Continuous Sliding Mode Control Strategy for a Class of Nonlinear Underactuated Systems
Sliding mode control (SMC), which is known to present strong robustness against various disturbances, has been extensively employed on underactuated systems, whose control problem has been a research focus in recent years. However, though received great attention, the study on SMC for underactuated...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 10; pp. 3471 - 3478 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sliding mode control (SMC), which is known to present strong robustness against various disturbances, has been extensively employed on underactuated systems, whose control problem has been a research focus in recent years. However, though received great attention, the study on SMC for underactuated systems still remains quite open since it is very challenging to construct a proper manifold which can simultaneously stabilize both actuated and unactuated system states. Motivated to promote the corresponding research, we propose an improved second-order SMC (IS-SMC) method for a class of nonlinear underactuated systems in this paper, which guarantees that the closed-loop system's equilibrium point is asymptotically stable even in the presence of unknown nondiminishing disturbances. Different from traditional SMC methods presenting with chattering problem, the control inputs of the proposed method are essentially continuous, which brings much convenience for practical applications. Moreover, for the disturbances which are second-order differentiable, an enhanced IS-SMC (EIS-SMC) method is derived to guarantee the smoothness for both the control inputs and their derivatives. Finally, the proposed approach is applied to a practical underactuated system: The overhead crane system, with sufficient simulation results provided to validate the efficiency of the proposed method. |
---|---|
AbstractList | Sliding mode control (SMC), which is known to present strong robustness against various disturbances, has been extensively employed on underactuated systems, whose control problem has been a research focus in recent years. However, though received great attention, the study on SMC for underactuated systems still remains quite open since it is very challenging to construct a proper manifold which can simultaneously stabilize both actuated and unactuated system states. Motivated to promote the corresponding research, we propose an improved second-order SMC (IS-SMC) method for a class of nonlinear underactuated systems in this paper, which guarantees that the closed-loop syste's equilibrium point is asymptotically stable even in the presence of unknown nondiminishing disturbances. Different from traditional SMC methods presenting with chattering problem, the control inputs of the proposed method are essentially continuous, which brings much convenience for practical applications. Moreover, for the disturbances which are second-order differentiable, an enhanced IS-SMC (EIS-SMC) method is derived to guarantee the smoothness for both the control inputs and their derivatives. Finally, the proposed approach is applied to a practical underactuated system: The overhead crane system, with sufficient simulation results provided to validate the efficiency of the proposed method. Sliding mode control (SMC), which is known to present strong robustness against various disturbances, has been extensively employed on underactuated systems, whose control problem has been a research focus in recent years. However, though received great attention, the study on SMC for underactuated systems still remains quite open since it is very challenging to construct a proper manifold which can simultaneously stabilize both actuated and unactuated system states. Motivated to promote the corresponding research, we propose an improved second-order SMC (IS-SMC) method for a class of nonlinear underactuated systems in this paper, which guarantees that the closed-loop system's equilibrium point is asymptotically stable even in the presence of unknown nondiminishing disturbances. Different from traditional SMC methods presenting with chattering problem, the control inputs of the proposed method are essentially continuous, which brings much convenience for practical applications. Moreover, for the disturbances which are second-order differentiable, an enhanced IS-SMC (EIS-SMC) method is derived to guarantee the smoothness for both the control inputs and their derivatives. Finally, the proposed approach is applied to a practical underactuated system: The overhead crane system, with sufficient simulation results provided to validate the efficiency of the proposed method. |
Author | Sun, Ning Lu, Biao Fang, Yongchun |
Author_xml | – sequence: 1 givenname: Biao orcidid: 0000-0001-9029-6869 surname: Lu fullname: Lu, Biao email: lubiao@mail.nankai.edu.cn organization: Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China – sequence: 2 givenname: Yongchun orcidid: 0000-0002-3061-2708 surname: Fang fullname: Fang, Yongchun email: fangyc@nankai.edu.cn organization: Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China – sequence: 3 givenname: Ning orcidid: 0000-0002-5253-2944 surname: Sun fullname: Sun, Ning email: sunn@nankai.edu.cn organization: Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China |
BookMark | eNp9kD1PwzAQhi0EEm1hR2KxxJzijzhxxiriSyowtBWj5Th25Sq1i-0M_fckasXAwGSd73nudO8UXDrvNAB3GM0xRtXjelHPCcJ8Tsoq55xdgAlmjGeEEXoJJmhoZRXhxTWYxrgbyiLP8QR81d4l63rfR7jqbGvdFr77VsPxP_gOrlKQSW-P0PgAJaw7GSP0Bn5411mnZYAb1-ogVeoHroWrY0x6H2_AlZFd1LfndwY2z0_r-jVbfr681YtlpkiFUyaJZLLURaM0M4wZg0hLKSMKGSkxypvGmAZRwxRumDamJbQyMkc0ZwYpTekMPJzmHoL_7nVMYuf74IaVgmBc4pJhWg5UcaJU8DEGbYSySSY73ihtJzASY4hiCFGMIYpziIOI_oiHYPcyHP9T7k-K1Vr_4pwUiHNKfwAUWX_2 |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1007_s12555_018_0444_8 crossref_primary_10_1080_00207721_2020_1817615 crossref_primary_10_1109_TCST_2019_2932698 crossref_primary_10_1109_TMECH_2021_3052068 crossref_primary_10_1016_j_automatica_2020_109461 crossref_primary_10_1016_j_jfranklin_2020_01_050 crossref_primary_10_1002_rnc_5423 crossref_primary_10_1016_j_ins_2021_06_055 crossref_primary_10_1109_TAC_2024_3441671 crossref_primary_10_1109_TSMC_2022_3193377 crossref_primary_10_1002_rob_22126 crossref_primary_10_1002_rnc_6217 crossref_primary_10_1016_j_automatica_2021_109633 crossref_primary_10_1002_asjc_2073 crossref_primary_10_1109_ACCESS_2021_3064336 crossref_primary_10_1007_s11071_023_08586_5 crossref_primary_10_1109_TIE_2021_3088356 crossref_primary_10_1007_s12555_021_0401_9 crossref_primary_10_1109_TAC_2023_3349099 crossref_primary_10_1177_10775463241257975 crossref_primary_10_1109_ACCESS_2021_3070048 crossref_primary_10_1016_j_jfranklin_2020_07_022 crossref_primary_10_1007_s42417_024_01605_8 crossref_primary_10_1007_s12555_018_0489_8 crossref_primary_10_1016_j_conengprac_2018_04_005 crossref_primary_10_1016_j_automatica_2019_108775 crossref_primary_10_1002_tee_23917 crossref_primary_10_1007_s11071_019_05451_2 crossref_primary_10_1080_00207721_2024_2331805 crossref_primary_10_1109_TCNS_2022_3141022 crossref_primary_10_1007_s43684_021_00019_7 crossref_primary_10_1109_TITS_2024_3429358 crossref_primary_10_1016_j_knosys_2021_107553 crossref_primary_10_1109_ACCESS_2023_3243497 crossref_primary_10_1007_s11071_024_10230_9 crossref_primary_10_1109_TAC_2021_3108507 crossref_primary_10_1142_S1793048023410023 crossref_primary_10_1016_j_jfranklin_2020_09_001 crossref_primary_10_1016_j_mechatronics_2023_102981 crossref_primary_10_1002_rnc_6239 crossref_primary_10_1016_j_ymssp_2022_109274 crossref_primary_10_1109_ACCESS_2020_3047810 crossref_primary_10_1016_j_ymssp_2019_106449 crossref_primary_10_1007_s12555_019_0184_4 crossref_primary_10_1109_TAC_2023_3264754 crossref_primary_10_1049_iet_cta_2019_0267 crossref_primary_10_1080_00207721_2024_2306193 crossref_primary_10_1016_j_ymssp_2025_112419 crossref_primary_10_1016_j_autcon_2021_103843 crossref_primary_10_1016_j_ymssp_2021_108165 crossref_primary_10_1177_09596518221079940 crossref_primary_10_1007_s40747_022_00840_4 crossref_primary_10_1016_j_asr_2024_02_017 crossref_primary_10_1016_j_ins_2020_05_002 crossref_primary_10_1109_TIE_2022_3152007 crossref_primary_10_1109_TCYB_2021_3050475 crossref_primary_10_1109_TSMC_2022_3160606 crossref_primary_10_1016_j_ifacol_2020_12_2456 crossref_primary_10_1007_s12555_019_0650_z crossref_primary_10_1109_ACCESS_2019_2925137 crossref_primary_10_1177_01423312241239367 crossref_primary_10_1016_j_ymssp_2019_106374 crossref_primary_10_1002_asjc_2961 crossref_primary_10_1177_09596518241309126 crossref_primary_10_1108_IR_04_2022_0096 crossref_primary_10_1002_acs_3960 crossref_primary_10_1109_TNNLS_2021_3054611 crossref_primary_10_11159_jmids_2024_015 crossref_primary_10_1016_j_isatra_2021_08_041 crossref_primary_10_1016_j_mechatronics_2023_103087 crossref_primary_10_1007_s00521_021_06101_8 crossref_primary_10_1007_s11071_023_08881_1 crossref_primary_10_1002_acs_3693 crossref_primary_10_3390_drones7030154 crossref_primary_10_1016_j_camwa_2023_08_003 crossref_primary_10_1007_s40430_024_05084_6 crossref_primary_10_1109_TPEL_2021_3096066 crossref_primary_10_1007_s11432_022_3711_1 crossref_primary_10_3390_sym11121511 crossref_primary_10_1177_0020294020964246 crossref_primary_10_1155_2019_8146901 crossref_primary_10_1016_j_ymssp_2024_111961 crossref_primary_10_1177_01423312231186214 crossref_primary_10_1002_rnc_4429 crossref_primary_10_1016_j_conengprac_2024_106108 crossref_primary_10_1109_ACCESS_2020_3045606 crossref_primary_10_1016_j_compeleceng_2021_107351 crossref_primary_10_3390_machines9080177 crossref_primary_10_1007_s12555_021_0377_5 crossref_primary_10_1177_09544062231210638 crossref_primary_10_1002_rnc_7664 crossref_primary_10_1016_j_conengprac_2019_07_014 crossref_primary_10_1007_s11071_023_08970_1 crossref_primary_10_1007_s11071_025_10903_z crossref_primary_10_1109_TFUZZ_2021_3117437 crossref_primary_10_3390_math9151770 crossref_primary_10_1002_acs_3353 crossref_primary_10_1177_00202940241228450 crossref_primary_10_1007_s11071_024_09474_2 crossref_primary_10_1109_TCYB_2020_3025604 crossref_primary_10_1109_TIE_2019_2931242 crossref_primary_10_1016_j_ymssp_2025_112337 crossref_primary_10_3390_s24175458 |
Cites_doi | 10.1080/0020717031000099029 10.1109/TII.2013.2279232 10.1109/TCST.2012.2192121 10.1109/9.983365 10.1109/TIE.2014.2301932 10.1016/j.automatica.2013.01.059 10.1016/j.automatica.2007.05.014 10.1002/rnc.2919 10.1016/j.isatra.2013.07.012 10.1109/TAC.2014.2308641 10.1016/j.automatica.2012.09.002 10.1007/BF01211483 10.1109/TIE.2013.2282594 10.1016/j.automatica.2013.03.026 10.1016/j.automatica.2014.10.093 10.1109/TIE.2014.2327569 10.1109/TAC.2016.2584180 10.1109/TIE.2008.2005933 10.1109/TFUZZ.2013.2253106 10.1007/978-1-84628-615-5 10.1109/TCST.2017.2679060 10.1007/s11071-015-2551-x 10.1002/rnc.3290 10.1016/S0005-1098(02)00147-4 10.1016/j.isatra.2016.10.017 10.1109/TRO.2008.2012338 10.1109/TRO.2015.2481282 10.1016/j.oceaneng.2015.06.022 10.1016/0967-0661(96)00046-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2018.2794885 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 3478 |
ExternalDocumentID | 10_1109_TAC_2018_2794885 8260883 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11372144 – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 61325017 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-a2a5a7e6bce5f55ff02d3352c0faa104bbffb03f5c1b5effd239fa40345f0ce33 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:13:42 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Jul 01 03:36:22 EDT 2025 Wed Aug 27 02:51:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a2a5a7e6bce5f55ff02d3352c0faa104bbffb03f5c1b5effd239fa40345f0ce33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5253-2944 0000-0001-9029-6869 0000-0002-3061-2708 |
PQID | 2117175137 |
PQPubID | 85475 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2018_2794885 crossref_primary_10_1109_TAC_2018_2794885 ieee_primary_8260883 proquest_journals_2117175137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 isidori (ref29) 1995 ref14 ref30 ref11 park (ref8) 2007; 5 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 yong (ref28) 2002; 38 ref22 ref21 ref27 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref27 doi: 10.1080/0020717031000099029 – ident: ref25 doi: 10.1109/TII.2013.2279232 – ident: ref10 doi: 10.1109/TCST.2012.2192121 – ident: ref24 doi: 10.1109/9.983365 – ident: ref30 doi: 10.1109/TIE.2014.2301932 – ident: ref1 doi: 10.1016/j.automatica.2013.01.059 – ident: ref23 doi: 10.1016/j.automatica.2007.05.014 – ident: ref16 doi: 10.1002/rnc.2919 – ident: ref11 doi: 10.1016/j.isatra.2013.07.012 – ident: ref2 doi: 10.1109/TAC.2014.2308641 – ident: ref6 doi: 10.1016/j.automatica.2012.09.002 – ident: ref9 doi: 10.1007/BF01211483 – ident: ref20 doi: 10.1109/TIE.2013.2282594 – volume: 5 start-page: 379 year: 2007 ident: ref8 article-title: A feedback linearization control of container Cranes publication-title: Int J Control Autom Syst – ident: ref26 doi: 10.1016/j.automatica.2013.03.026 – ident: ref5 doi: 10.1016/j.automatica.2014.10.093 – ident: ref13 doi: 10.1109/TIE.2014.2327569 – ident: ref19 doi: 10.1109/TAC.2016.2584180 – ident: ref21 doi: 10.1109/TIE.2008.2005933 – ident: ref17 doi: 10.1109/TFUZZ.2013.2253106 – year: 1995 ident: ref29 publication-title: Nonlinear Control Systems doi: 10.1007/978-1-84628-615-5 – ident: ref4 doi: 10.1109/TCST.2017.2679060 – ident: ref12 doi: 10.1007/s11071-015-2551-x – ident: ref15 doi: 10.1002/rnc.3290 – volume: 38 start-page: 2159 year: 2002 ident: ref28 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica doi: 10.1016/S0005-1098(02)00147-4 – ident: ref18 doi: 10.1016/j.isatra.2016.10.017 – ident: ref22 doi: 10.1109/TRO.2008.2012338 – ident: ref3 doi: 10.1109/TRO.2015.2481282 – ident: ref14 doi: 10.1016/j.oceaneng.2015.06.022 – ident: ref7 doi: 10.1016/0967-0661(96)00046-9 |
SSID | ssj0016441 |
Score | 2.593416 |
Snippet | Sliding mode control (SMC), which is known to present strong robustness against various disturbances, has been extensively employed on underactuated systems,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3471 |
SubjectTerms | Asymptotic stability continuous control inputs Control systems Couplings Cranes disturbance rejection Disturbances Manifolds Nonlinear systems Robustness Sliding mode control sliding mode control (SMC) Smoothness Stability analysis underactuated systems |
Title | Continuous Sliding Mode Control Strategy for a Class of Nonlinear Underactuated Systems |
URI | https://ieeexplore.ieee.org/document/8260883 https://www.proquest.com/docview/2117175137 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTjDwjSgU5IEFibSJHSfxWFWgCokutIItsh2fhEAtKskAvx7bSSMECLFlsC3rzvbd5e7eA7hIqGLUsChAJkwQM0kDgawIRBrFiguuU-kLZKfJZB7fPvLHDly1vTDGGF98Zgbu0-fyi6Wu3K-yoXWF7aVgG7BhA7e6V6vNGDi7Xr-69gLTrE1JhmI4G41dDVc2oPbwZY41-YsJ8pwqPx5ib11uduBuva-6qOR5UJVqoD--QTb-d-O7sN24mWRUn4s96JjFPmx9AR88gAcHTPW0qGzoT-5fnpwNI44ZjYzr6nXSANe-E-vXEkk8fSZZIpnW6BpyRTxpknQtKNZvJQ34-SHMb65n40nQ0CwEmoqoDCSVXKYmUdpw5BwxpIXrxNIhSmmjNaUQVciQ60hxg1hQJlDGIYs5htowdgTdxXJhjoGoWGlOTYgUkzjTTCaMeSzQIs2ExLgHw7Xkc91gkDsqjJfcxyKhyK2ucqervNFVDy7bGa81_sYfYw-c6NtxjdR70F8rN28u6Ftu414byPKIpSe_zzqFTbd2XbfXh265qsyZ9T9Kde4P3ifXgddL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBV0EUCnhgQSJtYsdJPKIKVKB0oQi2yHZ8EgK1CNoBfj22k0YVIMSWwZYt353vLr77PoCThCpGDYsCZMIEMZM0EMiKQKRRrLjgOpW-QHaQ9O7j60f-uABndS-MMcYXn5m2-_Rv-cVYT92vso4Nha1RsEVYtn6fR2W3Vv1m4Dx7ee9aE6ZZ_SgZis7wvOuquLI2teqXOd7kOSfkWVV-XMXev1xuwO1sZ2VZyXN7OlFt_fkNtPG_W9-E9SrQJOelZmzBghltw9oc_GADHhw01dNoapN_cvfy5LwYcdxopFvWr5MKuvaD2MiWSOIJNMkYyaDE15BvxNMmSdeEYiNXUsGf78D95cWw2wsqooVAUxFNAkkll6lJlDYcOUcMaeF6sXSIUtp8TSlEFTLkOlLcIBaUCZRxyGKOoTaM7cLSaDwye0BUrDSnJkSKSZxpJhPGPBpokWZCYtyEzuzkc12hkDsyjJfcZyOhyK2sciervJJVE07rGa8lAscfYxvu6Otx1ak3oTUTbl6Z6HtuM1-byvKIpfu_zzqGld7wtp_3rwY3B7Dq1imr-FqwNHmbmkMbjUzUkVfCLztk2pQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Sliding+Mode+Control+Strategy+for+a+Class+of+Nonlinear+Underactuated+Systems&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Lu%2C+Biao&rft.au=Fang%2C+Yongchun&rft.au=Sun%2C+Ning&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=10&rft.spage=3471&rft_id=info:doi/10.1109%2FTAC.2018.2794885&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |