Dynamic Mechanical Behavior and Constitutive Models of S890 High-Strength Steel at Intermediate and High Strain Rates
High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main...
Saved in:
Published in | Journal of materials engineering and performance Vol. 29; no. 10; pp. 6727 - 6739 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-9495 1544-1024 |
DOI | 10.1007/s11665-020-05150-9 |
Cover
Loading…
Abstract | High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main subjects of this paper are the dynamic strain–stress relationship and the strain rate-strengthening effect of S890 high-strength steel. Experimental studies with a wide range of strain rates were conducted using a dynamic tensile testing system (for intermediate strain rate) and a Split Hopkinson Pressure Bar testing system (for high strain rate). The strain rate effect of S890 steel was quantitatively investigated. The global dynamic increase factor (DIF
avg
) values were tested to be 1.132 at a strain rate of 200 s
−1
and 1.214 at 5292.8 s
−1
, which indicates that S890 high-strength steel was less sensitive to strain rates than mild steel and other structural steels with lower strength. Based on the Johnson–Cook (J–C) model and the Cowper–Symonds (C–S) model, strain rate models for the S890 steel are presented for describing the dynamic stress–strain relationship. The C–S model has better accuracy owing to the nonlinear characteristic of the DIF
avg
of S890 steel. |
---|---|
AbstractList | High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe working environments for high-strength steel require the designer to take the dynamic mechanical properties into consideration. Thus, the main subjects of this paper are the dynamic strain–stress relationship and the strain rate-strengthening effect of S890 high-strength steel. Experimental studies with a wide range of strain rates were conducted using a dynamic tensile testing system (for intermediate strain rate) and a Split Hopkinson Pressure Bar testing system (for high strain rate). The strain rate effect of S890 steel was quantitatively investigated. The global dynamic increase factor (DIF
avg
) values were tested to be 1.132 at a strain rate of 200 s
−1
and 1.214 at 5292.8 s
−1
, which indicates that S890 high-strength steel was less sensitive to strain rates than mild steel and other structural steels with lower strength. Based on the Johnson–Cook (J–C) model and the Cowper–Symonds (C–S) model, strain rate models for the S890 steel are presented for describing the dynamic stress–strain relationship. The C–S model has better accuracy owing to the nonlinear characteristic of the DIF
avg
of S890 steel. |
Author | Zhang, Sumei Zhu, Yong Yang, Hua |
Author_xml | – sequence: 1 givenname: Yong surname: Zhu fullname: Zhu, Yong organization: School of Civil Engineering, Harbin Institute of Technology, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology – sequence: 2 givenname: Hua surname: Yang fullname: Yang, Hua email: yanghua@hit.edu.cn organization: School of Civil Engineering, Harbin Institute of Technology, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology – sequence: 3 givenname: Sumei surname: Zhang fullname: Zhang, Sumei organization: School of Civil and Environment Engineering, Harbin Institute of Technology (Shenzhen) |
BookMark | eNp9kM9OAjEQhxuDiYC-gKe-QLXttrB7VPwDCcRE9LwZurNsydI1bSHh7S3gyQOXTtOZ75fpNyA91zkk5F7wB8H5-DEIMRppxiVnXAvNWXFF-kIrxQSXqpfuXBesUIW-IYMQNjxBUqo-2b0cHGytoQs0DThroKXP2MDedp6Cq-ikcyHauIt2j3TRVdgG2tV0mRecTu26Ycvo0a1jQ5cRsaUQ6cxF9FusLEQ8ZRznUtuDdfQzPYZbcl1DG_Durw7J99vr12TK5h_vs8nTnBlZiMhA6xGvcsiVSYfMoeJGZpkYq9XKoBYABkCbepWhNpgpY6pcwqhKSgo5VuNsSPJzrvFdCB7r0tgI0XbuuExbCl4e9ZVnfWXSV570lUVC5T_0x9st-MNlKDtDIQ27Nfpy0-28S1-8RP0C4DWFkQ |
CitedBy_id | crossref_primary_10_1061_JBENF2_BEENG_7175 crossref_primary_10_1016_j_jcsr_2022_107522 crossref_primary_10_3390_wevj16030123 crossref_primary_10_1016_j_jcsr_2023_107800 crossref_primary_10_1016_j_istruc_2023_05_013 crossref_primary_10_1007_s11665_024_09615_z crossref_primary_10_1016_j_tws_2023_110960 crossref_primary_10_1007_s11665_023_08741_4 crossref_primary_10_1016_j_jcsr_2023_108174 crossref_primary_10_1016_j_conbuildmat_2024_137497 crossref_primary_10_1016_j_mtcomm_2024_109888 crossref_primary_10_56294_sctconf2023202 crossref_primary_10_1016_j_msea_2022_144173 crossref_primary_10_1080_17452759_2024_2409979 crossref_primary_10_1016_j_msea_2022_142693 crossref_primary_10_1016_j_jcsr_2024_108728 crossref_primary_10_1016_j_jcsr_2023_107855 crossref_primary_10_1016_j_tws_2023_110923 crossref_primary_10_1016_j_ijmecsci_2024_109749 crossref_primary_10_1177_09544062221124840 crossref_primary_10_1016_j_jcsr_2024_109076 crossref_primary_10_1016_j_mtcomm_2024_110958 crossref_primary_10_1016_j_jcsr_2024_108560 crossref_primary_10_1007_s11837_024_06719_8 crossref_primary_10_1016_j_tws_2022_110457 crossref_primary_10_1016_j_jcsr_2022_107350 crossref_primary_10_1016_j_jcsr_2023_107852 crossref_primary_10_1016_j_istruc_2021_07_063 crossref_primary_10_1016_j_jcsr_2022_107254 |
Cites_doi | 10.1166/jctn.2012.2175 10.1016/j.conbuildmat.2017.07.064 10.1016/j.engstruct.2016.04.013 10.1016/j.jcsr.2018.08.009 10.1016/j.scriptamat.2012.11.013 10.1016/S0921-5093(97)00024-5 10.1016/j.firesaf.2019.102869 10.1016/j.jcsr.2020.105961 10.1179/174329306X113307 10.1061/(ASCE)EM.1943-7889.0000557 10.1007/s13296-016-0122-8 10.1016/j.conbuildmat.2018.11.285 10.1016/S0921-5093(01)01172-8 10.1007/s11665-019-04431-2 10.3184/096034010X12761931945540 10.4028/www.scientific.net/AMR.415-417.865 10.1016/j.jcsr.2017.10.005 10.1007/s10694-018-0760-9 10.1016/j.engstruct.2018.01.023 10.21236/AD0144762 10.1016/j.ijimpeng.2004.02.005 10.1016/j.ceramint.2015.06.110 10.1016/S0921-5093(01)01768-3 |
ContentType | Journal Article |
Copyright | ASM International 2020 |
Copyright_xml | – notice: ASM International 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11665-020-05150-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1544-1024 |
EndPage | 6739 |
ExternalDocumentID | 10_1007_s11665_020_05150_9 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 88I 8AF 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X 9M8 A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSVP ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP CZ9 D-I D1I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KDC KOV L6V LLZTM M2P M4Y M7S MA- MK~ N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 ULE UOJIU UTJUX UZXMN VC2 VFIZW VXZ W48 W4F WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-a5560d8a84c8a828ad0c233174bbce51aacaa5cfb3e5ce34ccd82a6d100927473 |
IEDL.DBID | U2A |
ISSN | 1059-9495 |
IngestDate | Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 04:21:02 EDT 2025 Fri Feb 21 02:34:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | SHPB strain rate effect S890 high-strength steel dynamic tensile test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a5560d8a84c8a828ad0c233174bbce51aacaa5cfb3e5ce34ccd82a6d100927473 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1007_s11665_020_05150_9 crossref_primary_10_1007_s11665_020_05150_9 springer_journals_10_1007_s11665_020_05150_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials engineering and performance |
PublicationTitleAbbrev | J. of Materi Eng and Perform |
PublicationYear | 2020 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | EN 10025-6:2019, Hot Rolled Products of Structural Steels, Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition, European-Committee for Standardization, Brussels (2019) JonesNStructural Impact20122CambridgeCambridge University Press SarvaSNemat-NasserSDynamic Compressive Strength of Silicon Carbide under Uniaxial CompressionMater. Sci. Eng., A200131714014410.1016/S0921-5093(01)01172-8 AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Cracks in Base Material of High Strength SteelsJ. Constr. Steel Res.201713937438410.1016/j.jcsr.2017.10.005 AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Welded Connections Made of Very High Strength SteelsEng. Struct.2018161284010.1016/j.engstruct.2018.01.023 G.R. Cowper and P.S. Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams. Brown University Research Report, Division of Applied Mathematics (1957) HuangLLiGWangXZhangCChoeLEngelhardtMHigh Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890Fire Technol.20185461609162810.1007/s10694-018-0760-9 CadoniEForniDMechanical Behaviour of a Very-High Strength Steel (S960QL) under Extreme Conditions of High Strain Rates and Elevated TemperaturesFire Saf. J.20191091028691:CAS:528:DC%2BC1MXhvVantbnM10.1016/j.firesaf.2019.102869 YangDSunYThermal Simulation Study of 900 MPa Grade High-Strength Low Alloy Steel in Welding ProceduresJ. Comput. Theor. Nanosci.20129122212251:CAS:528:DC%2BC38XhsVWrsL%2FF10.1166/jctn.2012.2175 ZhaoHA Constitutive Model for Metals Over a Large Range of Strain Rates Identification for Mild-Steel and Aluminium SheetsMater. Sci. Eng., A1997230959910.1016/S0921-5093(97)00024-5 ForniDChiaiaBCadoniEStrain Rate Behavior in Tension of S355 Steel: Base for Progressive Collapse AnalysisEng. Struct.201611916417310.1016/j.engstruct.2016.04.013 ISO 6892-1:2016, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, The International Organization for Standardization, 2016 SubhashGDowdingRJKecskesLJCharacterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be AlloyMater. Sci. Eng., A2002334334010.1016/S0921-5093(01)01768-3 YuWZhaoJShiJDynamic Mechanical Behaviour of Q345 Steel at Elevated Temperatures: Experimental StudyMater. High Temp.20102732852931:CAS:528:DC%2BC3MXht1Orur7L10.3184/096034010X12761931945540 G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. in Proceedings of the 7th International Symposium on Ballistics, Den Haag, The Netherlands (1983) YangDWangXLiuZSunYStudy on SH-CCT Diagram and Weldability of S890 SteelAdv. Mater. Res.2012415-4178658681:CAS:528:DC%2BC38Xks1SmtLs%3D10.4028/www.scientific.net/AMR.415-417.865 YangXYangHLaiZZhangSDynamic Tensile Behavior of S690 High-Strength Structural Steel at Intermediate Strain RatesJ. Constr. Steel Res.202016810596110.1016/j.jcsr.2020.105961 ISO 26203-2:2011, Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and Other Test Systems. The International Organization for Standardization (2011) AlabiAAMoorePLWrobelLCCampbellJCHeWTensile Behavior of S690QL and S960QL under High Strain RateJ. Constr. Steel Res.201815057058010.1016/j.jcsr.2018.08.009 ChenJLiJLiZExperiment Research on Rate-Dependent Constitutive Model of Q420 SteelConstr. Build. Mater.20171538168231:CAS:528:DC%2BC2sXhsV2rtr%2FL10.1016/j.conbuildmat.2017.07.064 SinghNKCadoniESinghaMKGuptaNKDynamic Tensile and Compressive Behaviors of Mild Steel at Wide Range of Strain RatesJ. Eng. Mech.201313991197120610.1061/(ASCE)EM.1943-7889.0000557 ChenJShuWLiJConstitutive Model of Q345 Steel at Different Intermediate Strain RatesInt. J. Steel Struct.201717112713710.1007/s13296-016-0122-8 ZhangYSharonJAHuGLRameshKTHemkerKJStress-Driven Grain Growth in Ultrafine Grained Mg Thin FilmScr. Mater.2013684244271:CAS:528:DC%2BC38XhvVajur%2FP10.1016/j.scriptamat.2012.11.013 YangXYangHZhangSRate-Dependent Constitutive Models of S690 High-Strength Structural SteelConstr. Build. Mater.201919859760710.1016/j.conbuildmat.2018.11.285 EnzingerNCerjakHRoosEEiseleUFracture Mechanical Investigation of Steel Grade S890 Used in Cleuson–Dixence Hydropower Plant ShaftSci. Technol. Weld. Join.20061144224281:CAS:528:DC%2BD28XhtFGit7fI10.1179/174329306X113307 RohrINahmeHThomaKMaterial Characterization and Constitutive Modelling of Ductile High Strength Steel for a Wide Range of Strain RatesInt. J. Impact Eng20053140143310.1016/j.ijimpeng.2004.02.005 YangHYangXVarmaAHZhuYStrain-Rate Effect and Constitutive Models for Q550 High-Strength Structural SteelJ. Mater. Eng. Perform.201928662666371:CAS:528:DC%2BC1MXitFanurvE10.1007/s11665-019-04431-2 WangZLiPDynamic Failure and Fracture Mechanism in Alumina Ceramics: Experimental Observations and Finite Element ModelingCeram. Int.20154112763127721:CAS:528:DC%2BC2MXhtFehtLjK10.1016/j.ceramint.2015.06.110 D Yang (5150_CR5) 2012; 415-417 A Akyel (5150_CR3) 2017; 139 5150_CR22 5150_CR21 X Yang (5150_CR16) 2019; 198 5150_CR28 5150_CR27 J Chen (5150_CR13) 2017; 17 Y Zhang (5150_CR23) 2013; 68 E Cadoni (5150_CR19) 2019; 109 Z Wang (5150_CR25) 2015; 41 D Yang (5150_CR6) 2012; 9 NK Singh (5150_CR9) 2013; 139 L Huang (5150_CR7) 2018; 54 X Yang (5150_CR17) 2020; 168 D Forni (5150_CR12) 2016; 119 I Rohr (5150_CR20) 2005; 31 J Chen (5150_CR14) 2017; 153 A Akyel (5150_CR4) 2018; 161 5150_CR1 W Yu (5150_CR11) 2010; 27 H Zhao (5150_CR8) 1997; 230 H Yang (5150_CR15) 2019; 28 G Subhash (5150_CR24) 2002; 334 S Sarva (5150_CR26) 2001; 317 AA Alabi (5150_CR18) 2018; 150 N Enzinger (5150_CR2) 2006; 11 N Jones (5150_CR10) 2012 |
References_xml | – reference: EN 10025-6:2019, Hot Rolled Products of Structural Steels, Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition, European-Committee for Standardization, Brussels (2019) – reference: HuangLLiGWangXZhangCChoeLEngelhardtMHigh Temperature Mechanical Properties of High Strength Structural Steels Q550, Q690 and Q890Fire Technol.20185461609162810.1007/s10694-018-0760-9 – reference: YangXYangHZhangSRate-Dependent Constitutive Models of S690 High-Strength Structural SteelConstr. Build. Mater.201919859760710.1016/j.conbuildmat.2018.11.285 – reference: SarvaSNemat-NasserSDynamic Compressive Strength of Silicon Carbide under Uniaxial CompressionMater. Sci. Eng., A200131714014410.1016/S0921-5093(01)01172-8 – reference: ZhaoHA Constitutive Model for Metals Over a Large Range of Strain Rates Identification for Mild-Steel and Aluminium SheetsMater. Sci. Eng., A1997230959910.1016/S0921-5093(97)00024-5 – reference: ISO 26203-2:2011, Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-hydraulic and Other Test Systems. The International Organization for Standardization (2011) – reference: SubhashGDowdingRJKecskesLJCharacterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be AlloyMater. Sci. Eng., A2002334334010.1016/S0921-5093(01)01768-3 – reference: SinghNKCadoniESinghaMKGuptaNKDynamic Tensile and Compressive Behaviors of Mild Steel at Wide Range of Strain RatesJ. Eng. Mech.201313991197120610.1061/(ASCE)EM.1943-7889.0000557 – reference: ChenJLiJLiZExperiment Research on Rate-Dependent Constitutive Model of Q420 SteelConstr. Build. Mater.20171538168231:CAS:528:DC%2BC2sXhsV2rtr%2FL10.1016/j.conbuildmat.2017.07.064 – reference: AlabiAAMoorePLWrobelLCCampbellJCHeWTensile Behavior of S690QL and S960QL under High Strain RateJ. Constr. Steel Res.201815057058010.1016/j.jcsr.2018.08.009 – reference: AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Welded Connections Made of Very High Strength SteelsEng. Struct.2018161284010.1016/j.engstruct.2018.01.023 – reference: ZhangYSharonJAHuGLRameshKTHemkerKJStress-Driven Grain Growth in Ultrafine Grained Mg Thin FilmScr. Mater.2013684244271:CAS:528:DC%2BC38XhvVajur%2FP10.1016/j.scriptamat.2012.11.013 – reference: YangHYangXVarmaAHZhuYStrain-Rate Effect and Constitutive Models for Q550 High-Strength Structural SteelJ. Mater. Eng. Perform.201928662666371:CAS:528:DC%2BC1MXitFanurvE10.1007/s11665-019-04431-2 – reference: ISO 6892-1:2016, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, The International Organization for Standardization, 2016 – reference: RohrINahmeHThomaKMaterial Characterization and Constitutive Modelling of Ductile High Strength Steel for a Wide Range of Strain RatesInt. J. Impact Eng20053140143310.1016/j.ijimpeng.2004.02.005 – reference: EnzingerNCerjakHRoosEEiseleUFracture Mechanical Investigation of Steel Grade S890 Used in Cleuson–Dixence Hydropower Plant ShaftSci. Technol. Weld. Join.20061144224281:CAS:528:DC%2BD28XhtFGit7fI10.1179/174329306X113307 – reference: YuWZhaoJShiJDynamic Mechanical Behaviour of Q345 Steel at Elevated Temperatures: Experimental StudyMater. High Temp.20102732852931:CAS:528:DC%2BC3MXht1Orur7L10.3184/096034010X12761931945540 – reference: ForniDChiaiaBCadoniEStrain Rate Behavior in Tension of S355 Steel: Base for Progressive Collapse AnalysisEng. Struct.201611916417310.1016/j.engstruct.2016.04.013 – reference: CadoniEForniDMechanical Behaviour of a Very-High Strength Steel (S960QL) under Extreme Conditions of High Strain Rates and Elevated TemperaturesFire Saf. J.20191091028691:CAS:528:DC%2BC1MXhvVantbnM10.1016/j.firesaf.2019.102869 – reference: G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. in Proceedings of the 7th International Symposium on Ballistics, Den Haag, The Netherlands (1983) – reference: ChenJShuWLiJConstitutive Model of Q345 Steel at Different Intermediate Strain RatesInt. J. Steel Struct.201717112713710.1007/s13296-016-0122-8 – reference: YangDWangXLiuZSunYStudy on SH-CCT Diagram and Weldability of S890 SteelAdv. Mater. Res.2012415-4178658681:CAS:528:DC%2BC38Xks1SmtLs%3D10.4028/www.scientific.net/AMR.415-417.865 – reference: WangZLiPDynamic Failure and Fracture Mechanism in Alumina Ceramics: Experimental Observations and Finite Element ModelingCeram. Int.20154112763127721:CAS:528:DC%2BC2MXhtFehtLjK10.1016/j.ceramint.2015.06.110 – reference: AkyelAKolsteinMHBijlaardFSKFatigue Strength of Repaired Cracks in Base Material of High Strength SteelsJ. Constr. Steel Res.201713937438410.1016/j.jcsr.2017.10.005 – reference: G.R. Cowper and P.S. Symonds, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams. Brown University Research Report, Division of Applied Mathematics (1957) – reference: YangDSunYThermal Simulation Study of 900 MPa Grade High-Strength Low Alloy Steel in Welding ProceduresJ. Comput. Theor. Nanosci.20129122212251:CAS:528:DC%2BC38XhsVWrsL%2FF10.1166/jctn.2012.2175 – reference: YangXYangHLaiZZhangSDynamic Tensile Behavior of S690 High-Strength Structural Steel at Intermediate Strain RatesJ. Constr. Steel Res.202016810596110.1016/j.jcsr.2020.105961 – reference: JonesNStructural Impact20122CambridgeCambridge University Press – volume: 9 start-page: 1222 year: 2012 ident: 5150_CR6 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2012.2175 – volume: 153 start-page: 816 year: 2017 ident: 5150_CR14 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.07.064 – volume: 119 start-page: 164 year: 2016 ident: 5150_CR12 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.04.013 – volume: 150 start-page: 570 year: 2018 ident: 5150_CR18 publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2018.08.009 – volume: 68 start-page: 424 year: 2013 ident: 5150_CR23 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.11.013 – ident: 5150_CR27 – ident: 5150_CR21 – volume: 230 start-page: 95 year: 1997 ident: 5150_CR8 publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(97)00024-5 – volume: 109 start-page: 102869 year: 2019 ident: 5150_CR19 publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.102869 – volume: 168 start-page: 105961 year: 2020 ident: 5150_CR17 publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2020.105961 – volume: 11 start-page: 422 issue: 4 year: 2006 ident: 5150_CR2 publication-title: Sci. Technol. Weld. Join. doi: 10.1179/174329306X113307 – volume: 139 start-page: 1197 issue: 9 year: 2013 ident: 5150_CR9 publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000557 – volume: 17 start-page: 127 issue: 1 year: 2017 ident: 5150_CR13 publication-title: Int. J. Steel Struct. doi: 10.1007/s13296-016-0122-8 – volume: 198 start-page: 597 year: 2019 ident: 5150_CR16 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.11.285 – volume: 317 start-page: 140 year: 2001 ident: 5150_CR26 publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(01)01172-8 – volume: 28 start-page: 6626 year: 2019 ident: 5150_CR15 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-019-04431-2 – volume: 27 start-page: 285 issue: 3 year: 2010 ident: 5150_CR11 publication-title: Mater. High Temp. doi: 10.3184/096034010X12761931945540 – ident: 5150_CR1 – volume: 415-417 start-page: 865 year: 2012 ident: 5150_CR5 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.415-417.865 – volume: 139 start-page: 374 year: 2017 ident: 5150_CR3 publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2017.10.005 – ident: 5150_CR22 – volume: 54 start-page: 1609 issue: 6 year: 2018 ident: 5150_CR7 publication-title: Fire Technol. doi: 10.1007/s10694-018-0760-9 – volume: 161 start-page: 28 year: 2018 ident: 5150_CR4 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.01.023 – ident: 5150_CR28 doi: 10.21236/AD0144762 – volume: 31 start-page: 401 year: 2005 ident: 5150_CR20 publication-title: Int. J. Impact Eng doi: 10.1016/j.ijimpeng.2004.02.005 – volume-title: Structural Impact year: 2012 ident: 5150_CR10 – volume: 41 start-page: 12763 year: 2015 ident: 5150_CR25 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.06.110 – volume: 334 start-page: 33 year: 2002 ident: 5150_CR24 publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(01)01768-3 |
SSID | ssj0007224 |
Score | 2.3983254 |
Snippet | High-strength steel is an effective choice to satisfy the demands of advanced manufacturing engineering and construction engineering. The complex and severe... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6727 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Engineering Design Materials Science Quality Control Reliability Safety and Risk Tribology |
Title | Dynamic Mechanical Behavior and Constitutive Models of S890 High-Strength Steel at Intermediate and High Strain Rates |
URI | https://link.springer.com/article/10.1007/s11665-020-05150-9 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ULnowfkb8ID140yZb1431CAoSDRxEEjwtr12nBzIMjP_fvm6AJIbEy5Ysb83y-tb3a9_Hj5A7ZZ9a1KCZ4EowYTzDlPUjLIv9zAStNALHWjIYRv2xeJmEk6oobLHKdl-FJN1KvSl286MIq4kxeGthDJP7pB7i3t1a8Zi31-tvi5dUthY4MGnxf1Uq8_cY2-5oOxbqXEzvmBxV2JC2y8k8IXsmPyWHvzoGnpHlU8kgTwcGS3ZRw7RqcTinkKcUCThd9N-uYhSJzqYLOsvoKJYexZwOhmHo_LP4oqPCmCmFgrpDQVdBUhg3BsrRkSOPoG-IRc_JuNd9f-yzijmBaS79gkFogUwaQyy0vfAYUk_zwEIFoZQ2oQ-gAUKdqcCE2gRC6zTmEKU-tmCyG4zggtTyWW4uMfUJsqwlJfjGE6A8CFLrz3SmcScEMmoQf6XARFdtxfEDp8mmITIqPbFKT5zSE9kg9-t3vsumGjulH1bzklQ_2GKH-NX_xK_JAUd7cPl5N6RWzJfm1uKMQjVJvd3rdIZ4f_547Tadmf0AnQrLyA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BTl0wMbWEocJ43HCqgKtB1oK3WLzo4DQ5WiNv3_-JyEUglVYskQXazo7Piec_fuEXKn7F2LGjQTXAkmjGeYsnGEZbGfmaCVRuBUS_qDqDsWr5NwUpHCFnW1e52SdDv1iuzmRxGyiTF5a2EMk9tkx4KBGAu5xrz9s_-2eClla4EDkxb_V1SZv8dYD0fruVAXYjqH5KDChrRdTuYR2TL5Mdn_1THwhCyfSgV52jdI2UUP06rF4ZxCnlIU4HTZf7uLURQ6my7oLKPDWHoUazoYpqHzj-KTDgtjphQK6n4KOgZJYdwYaEeHTjyCviMWPSXjzvPoscsq5QSmufQLBqEFMmkMsdD2wmNIPc0DCxWEUtqEPoAGCHWmAhNqEwit05hDlPrYgskeMIIz0shnuTnH0ifIspaU4BtPgPIgSG0805nGkxDIqEn82oGJrtqK4wtOk1VDZHR6Yp2eOKcnsknuf575KptqbLR-qOclqT6wxQbzi_-Z35Ld7qjfS3ovg7dLssdxbbhavSvSKOZLc20xR6Fu3BL7Bpfxy6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFWU1QduYJE4ThofK0pVllaIUqm3aOI4cKgCat3_x-Okm4QqcckhmljR2PE8Z-a9IeQmtXctalBM8FQwoT3NUhtHWB77uQ4aWQSua0m3F3UG4nkYDpdY_K7afZaSLDkNqNJUmPufLL9fEN_8KEJmMSZyLaRhcpNs2e3Yx3U94M35XtzgZVtbCyKYtGeBijbz9xiroWk1L-rCTXuf7FU4kTbLiT0gG7o4JLtL6oFHZNoqu8nTrkb6LnqbVnKHYwpFRrEZp6sEsDsaxaZnown9zmk_lh7F-g6GKeni03zRvtF6RMFQ94PQsUmMdmOgHe27RhL0HXHpMRm0Hz8eOqzqosAUl75hEFpQk8UQC2UvPIbMUzywsEGkqdKhD6AAQpWngQ6VDoRSWcwhynyUY7KHjeCE1IrvQp9iGRTkeUNK8LUnIPUgyGxsU7nCUxHIqE78mQMTVUmM4wuOkoU4Mjo9sU5PnNMTWSe382d-SoGNtdZ3s3lJqo9tssb87H_m12T7rdVOXp96L-dkh-PScGV7F6RmxlN9aeGHSa_cCvsFo0fP5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Mechanical+Behavior+and+Constitutive+Models+of+S890+High-Strength+Steel+at+Intermediate+and+High+Strain+Rates&rft.jtitle=Journal+of+materials+engineering+and+performance&rft.au=Zhu%2C+Yong&rft.au=Yang%2C+Hua&rft.au=Zhang%2C+Sumei&rft.date=2020-10-01&rft.pub=Springer+US&rft.issn=1059-9495&rft.eissn=1544-1024&rft.volume=29&rft.issue=10&rft.spage=6727&rft.epage=6739&rft_id=info:doi/10.1007%2Fs11665-020-05150-9&rft.externalDocID=10_1007_s11665_020_05150_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9495&client=summon |