MoveNet: A Deep Neural Network for Joint Profile Prediction Across Variable Walking Speeds and Slopes

An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artifici...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11
Main Authors Joshi, Rishabh Bajpaiand Deepak, Joshi, Deepak
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3073720

Cover

Loading…
Abstract An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artificial system that can predict subject-specific joint angle profiles for various real-world scenarios from a minimum amount of input data. This study aims to propose a predictive neural network (NN) called MoveNet, for joints angle profile prediction across variable walking speeds and slopes. MoveNet consists of three NN modules, namely, encoder, mapper, and decoder. The encoder module is trained to convert the knee joint angle profile into its 6-D latent representation. The mapper module is trained to map the latent representation of angle profile at zero degrees angle of inclination (AOI) to latent representation of angle profile at the target AOI. The decoder module is trained to predict an angle profile from its given latent representation. The proposed model successfully predicted knee joint angle profiles at three walking speeds (0.8, 1, and 1.2 m/s) and nine AOI ranging from −10° to 10°. MoveNet obtained root mean squared error of 3.24 ± 1.19° and mean absolute error of 2.66 ± 1.00° from tenfold cross validation. These results suggest that artificial intelligence can predict subject-specific knee joint angle profiles for variable slopes at a given walking speed from the data of knee joint angle profiles recorded at a flat surface.
AbstractList An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and their implementation in the control system of an exoskeleton are time-consuming and complex processes. Therefore, there is a need for an artificial system that can predict subject-specific joint angle profiles for various real-world scenarios from a minimum amount of input data. This study aims to propose a predictive neural network (NN) called MoveNet, for joints angle profile prediction across variable walking speeds and slopes. MoveNet consists of three NN modules, namely, encoder, mapper, and decoder. The encoder module is trained to convert the knee joint angle profile into its 6-D latent representation. The mapper module is trained to map the latent representation of angle profile at zero degrees angle of inclination (AOI) to latent representation of angle profile at the target AOI. The decoder module is trained to predict an angle profile from its given latent representation. The proposed model successfully predicted knee joint angle profiles at three walking speeds (0.8, 1, and 1.2 m/s) and nine AOI ranging from −10° to 10°. MoveNet obtained root mean squared error of 3.24 ± 1.19° and mean absolute error of 2.66 ± 1.00° from tenfold cross validation. These results suggest that artificial intelligence can predict subject-specific knee joint angle profiles for variable slopes at a given walking speed from the data of knee joint angle profiles recorded at a flat surface.
Author Joshi, Deepak
Joshi, Rishabh Bajpaiand Deepak
Author_xml – sequence: 1
  givenname: Rishabh Bajpaiand Deepak
  orcidid: 0000-0002-0542-8255
  surname: Joshi
  fullname: Joshi, Rishabh Bajpaiand Deepak
  email: bmz208129@iitd.ac.in
  organization: IIT Delhi, New Delhi, India
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0002-7978-6493
  surname: Joshi
  fullname: Joshi, Deepak
  email: joshid@iitd.ac.in
  organization: IIT Delhi, New Delhi, India
BookMark eNp9kDlPxDAQhS0EEsvRI9FYos4ythN7TbfiRlwSVxkNzgQZQhycLIh_j5dFFBRUr5j3zcx7a2y5DS0xtiVgLATY3dvTi7EEKcYKjDISlthIFIXJrNZymY0AxCSzeaFX2VrfPwOA0bkZMboI73RJwx6f8gOijl_SLGKTZPgI8YXXIfKz4NuBX8dQ-4aSUuXd4EPLpy6Gvuf3GD0-ptEDNi--feI3HVHVc2wrftOEjvoNtlJj09Pmj66zu6PD2_2T7Pzq-HR_ep45acWQYWFytA4tweMkF5KcRcoVSmVRW2VlZa1I4qROKaEQoJ1CZdBUribM1TrbWeztYnibUT-Uz2EW23SylIWUFoywk-TSC9f3-5Hq0vkB54mGiL4pBZTzSstUaTmvtPypNIHwB-yif8X4-R-yvUA8Ef3abQ4acqW-AGPJgiY
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TNSRE_2021_3131466
crossref_primary_10_1109_TIM_2023_3343745
crossref_primary_10_1109_TITS_2024_3524117
crossref_primary_10_1109_TMM_2023_3314979
crossref_primary_10_1177_14604582231214589
crossref_primary_10_11834_jig_220436
crossref_primary_10_1109_TNSRE_2023_3273599
crossref_primary_10_1109_TNSRE_2022_3223992
crossref_primary_10_1162_pres_a_00383
crossref_primary_10_23947_2687_1653_2023_23_3_317_328
crossref_primary_10_1109_TMRB_2023_3336970
Cites_doi 10.1109/TBME.2010.2089454
10.1590/S1413-35552007000200006
10.1007/s12206-014-1003-8
10.1109/ROBIO49542.2019.8961762
10.1007/s12652-019-01390-3
10.1109/TCST.2016.2565385
10.1109/JBHI.2020.2993697
10.1109/ROBIO.2018.8664778
10.1142/S0218957708002036
10.1109/ICARM.2017.8273224
10.1109/TNSRE.2018.2879570
10.3390/act3010001
10.1109/JBHI.2020.3015317
10.4108/icst.bodynets.2013.253613
10.1109/TNSRE.2019.2914095
10.1155/2019/9627438
10.1038/s41598-019-45397-4
10.1371/journal.pone.0203934
10.1038/s41598-019-38748-8
10.1016/j.bspc.2017.10.002
10.1016/j.jbiomech.2009.08.004
10.4015/S1016237206000142
10.1109/TMECH.2013.2278207
10.1152/japplphysiol.01020.2017
10.1109/EMBC.2016.7591161
10.1115/1.4043460
10.1109/TIM.2009.2016801
10.1016/j.gaitpost.2018.12.006
10.1007/s00521-018-3458-5
10.1109/TBME.2007.905388
10.1109/TIM.2016.2620799
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3073720
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2021_3073720
9406043
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-a574a9ca9e0b8412ec9ae43a239a69392d991392c2630705106c3a37a7dcfea43
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:19:02 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 03:07:03 EDT 2025
Wed Aug 27 02:30:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a574a9ca9e0b8412ec9ae43a239a69392d991392c2630705106c3a37a7dcfea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7978-6493
0000-0002-0542-8255
PQID 2522907198
PQPubID 85462
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIM_2021_3073720
ieee_primary_9406043
proquest_journals_2522907198
crossref_primary_10_1109_TIM_2021_3073720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
liu (ref12) 2009
ref16
ref19
ref18
cunha (ref22) 2019
ali (ref29) 2016; 11
kingma (ref40) 2014
may (ref4) 1974
ref24
ref23
van rossum (ref39) 2020
ref25
biedermann (ref3) 2004
ref20
ref41
ref21
b?a?kiewicz (ref26) 2018; 20
horst (ref35) 2019; 9
bao (ref34) 2021; 70
ref28
ref27
ref8
ref7
ref9
ref6
ref5
embry (ref36) 2018
References_xml – ident: ref13
  doi: 10.1109/TBME.2010.2089454
– ident: ref7
  doi: 10.1590/S1413-35552007000200006
– ident: ref9
  doi: 10.1007/s12206-014-1003-8
– ident: ref23
  doi: 10.1109/ROBIO49542.2019.8961762
– start-page: 3065
  year: 2009
  ident: ref12
  article-title: Ambulatory measurement and analysis of the lower limb 3D posture using wearable sensor system
  publication-title: Proc Int Conf Mechatron Autom
– ident: ref33
  doi: 10.1007/s12652-019-01390-3
– ident: ref5
  doi: 10.1109/TCST.2016.2565385
– ident: ref21
  doi: 10.1109/JBHI.2020.2993697
– ident: ref24
  doi: 10.1109/ROBIO.2018.8664778
– ident: ref37
  doi: 10.1142/S0218957708002036
– start-page: 1653
  year: 2019
  ident: ref22
  article-title: Computational intelligence generation of subject-specific knee and hip healthy joint angles reference curves
  publication-title: Proc Medit Conf Med Biol Eng Comput
– ident: ref25
  doi: 10.1109/ICARM.2017.8273224
– ident: ref16
  doi: 10.1109/TNSRE.2018.2879570
– ident: ref8
  doi: 10.3390/act3010001
– ident: ref17
  doi: 10.1109/JBHI.2020.3015317
– ident: ref19
  doi: 10.4108/icst.bodynets.2013.253613
– volume: 11
  start-page: 7943
  year: 2016
  ident: ref29
  article-title: Trajectory planning for exoskeleton robot by using cubic and quintic polynomial equation
  publication-title: Int J Appl Eng Res
– ident: ref31
  doi: 10.1109/TNSRE.2019.2914095
– ident: ref41
  doi: 10.1155/2019/9627438
– year: 2020
  ident: ref39
  article-title: The Python library reference, release 3.8.2
– year: 1974
  ident: ref4
  article-title: Artificial leg with stable link-type knee joint
– ident: ref30
  doi: 10.1038/s41598-019-45397-4
– year: 2004
  ident: ref3
  article-title: Leg prosthesis with an artificial knee joint and method for controlling a leg prosthesis
– ident: ref32
  doi: 10.1371/journal.pone.0203934
– volume: 9
  start-page: 1
  year: 2019
  ident: ref35
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38748-8
– ident: ref11
  doi: 10.1016/j.bspc.2017.10.002
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref18
  doi: 10.1016/j.jbiomech.2009.08.004
– volume: 70
  start-page: 1
  year: 2021
  ident: ref34
  article-title: A CNN-LSTM hybrid model for wrist kinematics estimation using surface electromyography
  publication-title: IEEE Trans Instrum Meas
– ident: ref2
  doi: 10.4015/S1016237206000142
– ident: ref6
  doi: 10.1109/TMECH.2013.2278207
– ident: ref1
  doi: 10.1152/japplphysiol.01020.2017
– ident: ref15
  doi: 10.1109/EMBC.2016.7591161
– ident: ref10
  doi: 10.1115/1.4043460
– ident: ref38
  doi: 10.1109/TIM.2009.2016801
– ident: ref28
  doi: 10.1016/j.gaitpost.2018.12.006
– ident: ref27
  doi: 10.1007/s00521-018-3458-5
– ident: ref14
  doi: 10.1109/TBME.2007.905388
– year: 2018
  ident: ref36
  article-title: The effect of walking incline and speed on human leg kinematics, kinetics, and EMG
– volume: 20
  start-page: 43
  year: 2018
  ident: ref26
  article-title: Artificial neural network simulation of lower limb joint angles in normal and impaired human gait
  publication-title: Acta Bioeng Biomech
– ident: ref20
  doi: 10.1109/TIM.2016.2620799
SSID ssj0007647
Score 2.4702508
Snippet An exoskeleton needs reference joint angle profiles at various speeds and slopes for its application in real-world scenarios. Recording these profiles and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial intelligence
Artificial neural networks
Automation
Coders
Depth profiling
Estimation
Exoskeletons
Flat surfaces
Hip
human locomotion
Inclination angle
Joints (anatomy)
Knee
Legged locomotion
Modules
Neural networks
Predictions
Predictive models
Representations
robot control
Slopes
Walking
Title MoveNet: A Deep Neural Network for Joint Profile Prediction Across Variable Walking Speeds and Slopes
URI https://ieeexplore.ieee.org/document/9406043
https://www.proquest.com/docview/2522907198
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qQdCDb7G-2IMXwbR5bBLXW_FBFVoEn7ew2UxBLEmxqQd_vTPZtIiKeEly2A27fPv4Zmf2G4CjzFdEy73QSYdq6EgMjZOm9FCuxsw10kMbbTGIeg_y5jl8bsDJ_C4MIlbBZ9jmz8qXnxVmykdlHSVZ6iVYgAUy3OxdrfmqG0fS6mN6NIGJFcxckq7q3F_3yRD0vTaP55gze3_ZgqqcKj8W4mp3uVqF_qxdNqjktT0t07b5-CbZ-N-Gr8FKTTNF146LdWhgvgHLX8QHN2CxCv40k03AfvGOAyzPRFdcII4FK3ZQ7YENERfEa8VN8ZKX4tZm-KY3-3cYU9GtOikeyebmW1jiSY_49F3cjWlfnAidZ-JuVIxxsgUPV5f35z2nTr_gGF95paPDWGpltEI3PZWej0ZplIH2A6UjRbwqU6wp6hs_4oWDJndkAh3EOs7MELUMtqGZFznugFCp1IFnQtYDkMEw1cQriAkaHaPh5Nct6MwQSUytTc4pMkZJZaO4KiEME8YwqTFswfG8xtjqcvxRdpMhmZer0WjB_gz0pJ64k8QPWQA_9tTp7u-19mCJ_21PYfahWb5N8YB4SZkeVgPyE7Qr3MA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VEAIOLC2IsvrABYm0WZwEc6tYVJZWSBToLXKcqYSokoqmHPh6PHFaIUCIS5KDrdh6Xp7HM28AjhJXaFru-FY8EAOLo6-sONYPYUtMbMUdNN4W3aD9yG_6fr8CJ7NYGEQsnM-wQZ_FXX6SqQmZypqCk9SLNwcLPgXjmmit2bobBtwoZDp6CmteML2UtEWzd93RR0HXadCIDim395dNqMiq8mMpLvaXqzXoTFtm3EpeG5M8bqiPb6KN_236OqyWRJO1zMjYgAqmVVj5Ij9YhcXC_VONa4Cd7B27mJ-xFrtAHDHS7NC1u8ZJnGlmy26ylzRn9ybHt37TDQ-hylpFJ9mTPnVTHBZ7lkOyv7OHkd4Zx0ymCXsYZiMcb8Lj1WXvvG2VCRgs5Qont6QfcimUFGjHp9xxUQmJ3JOuJ2QgNLNKBKmKusoNaOnQ0ztQnvRCGSZqgJJ7WzCfZiluAxMxl56jfFIE4N4glppZaC6oZIiK0l_XoTlFJFKlOjklyRhGxSnFFpHGMCIMoxLDOhzPaoyMMscfZWsEyaxciUYd9qagR-XUHUeuTxL4oSNOd36vdQhL7V7nLrq77t7uwjL9x9hk9mA-f5vgvmYpeXxQDM5PYWrgCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoveNet%3A+A+Deep+Neural+Network+for+Joint+Profile+Prediction+Across+Variable+Walking+Speeds+and+Slopes&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Joshi%2C+Rishabh+Bajpaiand+Deepak&rft.au=Joshi%2C+Deepak&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2021.3073720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2021_3073720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon