Q-Learning based Maximum Power Extraction for Wind Energy Conversion System With Variable Wind Speed
This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward an...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 35; no. 3; pp. 1160 - 1170 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0885-8969 1558-0059 |
DOI | 10.1109/TEC.2020.2990937 |
Cover
Loading…
Abstract | This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm. |
---|---|
AbstractList | This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm. |
Author | Kushwaha, Ashish Gopal, Madan Singh, Bhim |
Author_xml | – sequence: 1 givenname: Ashish orcidid: 0000-0003-2044-0268 surname: Kushwaha fullname: Kushwaha, Ashish email: ak999@snu.edu.in organization: Department of Electrical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India – sequence: 2 givenname: Madan surname: Gopal fullname: Gopal, Madan email: mgopal@snu.edu.in organization: Department of Electrical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India – sequence: 3 givenname: Bhim surname: Singh fullname: Singh, Bhim email: bhimsinghiitd61@gmail.com organization: Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India |
BookMark | eNp9kM1LAzEQxYMoWD_ugpeA562Tz02OUuoHVFRa9bhkd2c10mZrslX737ul4sGDp2F4vzfDewdkN7QBCTlhMGQM7PlsPBpy4DDk1oIV-Q4ZMKVMBqDsLhmAMSozVtt9cpDSGwCTirMBqR-yCboYfHihpUtY01v35RerBb1vPzHS8VcXXdX5NtCmjfTZh5qOA8aXNR214QNj2kjTdepw0avdK31y0btyjlt2ukSsj8he4-YJj3_mIXm8HM9G19nk7upmdDHJKm5ZlzleMa0lb4xyxhnJBUrQUpdNrY3WDeQGJGNlLoVgdakUyhxsvyuZKw1CHJKz7d1lbN9XmLrirV3F0L8suBRaCzCC95TeUlVsU4rYFJXv3CZiH9XPCwbFptGib7TYNFr8NNob4Y9xGf3CxfV_ltOtxSPiL24ht7pXvwGVTIEW |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3160452 crossref_primary_10_1016_j_est_2024_114319 crossref_primary_10_1155_2022_6594701 crossref_primary_10_1109_TIE_2022_3170608 crossref_primary_10_1016_j_seta_2023_103577 crossref_primary_10_1109_TASE_2024_3357204 crossref_primary_10_1177_01423312211039041 crossref_primary_10_1109_JPROC_2023_3253165 crossref_primary_10_1080_15435075_2023_2281329 crossref_primary_10_1007_s40313_022_00980_5 crossref_primary_10_3390_en15010303 crossref_primary_10_1016_j_apenergy_2023_121519 crossref_primary_10_1016_j_apenergy_2024_123939 crossref_primary_10_1016_j_optcom_2021_126930 crossref_primary_10_1016_j_ejcon_2024_101152 crossref_primary_10_1109_TSTE_2021_3094093 crossref_primary_10_1109_TSTE_2022_3223307 crossref_primary_10_3390_su152014844 crossref_primary_10_1016_j_ijepes_2023_109416 crossref_primary_10_1080_15567036_2022_2121876 crossref_primary_10_1016_j_eswa_2024_123502 crossref_primary_10_1049_rpg2_12511 crossref_primary_10_1177_01423312241275208 crossref_primary_10_3390_su16219333 crossref_primary_10_1049_rpg2_12534 crossref_primary_10_1109_TSTE_2021_3105751 crossref_primary_10_1007_s11356_020_11558_6 crossref_primary_10_1007_s00202_024_02390_z crossref_primary_10_1109_TIE_2023_3260345 crossref_primary_10_1016_j_renene_2024_121265 crossref_primary_10_1016_j_ijepes_2022_108608 crossref_primary_10_1016_j_apenergy_2023_122034 crossref_primary_10_1038_s44287_024_00018_9 crossref_primary_10_1016_j_gloei_2023_10_004 crossref_primary_10_1109_TIA_2024_3429080 crossref_primary_10_1016_j_ijepes_2025_110598 crossref_primary_10_1109_JSEN_2020_3037237 crossref_primary_10_1177_0309524X251317188 crossref_primary_10_1016_j_renene_2023_06_014 crossref_primary_10_3390_app142311112 crossref_primary_10_1109_TSG_2022_3154718 crossref_primary_10_1109_TSTE_2022_3218045 crossref_primary_10_1177_0309524X241229403 crossref_primary_10_1007_s42835_021_00699_4 crossref_primary_10_1016_j_egyr_2025_02_046 crossref_primary_10_1109_TEC_2024_3435852 crossref_primary_10_1109_TIA_2024_3481195 |
Cites_doi | 10.1109/TPEL.2004.833459 10.1109/PESC.2008.4592580 10.1201/9781420055344 10.1109/ECCE.2010.5617747 10.1109/PES.2011.6039023 10.1109/TIE.2010.2044732 10.1109/JESTPE.2017.2727978 10.1109/TIA.2013.2242817 10.1109/TIA.2004.841159 10.1049/iet-epa.2017.0603 10.1109/TPEL.2011.2162251 10.1109/TNN.1998.712192 10.1109/ACC.2009.5160195 10.1109/TIA.2005.858282 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2020.2990937 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 1170 |
ExternalDocumentID | 10_1109_TEC_2020_2990937 9079637 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-a2c16642f85a8a8423e40646bfd6866f0780411b74331db55e47091b754756033 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Sun Jun 29 16:19:29 EDT 2025 Tue Jul 01 02:53:22 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Wed Aug 27 02:31:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a2c16642f85a8a8423e40646bfd6866f0780411b74331db55e47091b754756033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2044-0268 |
PQID | 2436630832 |
PQPubID | 85443 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2436630832 ieee_primary_9079637 crossref_citationtrail_10_1109_TEC_2020_2990937 crossref_primary_10_1109_TEC_2020_2990937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Sept. 2020-9-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 chen (ref13) 2011 watkins (ref18) 1989 ref11 ref10 ref2 ref1 ref17 ref19 chun (ref16) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 yaoqin (ref14) 2002 lin (ref12) 2011 |
References_xml | – ident: ref10 doi: 10.1109/TPEL.2004.833459 – ident: ref11 doi: 10.1109/PESC.2008.4592580 – ident: ref1 doi: 10.1201/9781420055344 – start-page: 114 year: 2002 ident: ref14 article-title: A new maximum power point tracking control scheme for wind generation publication-title: Proc Int Conf Power Syst Technol – ident: ref4 doi: 10.1109/ECCE.2010.5617747 – start-page: 1 year: 2011 ident: ref12 article-title: MPPT control strategy for wind energy conversion system based on RBF network publication-title: Energy Proc – ident: ref2 doi: 10.1109/PES.2011.6039023 – year: 1989 ident: ref18 article-title: Learning from delayed rewards," Ph.D. Dissertation, Dept. Psychol., Cambridge Univ. – start-page: 4911 year: 2014 ident: ref16 article-title: Intelligent maximum power extraction control for wind energy conversion systems based on online Q-learning with function approximation publication-title: Proc IEEE Energy Convers Congr Expo – ident: ref15 doi: 10.1109/TIE.2010.2044732 – ident: ref7 doi: 10.1109/JESTPE.2017.2727978 – ident: ref9 doi: 10.1109/TIA.2013.2242817 – ident: ref5 doi: 10.1109/TIA.2004.841159 – ident: ref6 doi: 10.1049/iet-epa.2017.0603 – ident: ref19 doi: 10.1109/TPEL.2011.2162251 – year: 2011 ident: ref13 article-title: WRBF network based control strategy for PMSG on smart grid publication-title: Proc Int Conf Intell Syst Appl Power Syst – ident: ref17 doi: 10.1109/TNN.1998.712192 – ident: ref3 doi: 10.1109/ACC.2009.5160195 – ident: ref8 doi: 10.1109/TIA.2005.858282 |
SSID | ssj0014521 |
Score | 2.53586 |
Snippet | This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1160 |
SubjectTerms | Algorithms Computer simulation Energy conversion Experimentation Generators Machine learning Maximum power point trackers Maximum power point tracking Maximum power tracking Parameters Perturbation Q-learning algorithm Reinforcement learning Voltage control wind energy conversion system Wind power Wind speed Wind turbines |
Title | Q-Learning based Maximum Power Extraction for Wind Energy Conversion System With Variable Wind Speed |
URI | https://ieeexplore.ieee.org/document/9079637 https://www.proquest.com/docview/2436630832 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5se9IHb1OcTsmDL4LZ2q5J2kcZHUOYKG66t9KkmYruwuxg-Os9SbsxVMQ-FZqUwJfkfF9yLgAX2hcqVULTRGhOfekpKkXKKQs9R-HjSmUO9Hu3vDvwb4ZsWIKrdSyM1to6n-mGebV3-elULcxRWROFHM4XUYYyCrc8Vmt9Y-AzG2OFi4bRIOTh6krSCZv9qI1C0HMaZusNTcXzDRNka6r82IitdensQm81rtyp5K2xyGRDfX5L2fjfge_BTkEzyXU-L_ahpCcHsL2RfLAK6T0tkqs-E2PLUtJLlq_jxZjcmcppJFpm8zzqgSCxJU8o3klkIwVJ27iq23M2kmc8x6_ZC3lE3W0isfK2DzM0jIcw6ET9dpcWNReo8kI3o4mnXI6aZBSwJEgCJFsaTb7P5SjlAecjxyYscqUwkVapZAzBRsohBfMFkqdW6wgqk-lEHwORUrmOZAqFL_dHAU5ZV3AtUoEsRDOla9BcwRCrIiG5qYvxHlth4oQxAhcb4OICuBpcrnvM8mQcf7StGhzW7QoIalBfIR0Xq_Uj9vwWEi8ko97J771OYcv8O_ctq0Mlmy_0GZKRTJ7bWfgFVYzaRQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvIvzmgdfBLO1XZO0jzIq8zJR3NS30qSZim4T7WD46z1J2zFUxD4VmtDAl-R8JznfOQCH2hcqVULTRGhOfekpKkXKKQs9R-HjSmUO9NtXvNX1zx_YwwwcT7QwWmsbfKZr5tXe5adDNTJHZXV05HC-iFmYY0aMm6u1JncGPrMqK1w2jAYhD8tLSSesd6ImuoKeUzObb2hqnk8ZIVtV5cdWbO3L6TK0y5HlYSUvtVEma-rzW9LG_w59BZYKoklO8pmxCjN6sAaLU-kH1yG9oUV61UdirFlK2sn4uT_qk2tTO41E4-w91z0QpLbkHt13ElmtIGmaYHV70kbynOf4NXsid-h5Gy1W3vb2DU3jBnRPo06zRYuqC1R5oZvRxFMuR6-kF7AkSAKkWxqNvs9lL-UB5z3HpixypTBaq1QyhnAj6ZCC-QLpU6OxCZXBcKC3gEipXEcyha4v93sBTlpXcC1SgTxEM6WrUC9hiFWRktxUxniNrWvihDECFxvg4gK4KhxNerzl6Tj-aLtucJi0KyCowm6JdFys14_Y8xtIvZCOetu_9zqA-VanfRlfnl1d7MCC-U8eabYLlex9pPeQmmRy387IL-HO3Y0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Q-Learning+based+Maximum+Power+Extraction+for+Wind+Energy+Conversion+System+With+Variable+Wind+Speed&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Kushwaha%2C+Ashish&rft.au=Gopal%2C+Madan&rft.au=Singh%2C+Bhim&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0885-8969&rft.volume=35&rft.issue=3&rft.spage=1160&rft.epage=1170&rft_id=info:doi/10.1109%2FTEC.2020.2990937&rft.externalDocID=9079637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |