Q-Learning based Maximum Power Extraction for Wind Energy Conversion System With Variable Wind Speed

This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 35; no. 3; pp. 1160 - 1170
Main Authors Kushwaha, Ashish, Gopal, Madan, Singh, Bhim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8969
1558-0059
DOI10.1109/TEC.2020.2990937

Cover

Loading…
Abstract This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm.
AbstractList This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm.
Author Kushwaha, Ashish
Gopal, Madan
Singh, Bhim
Author_xml – sequence: 1
  givenname: Ashish
  orcidid: 0000-0003-2044-0268
  surname: Kushwaha
  fullname: Kushwaha, Ashish
  email: ak999@snu.edu.in
  organization: Department of Electrical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
– sequence: 2
  givenname: Madan
  surname: Gopal
  fullname: Gopal, Madan
  email: mgopal@snu.edu.in
  organization: Department of Electrical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
– sequence: 3
  givenname: Bhim
  surname: Singh
  fullname: Singh, Bhim
  email: bhimsinghiitd61@gmail.com
  organization: Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
BookMark eNp9kM1LAzEQxYMoWD_ugpeA562Tz02OUuoHVFRa9bhkd2c10mZrslX737ul4sGDp2F4vzfDewdkN7QBCTlhMGQM7PlsPBpy4DDk1oIV-Q4ZMKVMBqDsLhmAMSozVtt9cpDSGwCTirMBqR-yCboYfHihpUtY01v35RerBb1vPzHS8VcXXdX5NtCmjfTZh5qOA8aXNR214QNj2kjTdepw0avdK31y0btyjlt2ukSsj8he4-YJj3_mIXm8HM9G19nk7upmdDHJKm5ZlzleMa0lb4xyxhnJBUrQUpdNrY3WDeQGJGNlLoVgdakUyhxsvyuZKw1CHJKz7d1lbN9XmLrirV3F0L8suBRaCzCC95TeUlVsU4rYFJXv3CZiH9XPCwbFptGib7TYNFr8NNob4Y9xGf3CxfV_ltOtxSPiL24ht7pXvwGVTIEW
CODEN ITCNE4
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3160452
crossref_primary_10_1016_j_est_2024_114319
crossref_primary_10_1155_2022_6594701
crossref_primary_10_1109_TIE_2022_3170608
crossref_primary_10_1016_j_seta_2023_103577
crossref_primary_10_1109_TASE_2024_3357204
crossref_primary_10_1177_01423312211039041
crossref_primary_10_1109_JPROC_2023_3253165
crossref_primary_10_1080_15435075_2023_2281329
crossref_primary_10_1007_s40313_022_00980_5
crossref_primary_10_3390_en15010303
crossref_primary_10_1016_j_apenergy_2023_121519
crossref_primary_10_1016_j_apenergy_2024_123939
crossref_primary_10_1016_j_optcom_2021_126930
crossref_primary_10_1016_j_ejcon_2024_101152
crossref_primary_10_1109_TSTE_2021_3094093
crossref_primary_10_1109_TSTE_2022_3223307
crossref_primary_10_3390_su152014844
crossref_primary_10_1016_j_ijepes_2023_109416
crossref_primary_10_1080_15567036_2022_2121876
crossref_primary_10_1016_j_eswa_2024_123502
crossref_primary_10_1049_rpg2_12511
crossref_primary_10_1177_01423312241275208
crossref_primary_10_3390_su16219333
crossref_primary_10_1049_rpg2_12534
crossref_primary_10_1109_TSTE_2021_3105751
crossref_primary_10_1007_s11356_020_11558_6
crossref_primary_10_1007_s00202_024_02390_z
crossref_primary_10_1109_TIE_2023_3260345
crossref_primary_10_1016_j_renene_2024_121265
crossref_primary_10_1016_j_ijepes_2022_108608
crossref_primary_10_1016_j_apenergy_2023_122034
crossref_primary_10_1038_s44287_024_00018_9
crossref_primary_10_1016_j_gloei_2023_10_004
crossref_primary_10_1109_TIA_2024_3429080
crossref_primary_10_1016_j_ijepes_2025_110598
crossref_primary_10_1109_JSEN_2020_3037237
crossref_primary_10_1177_0309524X251317188
crossref_primary_10_1016_j_renene_2023_06_014
crossref_primary_10_3390_app142311112
crossref_primary_10_1109_TSG_2022_3154718
crossref_primary_10_1109_TSTE_2022_3218045
crossref_primary_10_1177_0309524X241229403
crossref_primary_10_1007_s42835_021_00699_4
crossref_primary_10_1016_j_egyr_2025_02_046
crossref_primary_10_1109_TEC_2024_3435852
crossref_primary_10_1109_TIA_2024_3481195
Cites_doi 10.1109/TPEL.2004.833459
10.1109/PESC.2008.4592580
10.1201/9781420055344
10.1109/ECCE.2010.5617747
10.1109/PES.2011.6039023
10.1109/TIE.2010.2044732
10.1109/JESTPE.2017.2727978
10.1109/TIA.2013.2242817
10.1109/TIA.2004.841159
10.1049/iet-epa.2017.0603
10.1109/TPEL.2011.2162251
10.1109/TNN.1998.712192
10.1109/ACC.2009.5160195
10.1109/TIA.2005.858282
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TEC.2020.2990937
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0059
EndPage 1170
ExternalDocumentID 10_1109_TEC_2020_2990937
9079637
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-a2c16642f85a8a8423e40646bfd6866f0780411b74331db55e47091b754756033
IEDL.DBID RIE
ISSN 0885-8969
IngestDate Sun Jun 29 16:19:29 EDT 2025
Tue Jul 01 02:53:22 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Wed Aug 27 02:31:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a2c16642f85a8a8423e40646bfd6866f0780411b74331db55e47091b754756033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2044-0268
PQID 2436630832
PQPubID 85443
PageCount 11
ParticipantIDs proquest_journals_2436630832
ieee_primary_9079637
crossref_citationtrail_10_1109_TEC_2020_2990937
crossref_primary_10_1109_TEC_2020_2990937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Sept.
2020-9-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on energy conversion
PublicationTitleAbbrev TEC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
chen (ref13) 2011
watkins (ref18) 1989
ref11
ref10
ref2
ref1
ref17
ref19
chun (ref16) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
yaoqin (ref14) 2002
lin (ref12) 2011
References_xml – ident: ref10
  doi: 10.1109/TPEL.2004.833459
– ident: ref11
  doi: 10.1109/PESC.2008.4592580
– ident: ref1
  doi: 10.1201/9781420055344
– start-page: 114
  year: 2002
  ident: ref14
  article-title: A new maximum power point tracking control scheme for wind generation
  publication-title: Proc Int Conf Power Syst Technol
– ident: ref4
  doi: 10.1109/ECCE.2010.5617747
– start-page: 1
  year: 2011
  ident: ref12
  article-title: MPPT control strategy for wind energy conversion system based on RBF network
  publication-title: Energy Proc
– ident: ref2
  doi: 10.1109/PES.2011.6039023
– year: 1989
  ident: ref18
  article-title: Learning from delayed rewards," Ph.D. Dissertation, Dept. Psychol., Cambridge Univ.
– start-page: 4911
  year: 2014
  ident: ref16
  article-title: Intelligent maximum power extraction control for wind energy conversion systems based on online Q-learning with function approximation
  publication-title: Proc IEEE Energy Convers Congr Expo
– ident: ref15
  doi: 10.1109/TIE.2010.2044732
– ident: ref7
  doi: 10.1109/JESTPE.2017.2727978
– ident: ref9
  doi: 10.1109/TIA.2013.2242817
– ident: ref5
  doi: 10.1109/TIA.2004.841159
– ident: ref6
  doi: 10.1049/iet-epa.2017.0603
– ident: ref19
  doi: 10.1109/TPEL.2011.2162251
– year: 2011
  ident: ref13
  article-title: WRBF network based control strategy for PMSG on smart grid
  publication-title: Proc Int Conf Intell Syst Appl Power Syst
– ident: ref17
  doi: 10.1109/TNN.1998.712192
– ident: ref3
  doi: 10.1109/ACC.2009.5160195
– ident: ref8
  doi: 10.1109/TIA.2005.858282
SSID ssj0014521
Score 2.53586
Snippet This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1160
SubjectTerms Algorithms
Computer simulation
Energy conversion
Experimentation
Generators
Machine learning
Maximum power point trackers
Maximum power point tracking
Maximum power tracking
Parameters
Perturbation
Q-learning algorithm
Reinforcement learning
Voltage control
wind energy conversion system
Wind power
Wind speed
Wind turbines
Title Q-Learning based Maximum Power Extraction for Wind Energy Conversion System With Variable Wind Speed
URI https://ieeexplore.ieee.org/document/9079637
https://www.proquest.com/docview/2436630832
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHb1OcTsmDL4LZ2q5J2kcZHUOYKG66t9KkmYruwuxg-Os9SbsxVMQ-FZqUwJfkfF9yLgAX2hcqVULTRGhOfekpKkXKKQs9R-HjSmUO9Hu3vDvwb4ZsWIKrdSyM1to6n-mGebV3-elULcxRWROFHM4XUYYyCrc8Vmt9Y-AzG2OFi4bRIOTh6krSCZv9qI1C0HMaZusNTcXzDRNka6r82IitdensQm81rtyp5K2xyGRDfX5L2fjfge_BTkEzyXU-L_ahpCcHsL2RfLAK6T0tkqs-E2PLUtJLlq_jxZjcmcppJFpm8zzqgSCxJU8o3klkIwVJ27iq23M2kmc8x6_ZC3lE3W0isfK2DzM0jIcw6ET9dpcWNReo8kI3o4mnXI6aZBSwJEgCJFsaTb7P5SjlAecjxyYscqUwkVapZAzBRsohBfMFkqdW6wgqk-lEHwORUrmOZAqFL_dHAU5ZV3AtUoEsRDOla9BcwRCrIiG5qYvxHlth4oQxAhcb4OICuBpcrnvM8mQcf7StGhzW7QoIalBfIR0Xq_Uj9vwWEi8ko97J771OYcv8O_ctq0Mlmy_0GZKRTJ7bWfgFVYzaRQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvIvzmgdfBLO1XZO0jzIq8zJR3NS30qSZim4T7WD46z1J2zFUxD4VmtDAl-R8JznfOQCH2hcqVULTRGhOfekpKkXKKQs9R-HjSmUO9NtXvNX1zx_YwwwcT7QwWmsbfKZr5tXe5adDNTJHZXV05HC-iFmYY0aMm6u1JncGPrMqK1w2jAYhD8tLSSesd6ImuoKeUzObb2hqnk8ZIVtV5cdWbO3L6TK0y5HlYSUvtVEma-rzW9LG_w59BZYKoklO8pmxCjN6sAaLU-kH1yG9oUV61UdirFlK2sn4uT_qk2tTO41E4-w91z0QpLbkHt13ElmtIGmaYHV70kbynOf4NXsid-h5Gy1W3vb2DU3jBnRPo06zRYuqC1R5oZvRxFMuR6-kF7AkSAKkWxqNvs9lL-UB5z3HpixypTBaq1QyhnAj6ZCC-QLpU6OxCZXBcKC3gEipXEcyha4v93sBTlpXcC1SgTxEM6WrUC9hiFWRktxUxniNrWvihDECFxvg4gK4KhxNerzl6Tj-aLtucJi0KyCowm6JdFys14_Y8xtIvZCOetu_9zqA-VanfRlfnl1d7MCC-U8eabYLlex9pPeQmmRy387IL-HO3Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-Learning+based+Maximum+Power+Extraction+for+Wind+Energy+Conversion+System+With+Variable+Wind+Speed&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Kushwaha%2C+Ashish&rft.au=Gopal%2C+Madan&rft.au=Singh%2C+Bhim&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0885-8969&rft.volume=35&rft.issue=3&rft.spage=1160&rft.epage=1170&rft_id=info:doi/10.1109%2FTEC.2020.2990937&rft.externalDocID=9079637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon