Dynamic Mechanical Behavior and Constitutive Models of S890 High-Strength Steel at Intermediate and High Strain Rates

High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials engineering and performance Vol. 29; no. 10; pp. 6727 - 6739
Main Authors Zhu, Yong, Yang, Hua, Zhang, Sumei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Subjects
Online AccessGet full text
ISSN1059-9495
1544-1024
DOI10.1007/s11665-020-05150-9

Cover

Loading…
Abstract High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main subjects of this paper are the dynamic strain–stress relationship and the strain rate-strengthening effect of S890 high-strength steel. Experimental studies with a wide range of strain rates were conducted using a dynamic tensile testing system (for intermediate strain rate) and a Split Hopkinson Pressure Bar testing system (for high strain rate). The strain rate effect of S890 steel was quantitatively investigated. The global dynamic increase factor (DIF avg ) values were tested to be 1.132 at a strain rate of 200 s −1 and 1.214 at 5292.8 s −1 , which indicates that S890 high-strength steel was less sensitive to strain rates than mild steel and other structural steels with lower strength. Based on the Johnson–Cook (J–C) model and the Cowper–Symonds (C–S) model, strain rate models for the S890 steel are presented for describing the dynamic stress–strain relationship. The C–S model has better accuracy owing to the nonlinear characteristic of the DIF avg of S890 steel.
AbstractList High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main subjects of this paper are the dynamic strain–stress relationship and the strain rate-strengthening effect of S890 high-strength steel. Experimental studies with a wide range of strain rates were conducted using a dynamic tensile testing system (for intermediate strain rate) and a Split Hopkinson Pressure Bar testing system (for high strain rate). The strain rate effect of S890 steel was quantitatively investigated. The global dynamic increase factor (DIF avg ) values were tested to be 1.132 at a strain rate of 200 s −1 and 1.214 at 5292.8 s −1 , which indicates that S890 high-strength steel was less sensitive to strain rates than mild steel and other structural steels with lower strength. Based on the Johnson–Cook (J–C) model and the Cowper–Symonds (C–S) model, strain rate models for the S890 steel are presented for describing the dynamic stress–strain relationship. The C–S model has better accuracy owing to the nonlinear characteristic of the DIF avg of S890 steel.
Author Zhang, Sumei
Zhu, Yong
Yang, Hua
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhu
  fullname: Zhu, Yong
  organization: School of Civil Engineering, Harbin Institute of Technology, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology
– sequence: 2
  givenname: Hua
  surname: Yang
  fullname: Yang, Hua
  email: yanghua@hit.edu.cn
  organization: School of Civil Engineering, Harbin Institute of Technology, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology
– sequence: 3
  givenname: Sumei
  surname: Zhang
  fullname: Zhang, Sumei
  organization: School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen)
BookMark eNp9kM9OAjEQhxuDiYC-gKe-QLXttrB7VPwDCcRE9LwZurNsydI1bSHh7S3gyQOXTtOZ75fpNyA91zkk5F7wB8H5-DEIMRppxiVnXAvNWXFF-kIrxQSXqpfuXBesUIW-IYMQNjxBUqo-2b0cHGytoQs0DThroKXP2MDedp6Cq-ikcyHauIt2j3TRVdgG2tV0mRecTu26Ycvo0a1jQ5cRsaUQ6cxF9FusLEQ8ZRznUtuDdfQzPYZbcl1DG_Durw7J99vr12TK5h_vs8nTnBlZiMhA6xGvcsiVSYfMoeJGZpkYq9XKoBYABkCbepWhNpgpY6pcwqhKSgo5VuNsSPJzrvFdCB7r0tgI0XbuuExbCl4e9ZVnfWXSV570lUVC5T_0x9st-MNlKDtDIQ27Nfpy0-28S1-8RP0C4DWFkQ
CitedBy_id crossref_primary_10_1061_JBENF2_BEENG_7175
crossref_primary_10_1016_j_jcsr_2022_107522
crossref_primary_10_3390_wevj16030123
crossref_primary_10_1016_j_jcsr_2023_107800
crossref_primary_10_1016_j_istruc_2023_05_013
crossref_primary_10_1007_s11665_024_09615_z
crossref_primary_10_1016_j_tws_2023_110960
crossref_primary_10_1007_s11665_023_08741_4
crossref_primary_10_1016_j_jcsr_2023_108174
crossref_primary_10_1016_j_conbuildmat_2024_137497
crossref_primary_10_1016_j_mtcomm_2024_109888
crossref_primary_10_56294_sctconf2023202
crossref_primary_10_1016_j_msea_2022_144173
crossref_primary_10_1080_17452759_2024_2409979
crossref_primary_10_1016_j_msea_2022_142693
crossref_primary_10_1016_j_jcsr_2024_108728
crossref_primary_10_1016_j_jcsr_2023_107855
crossref_primary_10_1016_j_tws_2023_110923
crossref_primary_10_1016_j_ijmecsci_2024_109749
crossref_primary_10_1177_09544062221124840
crossref_primary_10_1016_j_jcsr_2024_109076
crossref_primary_10_1016_j_mtcomm_2024_110958
crossref_primary_10_1016_j_jcsr_2024_108560
crossref_primary_10_1007_s11837_024_06719_8
crossref_primary_10_1016_j_tws_2022_110457
crossref_primary_10_1016_j_jcsr_2022_107350
crossref_primary_10_1016_j_jcsr_2023_107852
crossref_primary_10_1016_j_istruc_2021_07_063
crossref_primary_10_1016_j_jcsr_2022_107254
Cites_doi 10.1166/jctn.2012.2175
10.1016/j.conbuildmat.2017.07.064
10.1016/j.engstruct.2016.04.013
10.1016/j.jcsr.2018.08.009
10.1016/j.scriptamat.2012.11.013
10.1016/S0921-5093(97)00024-5
10.1016/j.firesaf.2019.102869
10.1016/j.jcsr.2020.105961
10.1179/174329306X113307
10.1061/(ASCE)EM.1943-7889.0000557
10.1007/s13296-016-0122-8
10.1016/j.conbuildmat.2018.11.285
10.1016/S0921-5093(01)01172-8
10.1007/s11665-019-04431-2
10.3184/096034010X12761931945540
10.4028/www.scientific.net/AMR.415-417.865
10.1016/j.jcsr.2017.10.005
10.1007/s10694-018-0760-9
10.1016/j.engstruct.2018.01.023
10.21236/AD0144762
10.1016/j.ijimpeng.2004.02.005
10.1016/j.ceramint.2015.06.110
10.1016/S0921-5093(01)01768-3
ContentType Journal Article
Copyright ASM International 2020
Copyright_xml – notice: ASM International 2020
DBID AAYXX
CITATION
DOI 10.1007/s11665-020-05150-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1544-1024
EndPage 6739
ExternalDocumentID 10_1007_s11665_020_05150_9
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
88I
8AF
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
9M8
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSVP
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D-I
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KC.
KDC
KOV
L6V
LLZTM
M2P
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
ULE
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W48
W4F
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-a5560d8a84c8a828ad0c233174bbce51aacaa5cfb3e5ce34ccd82a6d100927473
IEDL.DBID U2A
ISSN 1059-9495
IngestDate Thu Apr 24 23:07:50 EDT 2025
Tue Jul 01 04:21:02 EDT 2025
Fri Feb 21 02:34:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SHPB
strain rate effect
S890 high-strength steel
dynamic tensile test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a5560d8a84c8a828ad0c233174bbce51aacaa5cfb3e5ce34ccd82a6d100927473
PageCount 13
ParticipantIDs crossref_citationtrail_10_1007_s11665_020_05150_9
crossref_primary_10_1007_s11665_020_05150_9
springer_journals_10_1007_s11665_020_05150_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials engineering and performance
PublicationTitleAbbrev J. of Materi Eng and Perform
PublicationYear 2020
Publisher Springer US
Publisher_xml – name: Springer US
References EN 10025-6:2019, Hot Rolled Products of Structural Steels, Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition, European-Committee for Standardization, Brussels (2019)
JonesNStructural Impact20122CambridgeCambridge University Press
SarvaSNemat-NasserSDynamic Compressive Strength of Silicon Carbide under Uniaxial CompressionMater. Sci. Eng., A200131714014410.1016/S0921-5093(01)01172-8
AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Cracks in Base Material of High Strength SteelsJ. Constr. Steel Res.201713937438410.1016/j.jcsr.2017.10.005
AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Welded Connections Made of Very High Strength SteelsEng. Struct.2018161284010.1016/j.engstruct.2018.01.023
G.R. Cowper and P.S. Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams. Brown University Research Report, Division of Applied Mathematics (1957)
HuangLLiGWangXZhangCChoeLEngelhardtMHigh Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890Fire Technol.20185461609162810.1007/s10694-018-0760-9
CadoniEForniDMechanical Behaviour of a Very-High Strength Steel (S960QL) under Extreme Conditions of High Strain Rates and Elevated TemperaturesFire Saf. J.20191091028691:CAS:528:DC%2BC1MXhvVantbnM10.1016/j.firesaf.2019.102869
YangDSunYThermal Simulation Study of 900 MPa Grade High-Strength Low Alloy Steel in Welding ProceduresJ. Comput. Theor. Nanosci.20129122212251:CAS:528:DC%2BC38XhsVWrsL%2FF10.1166/jctn.2012.2175
ZhaoHA Constitutive Model for Metals Over a Large Range of Strain Rates Identification for Mild-Steel and Aluminium SheetsMater. Sci. Eng., A1997230959910.1016/S0921-5093(97)00024-5
ForniDChiaiaBCadoniEStrain Rate Behavior in Tension of S355 Steel: Base for Progressive Collapse AnalysisEng. Struct.201611916417310.1016/j.engstruct.2016.04.013
ISO 6892-1:2016, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, The International Organization for Standardization, 2016
SubhashGDowdingRJKecskesLJCharacterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be AlloyMater. Sci. Eng., A2002334334010.1016/S0921-5093(01)01768-3
YuWZhaoJShiJDynamic Mechanical Behaviour of Q345 Steel at Elevated Temperatures: Experimental StudyMater. High Temp.20102732852931:CAS:528:DC%2BC3MXht1Orur7L10.3184/096034010X12761931945540
G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. in Proceedings of the 7th International Symposium on Ballistics, Den Haag, The Netherlands (1983)
YangDWangXLiuZSunYStudy on SH-CCT Diagram and Weldability of S890 SteelAdv. Mater. Res.2012415-4178658681:CAS:528:DC%2BC38Xks1SmtLs%3D10.4028/www.scientific.net/AMR.415-417.865
YangXYangHLaiZZhangSDynamic Tensile Behavior of S690 High-Strength Structural Steel at Intermediate Strain RatesJ. Constr. Steel Res.202016810596110.1016/j.jcsr.2020.105961
ISO 26203-2:2011, Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and Other Test Systems. The International Organization for Standardization (2011)
AlabiAAMoorePLWrobelLCCampbellJCHeWTensile Behavior of S690QL and S960QL under High Strain RateJ. Constr. Steel Res.201815057058010.1016/j.jcsr.2018.08.009
ChenJLiJLiZExperiment Research on Rate-Dependent Constitutive Model of Q420 SteelConstr. Build. Mater.20171538168231:CAS:528:DC%2BC2sXhsV2rtr%2FL10.1016/j.conbuildmat.2017.07.064
SinghNKCadoniESinghaMKGuptaNKDynamic Tensile and Compressive Behaviors of Mild Steel at Wide Range of Strain RatesJ. Eng. Mech.201313991197120610.1061/(ASCE)EM.1943-7889.0000557
ChenJShuWLiJConstitutive Model of Q345 Steel at Different Intermediate Strain RatesInt. J. Steel Struct.201717112713710.1007/s13296-016-0122-8
ZhangYSharonJAHuGLRameshKTHemkerKJStress-Driven Grain Growth in Ultrafine Grained Mg Thin FilmScr. Mater.2013684244271:CAS:528:DC%2BC38XhvVajur%2FP10.1016/j.scriptamat.2012.11.013
YangXYangHZhangSRate-Dependent Constitutive Models of S690 High-Strength Structural SteelConstr. Build. Mater.201919859760710.1016/j.conbuildmat.2018.11.285
EnzingerNCerjakHRoosEEiseleUFracture Mechanical Investigation of Steel Grade S890 Used in Cleuson–Dixence Hydropower Plant ShaftSci. Technol. Weld. Join.20061144224281:CAS:528:DC%2BD28XhtFGit7fI10.1179/174329306X113307
RohrINahmeHThomaKMaterial Characterization and Constitutive Modelling of Ductile High Strength Steel for a Wide Range of Strain RatesInt. J. Impact Eng20053140143310.1016/j.ijimpeng.2004.02.005
YangHYangXVarmaAHZhuYStrain-Rate Effect and Constitutive Models for Q550 High-Strength Structural SteelJ. Mater. Eng. Perform.201928662666371:CAS:528:DC%2BC1MXitFanurvE10.1007/s11665-019-04431-2
WangZLiPDynamic Failure and Fracture Mechanism in Alumina Ceramics: Experimental Observations and Finite Element ModelingCeram. Int.20154112763127721:CAS:528:DC%2BC2MXhtFehtLjK10.1016/j.ceramint.2015.06.110
D Yang (5150_CR5) 2012; 415-417
A Akyel (5150_CR3) 2017; 139
5150_CR22
5150_CR21
X Yang (5150_CR16) 2019; 198
5150_CR28
5150_CR27
J Chen (5150_CR13) 2017; 17
Y Zhang (5150_CR23) 2013; 68
E Cadoni (5150_CR19) 2019; 109
Z Wang (5150_CR25) 2015; 41
D Yang (5150_CR6) 2012; 9
NK Singh (5150_CR9) 2013; 139
L Huang (5150_CR7) 2018; 54
X Yang (5150_CR17) 2020; 168
D Forni (5150_CR12) 2016; 119
I Rohr (5150_CR20) 2005; 31
J Chen (5150_CR14) 2017; 153
A Akyel (5150_CR4) 2018; 161
5150_CR1
W Yu (5150_CR11) 2010; 27
H Zhao (5150_CR8) 1997; 230
H Yang (5150_CR15) 2019; 28
G Subhash (5150_CR24) 2002; 334
S Sarva (5150_CR26) 2001; 317
AA Alabi (5150_CR18) 2018; 150
N Enzinger (5150_CR2) 2006; 11
N Jones (5150_CR10) 2012
References_xml – reference: EN 10025-6:2019, Hot Rolled Products of Structural Steels, Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition, European-Committee for Standardization, Brussels (2019)
– reference: HuangLLiGWangXZhangCChoeLEngelhardtMHigh Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890Fire Technol.20185461609162810.1007/s10694-018-0760-9
– reference: YangXYangHZhangSRate-Dependent Constitutive Models of S690 High-Strength Structural SteelConstr. Build. Mater.201919859760710.1016/j.conbuildmat.2018.11.285
– reference: SarvaSNemat-NasserSDynamic Compressive Strength of Silicon Carbide under Uniaxial CompressionMater. Sci. Eng., A200131714014410.1016/S0921-5093(01)01172-8
– reference: ZhaoHA Constitutive Model for Metals Over a Large Range of Strain Rates Identification for Mild-Steel and Aluminium SheetsMater. Sci. Eng., A1997230959910.1016/S0921-5093(97)00024-5
– reference: ISO 26203-2:2011, Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and Other Test Systems. The International Organization for Standardization (2011)
– reference: SubhashGDowdingRJKecskesLJCharacterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be AlloyMater. Sci. Eng., A2002334334010.1016/S0921-5093(01)01768-3
– reference: SinghNKCadoniESinghaMKGuptaNKDynamic Tensile and Compressive Behaviors of Mild Steel at Wide Range of Strain RatesJ. Eng. Mech.201313991197120610.1061/(ASCE)EM.1943-7889.0000557
– reference: ChenJLiJLiZExperiment Research on Rate-Dependent Constitutive Model of Q420 SteelConstr. Build. Mater.20171538168231:CAS:528:DC%2BC2sXhsV2rtr%2FL10.1016/j.conbuildmat.2017.07.064
– reference: AlabiAAMoorePLWrobelLCCampbellJCHeWTensile Behavior of S690QL and S960QL under High Strain RateJ. Constr. Steel Res.201815057058010.1016/j.jcsr.2018.08.009
– reference: AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Welded Connections Made of Very High Strength SteelsEng. Struct.2018161284010.1016/j.engstruct.2018.01.023
– reference: ZhangYSharonJAHuGLRameshKTHemkerKJStress-Driven Grain Growth in Ultrafine Grained Mg Thin FilmScr. Mater.2013684244271:CAS:528:DC%2BC38XhvVajur%2FP10.1016/j.scriptamat.2012.11.013
– reference: YangHYangXVarmaAHZhuYStrain-Rate Effect and Constitutive Models for Q550 High-Strength Structural SteelJ. Mater. Eng. Perform.201928662666371:CAS:528:DC%2BC1MXitFanurvE10.1007/s11665-019-04431-2
– reference: ISO 6892-1:2016, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, The International Organization for Standardization, 2016
– reference: RohrINahmeHThomaKMaterial Characterization and Constitutive Modelling of Ductile High Strength Steel for a Wide Range of Strain RatesInt. J. Impact Eng20053140143310.1016/j.ijimpeng.2004.02.005
– reference: EnzingerNCerjakHRoosEEiseleUFracture Mechanical Investigation of Steel Grade S890 Used in Cleuson–Dixence Hydropower Plant ShaftSci. Technol. Weld. Join.20061144224281:CAS:528:DC%2BD28XhtFGit7fI10.1179/174329306X113307
– reference: YuWZhaoJShiJDynamic Mechanical Behaviour of Q345 Steel at Elevated Temperatures: Experimental StudyMater. High Temp.20102732852931:CAS:528:DC%2BC3MXht1Orur7L10.3184/096034010X12761931945540
– reference: ForniDChiaiaBCadoniEStrain Rate Behavior in Tension of S355 Steel: Base for Progressive Collapse AnalysisEng. Struct.201611916417310.1016/j.engstruct.2016.04.013
– reference: CadoniEForniDMechanical Behaviour of a Very-High Strength Steel (S960QL) under Extreme Conditions of High Strain Rates and Elevated TemperaturesFire Saf. J.20191091028691:CAS:528:DC%2BC1MXhvVantbnM10.1016/j.firesaf.2019.102869
– reference: G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. in Proceedings of the 7th International Symposium on Ballistics, Den Haag, The Netherlands (1983)
– reference: ChenJShuWLiJConstitutive Model of Q345 Steel at Different Intermediate Strain RatesInt. J. Steel Struct.201717112713710.1007/s13296-016-0122-8
– reference: YangDWangXLiuZSunYStudy on SH-CCT Diagram and Weldability of S890 SteelAdv. Mater. Res.2012415-4178658681:CAS:528:DC%2BC38Xks1SmtLs%3D10.4028/www.scientific.net/AMR.415-417.865
– reference: WangZLiPDynamic Failure and Fracture Mechanism in Alumina Ceramics: Experimental Observations and Finite Element ModelingCeram. Int.20154112763127721:CAS:528:DC%2BC2MXhtFehtLjK10.1016/j.ceramint.2015.06.110
– reference: AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Cracks in Base Material of High Strength SteelsJ. Constr. Steel Res.201713937438410.1016/j.jcsr.2017.10.005
– reference: G.R. Cowper and P.S. Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams. Brown University Research Report, Division of Applied Mathematics (1957)
– reference: YangDSunYThermal Simulation Study of 900 MPa Grade High-Strength Low Alloy Steel in Welding ProceduresJ. Comput. Theor. Nanosci.20129122212251:CAS:528:DC%2BC38XhsVWrsL%2FF10.1166/jctn.2012.2175
– reference: YangXYangHLaiZZhangSDynamic Tensile Behavior of S690 High-Strength Structural Steel at Intermediate Strain RatesJ. Constr. Steel Res.202016810596110.1016/j.jcsr.2020.105961
– reference: JonesNStructural Impact20122CambridgeCambridge University Press
– volume: 9
  start-page: 1222
  year: 2012
  ident: 5150_CR6
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2012.2175
– volume: 153
  start-page: 816
  year: 2017
  ident: 5150_CR14
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.07.064
– volume: 119
  start-page: 164
  year: 2016
  ident: 5150_CR12
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.04.013
– volume: 150
  start-page: 570
  year: 2018
  ident: 5150_CR18
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2018.08.009
– volume: 68
  start-page: 424
  year: 2013
  ident: 5150_CR23
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.11.013
– ident: 5150_CR27
– ident: 5150_CR21
– volume: 230
  start-page: 95
  year: 1997
  ident: 5150_CR8
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(97)00024-5
– volume: 109
  start-page: 102869
  year: 2019
  ident: 5150_CR19
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.102869
– volume: 168
  start-page: 105961
  year: 2020
  ident: 5150_CR17
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2020.105961
– volume: 11
  start-page: 422
  issue: 4
  year: 2006
  ident: 5150_CR2
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329306X113307
– volume: 139
  start-page: 1197
  issue: 9
  year: 2013
  ident: 5150_CR9
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000557
– volume: 17
  start-page: 127
  issue: 1
  year: 2017
  ident: 5150_CR13
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-016-0122-8
– volume: 198
  start-page: 597
  year: 2019
  ident: 5150_CR16
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.11.285
– volume: 317
  start-page: 140
  year: 2001
  ident: 5150_CR26
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(01)01172-8
– volume: 28
  start-page: 6626
  year: 2019
  ident: 5150_CR15
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-019-04431-2
– volume: 27
  start-page: 285
  issue: 3
  year: 2010
  ident: 5150_CR11
  publication-title: Mater. High Temp.
  doi: 10.3184/096034010X12761931945540
– ident: 5150_CR1
– volume: 415-417
  start-page: 865
  year: 2012
  ident: 5150_CR5
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.415-417.865
– volume: 139
  start-page: 374
  year: 2017
  ident: 5150_CR3
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2017.10.005
– ident: 5150_CR22
– volume: 54
  start-page: 1609
  issue: 6
  year: 2018
  ident: 5150_CR7
  publication-title: Fire Technol.
  doi: 10.1007/s10694-018-0760-9
– volume: 161
  start-page: 28
  year: 2018
  ident: 5150_CR4
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.01.023
– ident: 5150_CR28
  doi: 10.21236/AD0144762
– volume: 31
  start-page: 401
  year: 2005
  ident: 5150_CR20
  publication-title: Int. J. Impact Eng
  doi: 10.1016/j.ijimpeng.2004.02.005
– volume-title: Structural Impact
  year: 2012
  ident: 5150_CR10
– volume: 41
  start-page: 12763
  year: 2015
  ident: 5150_CR25
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.06.110
– volume: 334
  start-page: 33
  year: 2002
  ident: 5150_CR24
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(01)01768-3
SSID ssj0007224
Score 2.3983254
Snippet High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 6727
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Engineering Design
Materials Science
Quality Control
Reliability
Safety and Risk
Tribology
Title Dynamic Mechanical Behavior and Constitutive Models of S890 High-Strength Steel at Intermediate and High Strain Rates
URI https://link.springer.com/article/10.1007/s11665-020-05150-9
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ULnowfkb8ID140yZb1431CAoSDRxEEjwtr12nBzIMjP_fvm6AJIbEy5Ysb83y-tb3a9_Hj5A7ZZ9a1KCZ4EowYTzDlPUjLIv9zAStNALHWjIYRv2xeJmEk6oobLHKdl-FJN1KvSl286MIq4kxeGthDJP7pB7i3t1a8Zi31-tvi5dUthY4MGnxf1Uq8_cY2-5oOxbqXEzvmBxV2JC2y8k8IXsmPyWHvzoGnpHlU8kgTwcGS3ZRw7RqcTinkKcUCThd9N-uYhSJzqYLOsvoKJYexZwOhmHo_LP4oqPCmCmFgrpDQVdBUhg3BsrRkSOPoG-IRc_JuNd9f-yzijmBaS79gkFogUwaQyy0vfAYUk_zwEIFoZQ2oQ-gAUKdqcCE2gRC6zTmEKU-tmCyG4zggtTyWW4uMfUJsqwlJfjGE6A8CFLrz3SmcScEMmoQf6XARFdtxfEDp8mmITIqPbFKT5zSE9kg9-t3vsumGjulH1bzklQ_2GKH-NX_xK_JAUd7cPl5N6RWzJfm1uKMQjVJvd3rdIZ4f_547Tadmf0AnQrLyA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BTl0wMbWEocJ43HCqgKtB1oK3WLzo4DQ5WiNv3_-JyEUglVYskQXazo7Piec_fuEXKn7F2LGjQTXAkmjGeYsnGEZbGfmaCVRuBUS_qDqDsWr5NwUpHCFnW1e52SdDv1iuzmRxGyiTF5a2EMk9tkx4KBGAu5xrz9s_-2eClla4EDkxb_V1SZv8dYD0fruVAXYjqH5KDChrRdTuYR2TL5Mdn_1THwhCyfSgV52jdI2UUP06rF4ZxCnlIU4HTZf7uLURQ6my7oLKPDWHoUazoYpqHzj-KTDgtjphQK6n4KOgZJYdwYaEeHTjyCviMWPSXjzvPoscsq5QSmufQLBqEFMmkMsdD2wmNIPc0DCxWEUtqEPoAGCHWmAhNqEwit05hDlPrYgskeMIIz0shnuTnH0ifIspaU4BtPgPIgSG0805nGkxDIqEn82oGJrtqK4wtOk1VDZHR6Yp2eOKcnsknuf575KptqbLR-qOclqT6wxQbzi_-Z35Ld7qjfS3ovg7dLssdxbbhavSvSKOZLc20xR6Fu3BL7Bpfxy6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFWU1QduYJE4ThofK0pVllaIUqm3aOI4cKgCat3_x-Okm4QqcckhmljR2PE8Z-a9IeQmtXctalBM8FQwoT3NUhtHWB77uQ4aWQSua0m3F3UG4nkYDpdY_K7afZaSLDkNqNJUmPufLL9fEN_8KEJmMSZyLaRhcpNs2e3Yx3U94M35XtzgZVtbCyKYtGeBijbz9xiroWk1L-rCTXuf7FU4kTbLiT0gG7o4JLtL6oFHZNoqu8nTrkb6LnqbVnKHYwpFRrEZp6sEsDsaxaZnown9zmk_lh7F-g6GKeni03zRvtF6RMFQ94PQsUmMdmOgHe27RhL0HXHpMRm0Hz8eOqzqosAUl75hEFpQk8UQC2UvPIbMUzywsEGkqdKhD6AAQpWngQ6VDoRSWcwhynyUY7KHjeCE1IrvQp9iGRTkeUNK8LUnIPUgyGxsU7nCUxHIqE78mQMTVUmM4wuOkoU4Mjo9sU5PnNMTWSe382d-SoGNtdZ3s3lJqo9tssb87H_m12T7rdVOXp96L-dkh-PScGV7F6RmxlN9aeGHSa_cCvsFo0fP5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Mechanical+Behavior+and+Constitutive+Models+of+S890+High-Strength+Steel+at+Intermediate+and+High+Strain+Rates&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Zhu%2C+Yong&rft.au=Yang%2C+Hua&rft.au=Zhang%2C+Sumei&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=29&rft.issue=10&rft.spage=6727&rft.epage=6739&rft_id=info:doi/10.1007%2Fs11665-020-05150-9&rft.externalDocID=10_1007_s11665_020_05150_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon