MoveNet: A Deep Neural Network for Joint Profile Prediction Across Variable Walking Speeds and Slopes
An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artifici...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2021.3073720 |
Cover
Loading…
Abstract | An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artificial system that can predict subject-specific joint angle profiles for various real-world scenarios from a minimum amount of input data. This study aims to propose a predictive neural network (NN) called MoveNet, for joints angle profile prediction across variable walking speeds and slopes. MoveNet consists of three NN modules, namely, encoder, mapper, and decoder. The encoder module is trained to convert the knee joint angle profile into its 6-D latent representation. The mapper module is trained to map the latent representation of angle profile at zero degrees angle of inclination (AOI) to latent representation of angle profile at the target AOI. The decoder module is trained to predict an angle profile from its given latent representation. The proposed model successfully predicted knee joint angle profiles at three walking speeds (0.8, 1, and 1.2 m/s) and nine AOI ranging from −10° to 10°. MoveNet obtained root mean squared error of 3.24 ± 1.19° and mean absolute error of 2.66 ± 1.00° from tenfold cross validation. These results suggest that artificial intelligence can predict subject-specific knee joint angle profiles for variable slopes at a given walking speed from the data of knee joint angle profiles recorded at a flat surface. |
---|---|
AbstractList | An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artificial system that can predict subject-specific joint angle profiles for various real-world scenarios from a minimum amount of input data. This study aims to propose a predictive neural network (NN) called MoveNet, for joints angle profile prediction across variable walking speeds and slopes. MoveNet consists of three NN modules, namely, encoder, mapper, and decoder. The encoder module is trained to convert the knee joint angle profile into its 6-D latent representation. The mapper module is trained to map the latent representation of angle profile at zero degrees angle of inclination (AOI) to latent representation of angle profile at the target AOI. The decoder module is trained to predict an angle profile from its given latent representation. The proposed model successfully predicted knee joint angle profiles at three walking speeds (0.8, 1, and 1.2 m/s) and nine AOI ranging from −10° to 10°. MoveNet obtained root mean squared error of 3.24 ± 1.19° and mean absolute error of 2.66 ± 1.00° from tenfold cross validation. These results suggest that artificial intelligence can predict subject-specific knee joint angle profiles for variable slopes at a given walking speed from the data of knee joint angle profiles recorded at a flat surface. |
Author | Joshi, Deepak Joshi, Rishabh Bajpaiand Deepak |
Author_xml | – sequence: 1 givenname: Rishabh Bajpaiand Deepak orcidid: 0000-0002-0542-8255 surname: Joshi fullname: Joshi, Rishabh Bajpaiand Deepak email: bmz208129@iitd.ac.in organization: IIT Delhi, New Delhi, India – sequence: 2 givenname: Deepak orcidid: 0000-0002-7978-6493 surname: Joshi fullname: Joshi, Deepak email: joshid@iitd.ac.in organization: IIT Delhi, New Delhi, India |
BookMark | eNp9kDlPxDAQhS0EEsvRI9FYos4ythN7TbfiRlwSVxkNzgQZQhycLIh_j5dFFBRUr5j3zcx7a2y5DS0xtiVgLATY3dvTi7EEKcYKjDISlthIFIXJrNZymY0AxCSzeaFX2VrfPwOA0bkZMboI73RJwx6f8gOijl_SLGKTZPgI8YXXIfKz4NuBX8dQ-4aSUuXd4EPLpy6Gvuf3GD0-ptEDNi--feI3HVHVc2wrftOEjvoNtlJj09Pmj66zu6PD2_2T7Pzq-HR_ep45acWQYWFytA4tweMkF5KcRcoVSmVRW2VlZa1I4qROKaEQoJ1CZdBUribM1TrbWeztYnibUT-Uz2EW23SylIWUFoywk-TSC9f3-5Hq0vkB54mGiL4pBZTzSstUaTmvtPypNIHwB-yif8X4-R-yvUA8Ef3abQ4acqW-AGPJgiY |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TNSRE_2021_3131466 crossref_primary_10_1109_TIM_2023_3343745 crossref_primary_10_1109_TITS_2024_3524117 crossref_primary_10_1109_TMM_2023_3314979 crossref_primary_10_1177_14604582231214589 crossref_primary_10_11834_jig_220436 crossref_primary_10_1109_TNSRE_2023_3273599 crossref_primary_10_1109_TNSRE_2022_3223992 crossref_primary_10_1162_pres_a_00383 crossref_primary_10_23947_2687_1653_2023_23_3_317_328 crossref_primary_10_1109_TMRB_2023_3336970 |
Cites_doi | 10.1109/TBME.2010.2089454 10.1590/S1413-35552007000200006 10.1007/s12206-014-1003-8 10.1109/ROBIO49542.2019.8961762 10.1007/s12652-019-01390-3 10.1109/TCST.2016.2565385 10.1109/JBHI.2020.2993697 10.1109/ROBIO.2018.8664778 10.1142/S0218957708002036 10.1109/ICARM.2017.8273224 10.1109/TNSRE.2018.2879570 10.3390/act3010001 10.1109/JBHI.2020.3015317 10.4108/icst.bodynets.2013.253613 10.1109/TNSRE.2019.2914095 10.1155/2019/9627438 10.1038/s41598-019-45397-4 10.1371/journal.pone.0203934 10.1038/s41598-019-38748-8 10.1016/j.bspc.2017.10.002 10.1016/j.jbiomech.2009.08.004 10.4015/S1016237206000142 10.1109/TMECH.2013.2278207 10.1152/japplphysiol.01020.2017 10.1109/EMBC.2016.7591161 10.1115/1.4043460 10.1109/TIM.2009.2016801 10.1016/j.gaitpost.2018.12.006 10.1007/s00521-018-3458-5 10.1109/TBME.2007.905388 10.1109/TIM.2016.2620799 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2021.3073720 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2021_3073720 9406043 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-a574a9ca9e0b8412ec9ae43a239a69392d991392c2630705106c3a37a7dcfea43 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:19:02 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 03:07:03 EDT 2025 Wed Aug 27 02:30:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a574a9ca9e0b8412ec9ae43a239a69392d991392c2630705106c3a37a7dcfea43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7978-6493 0000-0002-0542-8255 |
PQID | 2522907198 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TIM_2021_3073720 ieee_primary_9406043 proquest_journals_2522907198 crossref_primary_10_1109_TIM_2021_3073720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 liu (ref12) 2009 ref16 ref19 ref18 cunha (ref22) 2019 ali (ref29) 2016; 11 kingma (ref40) 2014 may (ref4) 1974 ref24 ref23 van rossum (ref39) 2020 ref25 biedermann (ref3) 2004 ref20 ref41 ref21 b?a?kiewicz (ref26) 2018; 20 horst (ref35) 2019; 9 bao (ref34) 2021; 70 ref28 ref27 ref8 ref7 ref9 ref6 ref5 embry (ref36) 2018 |
References_xml | – ident: ref13 doi: 10.1109/TBME.2010.2089454 – ident: ref7 doi: 10.1590/S1413-35552007000200006 – ident: ref9 doi: 10.1007/s12206-014-1003-8 – ident: ref23 doi: 10.1109/ROBIO49542.2019.8961762 – start-page: 3065 year: 2009 ident: ref12 article-title: Ambulatory measurement and analysis of the lower limb 3D posture using wearable sensor system publication-title: Proc Int Conf Mechatron Autom – ident: ref33 doi: 10.1007/s12652-019-01390-3 – ident: ref5 doi: 10.1109/TCST.2016.2565385 – ident: ref21 doi: 10.1109/JBHI.2020.2993697 – ident: ref24 doi: 10.1109/ROBIO.2018.8664778 – ident: ref37 doi: 10.1142/S0218957708002036 – start-page: 1653 year: 2019 ident: ref22 article-title: Computational intelligence generation of subject-specific knee and hip healthy joint angles reference curves publication-title: Proc Medit Conf Med Biol Eng Comput – ident: ref25 doi: 10.1109/ICARM.2017.8273224 – ident: ref16 doi: 10.1109/TNSRE.2018.2879570 – ident: ref8 doi: 10.3390/act3010001 – ident: ref17 doi: 10.1109/JBHI.2020.3015317 – ident: ref19 doi: 10.4108/icst.bodynets.2013.253613 – volume: 11 start-page: 7943 year: 2016 ident: ref29 article-title: Trajectory planning for exoskeleton robot by using cubic and quintic polynomial equation publication-title: Int J Appl Eng Res – ident: ref31 doi: 10.1109/TNSRE.2019.2914095 – ident: ref41 doi: 10.1155/2019/9627438 – year: 2020 ident: ref39 article-title: The Python library reference, release 3.8.2 – year: 1974 ident: ref4 article-title: Artificial leg with stable link-type knee joint – ident: ref30 doi: 10.1038/s41598-019-45397-4 – year: 2004 ident: ref3 article-title: Leg prosthesis with an artificial knee joint and method for controlling a leg prosthesis – ident: ref32 doi: 10.1371/journal.pone.0203934 – volume: 9 start-page: 1 year: 2019 ident: ref35 article-title: Explaining the unique nature of individual gait patterns with deep learning publication-title: Sci Rep doi: 10.1038/s41598-019-38748-8 – ident: ref11 doi: 10.1016/j.bspc.2017.10.002 – year: 2014 ident: ref40 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref18 doi: 10.1016/j.jbiomech.2009.08.004 – volume: 70 start-page: 1 year: 2021 ident: ref34 article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography publication-title: IEEE Trans Instrum Meas – ident: ref2 doi: 10.4015/S1016237206000142 – ident: ref6 doi: 10.1109/TMECH.2013.2278207 – ident: ref1 doi: 10.1152/japplphysiol.01020.2017 – ident: ref15 doi: 10.1109/EMBC.2016.7591161 – ident: ref10 doi: 10.1115/1.4043460 – ident: ref38 doi: 10.1109/TIM.2009.2016801 – ident: ref28 doi: 10.1016/j.gaitpost.2018.12.006 – ident: ref27 doi: 10.1007/s00521-018-3458-5 – ident: ref14 doi: 10.1109/TBME.2007.905388 – year: 2018 ident: ref36 article-title: The effect of walking incline and speed on human leg kinematics, kinetics, and EMG – volume: 20 start-page: 43 year: 2018 ident: ref26 article-title: Artificial neural network simulation of lower limb joint angles in normal and impaired human gait publication-title: Acta Bioeng Biomech – ident: ref20 doi: 10.1109/TIM.2016.2620799 |
SSID | ssj0007647 |
Score | 2.4702508 |
Snippet | An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial intelligence Artificial neural networks Automation Coders Depth profiling Estimation Exoskeletons Flat surfaces Hip human locomotion Inclination angle Joints (anatomy) Knee Legged locomotion Modules Neural networks Predictions Predictive models Representations robot control Slopes Walking |
Title | MoveNet: A Deep Neural Network for Joint Profile Prediction Across Variable Walking Speeds and Slopes |
URI | https://ieeexplore.ieee.org/document/9406043 https://www.proquest.com/docview/2522907198 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qQdCDb7G-2IMXwbR5bBLXW_FBFVoEn7ew2UxBLEmxqQd_vTPZtIiKeEly2A27fPv4Zmf2G4CjzFdEy73QSYdq6EgMjZOm9FCuxsw10kMbbTGIeg_y5jl8bsDJ_C4MIlbBZ9jmz8qXnxVmykdlHSVZ6iVYgAUy3OxdrfmqG0fS6mN6NIGJFcxckq7q3F_3yRD0vTaP55gze3_ZgqqcKj8W4mp3uVqF_qxdNqjktT0t07b5-CbZ-N-Gr8FKTTNF146LdWhgvgHLX8QHN2CxCv40k03AfvGOAyzPRFdcII4FK3ZQ7YENERfEa8VN8ZKX4tZm-KY3-3cYU9GtOikeyebmW1jiSY_49F3cjWlfnAidZ-JuVIxxsgUPV5f35z2nTr_gGF95paPDWGpltEI3PZWej0ZplIH2A6UjRbwqU6wp6hs_4oWDJndkAh3EOs7MELUMtqGZFznugFCp1IFnQtYDkMEw1cQriAkaHaPh5Nct6MwQSUytTc4pMkZJZaO4KiEME8YwqTFswfG8xtjqcvxRdpMhmZer0WjB_gz0pJ64k8QPWQA_9tTp7u-19mCJ_21PYfahWb5N8YB4SZkeVgPyE7Qr3MA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VEAIOLC2IsvrABYm0WZwEc6tYVJZWSBToLXKcqYSokoqmHPh6PHFaIUCIS5KDrdh6Xp7HM28AjhJXaFru-FY8EAOLo6-sONYPYUtMbMUdNN4W3aD9yG_6fr8CJ7NYGEQsnM-wQZ_FXX6SqQmZypqCk9SLNwcLPgXjmmit2bobBtwoZDp6CmteML2UtEWzd93RR0HXadCIDim395dNqMiq8mMpLvaXqzXoTFtm3EpeG5M8bqiPb6KN_236OqyWRJO1zMjYgAqmVVj5Ij9YhcXC_VONa4Cd7B27mJ-xFrtAHDHS7NC1u8ZJnGlmy26ylzRn9ybHt37TDQ-hylpFJ9mTPnVTHBZ7lkOyv7OHkd4Zx0ymCXsYZiMcb8Lj1WXvvG2VCRgs5Qont6QfcimUFGjHp9xxUQmJ3JOuJ2QgNLNKBKmKusoNaOnQ0ztQnvRCGSZqgJJ7WzCfZiluAxMxl56jfFIE4N4glppZaC6oZIiK0l_XoTlFJFKlOjklyRhGxSnFFpHGMCIMoxLDOhzPaoyMMscfZWsEyaxciUYd9qagR-XUHUeuTxL4oSNOd36vdQhL7V7nLrq77t7uwjL9x9hk9mA-f5vgvmYpeXxQDM5PYWrgCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoveNet%3A+A+Deep+Neural+Network+for+Joint+Profile+Prediction+Across+Variable+Walking+Speeds+and+Slopes&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Joshi%2C+Rishabh+Bajpaiand+Deepak&rft.au=Joshi%2C+Deepak&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2021.3073720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3073720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |