition feature selection interest point selection Lightweight Machine learning MPEG encoders MPEG-CDVA MPEG-CDVS Object recognition Performance enhancement Proposals Redundancy regression Searching Transform coding Video compression Visual databases Visual discrimination Visual search Visual task performance Visualization Weight reduction |
Title | Data-Driven Lightweight Interest Point Selection for Large-Scale Visual Search |
URI | https://ieeexplore.ieee.org/document/8320818 https://www.proquest.com/docview/2117167134 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oJz1YV6xWycGLYNpZkpnJUawiYotQK70N2YSitKJTBH-9L5kFN8TbDCSZMF-W9yXvvQ_g-AFN4oRzTSMrBHVaDlTEQlLDZJgIlinu9VMGw-RqzK4nfLIEp00sjLXWO5_Zrnv0d_lmrhfuqKyHo89lYFuGZSRuZaxWc2PAuA-Nxu0ooAJ5TH0lGYje3WDgfLiyrst8FITRly3Ia6r8WIj97nLZgkHdr9Kp5LG7KFRXv39L2fjfjm_AemVmkrNyXGzCkp1tQauWcCDVjN6CtU_5CLdh2JeFpP0XtwKSG0fb3_zJKfHnhthtcjufzgoy8uI5iChBk5fcOGdyOkKwLbmfvi7wu6UT8w6MLy_uzq9oJbhAdSTCgkpuRGpUihxH2lALZpROpTKhsJkwuKYyxS0ujjpVKUKcWm0zFdk4S0wQScbiXViZzWd2D0hs4kBiYxLNR4asRerQZPgeOg0WyYM29GoMcl1lI3eiGE-5ZyWByBG13KGWV6i14aSp8Vxm4vij7LYDoSlX_f82dGqY82qqvubIgJEzupDa_d9rHcCqa7v04OvASvGysIdoiRTqyA_BD-su2CM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH64HNSDu1jXHLwIpp0tnclR1FK1UwRb8TZkE4rSSjtF8Nf7kpkpboi3GUgmYb7kLcl77wM4eUKTuMmYooHhnFouB8pDLqiOhN_kUSKZ409Ju812P7p5ZI9zcDbLhTHGuOAzU7eP7i5fj9TUHpU1cPXZCmzzsIh6nwVFttbsziBiLjkaFZJHOXoy1aWkxxu9NLVRXEnd1j7y_OCLEnKsKj9EsdMvrTVIq5kVYSXP9Wku6-r9W9HG_059HVZLQ5OcFytjA-bMcBPWKhIHUu7pTVj5VJFwC7qXIhf0cmxlIOlYx_3NnZ0Sd3KI0yZ3o8EwJ_eOPgcxJWj0ko4NJ6f3CLchD4PJFMctwpi3od-66l20aUm5QFXA_ZwKpnmsZYxejjC-4pGWKhZS-9wkXKNUjSQzKB5VLGMEOTbKJDIwYdLUXiCiKNyBheFoaHaBhDr0BH5MoAGJaHGhfJ3gu29ZWATzatCoMMhUWY_c0mK8ZM4v8XiGqGUWtaxErQansx6vRS2OP9puWRBm7cr_X4ODCuas3KyTDH1g9BptUu3e772OYandSztZ57p7uw_Ldpwinu8AFvLx1ByiXZLLI7ccPwBehdtt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Lightweight+Interest+Point+Selection+for+Large-Scale+Visual+Search&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Gao%2C+Feng&rft.au=Zhang%2C+Xinfeng&rft.au=Huang%2C+Yicheng&rft.au=Luo%2C+Yong&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=20&rft.issue=10&rft.spage=2774&rft_id=info:doi/10.1109%2FTMM.2018.2818012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |