3-D Printed Dielectric Dome Array Antenna With ±80° Beam Steering Coverage

An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 11; pp. 10494 - 10503
Main Authors Xiao, Lin, Qu, Shi-Wei, Yang, Shiwen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inline-formula> <tex-math notation="LaTeX">\phi (\theta) </tex-math></inline-formula> over a dome surface <inline-formula> <tex-math notation="LaTeX">r(\theta) </tex-math></inline-formula>. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor <inline-formula> <tex-math notation="LaTeX">K(\theta) </tex-math></inline-formula> of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air-dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an <inline-formula> <tex-math notation="LaTeX">8 \times 8 </tex-math></inline-formula> E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design.
AbstractList An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution [Formula Omitted] over a dome surface [Formula Omitted]. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor [Formula Omitted] of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air–dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an [Formula Omitted] E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design.
An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inline-formula> <tex-math notation="LaTeX">\phi (\theta) </tex-math></inline-formula> over a dome surface <inline-formula> <tex-math notation="LaTeX">r(\theta) </tex-math></inline-formula>. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor <inline-formula> <tex-math notation="LaTeX">K(\theta) </tex-math></inline-formula> of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air-dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an <inline-formula> <tex-math notation="LaTeX">8 \times 8 </tex-math></inline-formula> E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design.
Author Yang, Shiwen
Xiao, Lin
Qu, Shi-Wei
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0001-7886-8123
  surname: Xiao
  fullname: Xiao, Lin
  organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Shi-Wei
  orcidid: 0000-0001-6683-9034
  surname: Qu
  fullname: Qu, Shi-Wei
  email: shiweiqu@uestc.edu.cn
  organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 3
  givenname: Shiwen
  orcidid: 0000-0002-1546-8947
  surname: Yang
  fullname: Yang, Shiwen
  organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
BookMark eNp9kE1LAzEQhoNUsFbvgpeA56352GyS49r6BQULVvS2ZNPZmtLu1mwq9F_pX-gvM6XFgwcvMwzzPjPwnKJO3dSA0AUlfUqJvp7k4z4jjPU51UJk5Ah1qRAqYYzRDuoSQlWiWfZ2gk7bdh7HVKVpF414MsRj7-oAUzx0sAAbvLN42CwB596bDc7jrq4NfnXhHW-_Fdl-4RswS_wcACI5w4PmE7yZwRk6rsyihfND76GXu9vJ4CEZPd0_DvJRYpmmITGxclpKpjMoGWhObGXklFS6UoRoqriVpTCSc5uljEmw0jCZpopX8cC05D10tb-78s3HGtpQzJu1r-PLgkkuhRSUipjK9inrm7b1UBXWBRNcUwdv3KKgpNiZK6K5YmeuOJiLIPkDrrxbGr_5D7ncIw4AfuNaCUa54j-Ctnmd
CODEN IETPAK
CitedBy_id crossref_primary_10_1109_OJAP_2024_3365039
crossref_primary_10_1109_TAP_2024_3463798
crossref_primary_10_1109_TAP_2024_3508103
crossref_primary_10_1007_s11227_024_06763_w
crossref_primary_10_1002_mop_70064
crossref_primary_10_1109_JIOT_2023_3335357
crossref_primary_10_1109_TAP_2024_3399920
crossref_primary_10_1109_OJAP_2023_3273488
crossref_primary_10_1109_ACCESS_2024_3498052
crossref_primary_10_1109_TAP_2024_3372553
crossref_primary_10_1109_TAP_2024_3487356
Cites_doi 10.1109/TAP.2015.2505703
10.1109/TAP.2018.2835575
10.1109/TAP.2015.2415516
10.1109/TAP.2020.3022960
10.1051/epjam/2016010
10.1109/JMMCT.2017.2713826
10.1109/TAP.2015.2446999
10.1109/TAP.2017.2730241
10.1109/LAWP.2021.3054042
10.1109/TAP.2006.889849
10.1109/TAP.2011.2167916
10.1109/TAP.2019.2891460
10.1109/MAP.2015.2397154
10.1109/TAP.2020.2983798
10.1109/TAP.2015.2507167
10.1109/74.370587
10.1109/ICMTCE.2013.6812439
10.1002/047178012X
10.1002/ecjb.20254
10.2528/PIER07061909
10.1109/TAP.1979.1142192
10.1109/TAP.2021.3060125
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2022.3195560
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 10503
ExternalDocumentID 10_1109_TAP_2022_3195560
9852138
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U20A20165; 61721001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-a29131b7296eb2e930cfa7d0f9f8009183c7b5a733c64227ec7a274483fc29db3
IEDL.DBID RIE
ISSN 0018-926X
IngestDate Mon Jun 30 10:16:38 EDT 2025
Tue Jul 01 03:23:06 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a29131b7296eb2e930cfa7d0f9f8009183c7b5a733c64227ec7a274483fc29db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6683-9034
0000-0002-1546-8947
0000-0001-7886-8123
PQID 2737575115
PQPubID 85476
PageCount 10
ParticipantIDs ieee_primary_9852138
crossref_citationtrail_10_1109_TAP_2022_3195560
crossref_primary_10_1109_TAP_2022_3195560
proquest_journals_2737575115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref15
ref14
ref20
ref11
ref22
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
balanis (ref23) 2016
valentino (ref21) 1973
References_xml – ident: ref24
  doi: 10.1109/TAP.2015.2505703
– ident: ref17
  doi: 10.1109/TAP.2018.2835575
– ident: ref10
  doi: 10.1109/TAP.2015.2415516
– ident: ref19
  doi: 10.1109/TAP.2020.3022960
– ident: ref9
  doi: 10.1051/epjam/2016010
– ident: ref16
  doi: 10.1109/JMMCT.2017.2713826
– ident: ref11
  doi: 10.1109/TAP.2015.2446999
– ident: ref14
  doi: 10.1109/TAP.2017.2730241
– ident: ref5
  doi: 10.1109/LAWP.2021.3054042
– ident: ref3
  doi: 10.1109/TAP.2006.889849
– ident: ref6
  doi: 10.1109/TAP.2011.2167916
– ident: ref8
  doi: 10.1109/TAP.2019.2891460
– ident: ref1
  doi: 10.1109/MAP.2015.2397154
– ident: ref4
  doi: 10.1109/TAP.2020.2983798
– ident: ref7
  doi: 10.1109/TAP.2015.2507167
– ident: ref2
  doi: 10.1109/74.370587
– ident: ref20
  doi: 10.1109/ICMTCE.2013.6812439
– year: 1973
  ident: ref21
  publication-title: Phased array fed lens antenna
– year: 2016
  ident: ref23
  publication-title: Antenna Theory Analysis and Design
– ident: ref12
  doi: 10.1002/047178012X
– ident: ref18
  doi: 10.1002/ecjb.20254
– ident: ref22
  doi: 10.2528/PIER07061909
– ident: ref15
  doi: 10.1109/TAP.1979.1142192
– ident: ref13
  doi: 10.1109/TAP.2021.3060125
SSID ssj0014844
Score 2.4730678
Snippet An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10494
SubjectTerms Antenna arrays
Antennas
Beam steering
Contours
Delays
Dielectric dome antenna
Dielectrics
Domes
Lenses
Optimization
Particle swarm optimization
Phase distribution
phased array antenna
Phased arrays
Planar arrays
scan loss mitigation
Scanning
Three dimensional printing
Ultra wideband antennas
ultrawide-angle beam scanning
Title 3-D Printed Dielectric Dome Array Antenna With ±80° Beam Steering Coverage
URI https://ieeexplore.ieee.org/document/9852138
https://www.proquest.com/docview/2737575115
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34FuuLPXgRTJvNJk32WK0ioiLYYm9hn1i0rdT0oL9K_0J_mbNJWkVFvIRAdpdlZndnvszsNwAHVGjrsss9yoXyQt2wnhDS96wfKIRjkso8Ynp13TjvhBfdqDsHR7O7MMaYPPnM1NxrHsvXQzV2v8rqPEFjw5J5mEfgVtzVmkUMwiQsGJcpbuCg0Z2GJH1ebzdvEAgGAeJTHkU5GeWnCcprqvw4iHPrcrYMV9N5FUklD7VxJmvq9Rtl438nvgJLpZtJmsW6WIU5M1iDxS_kg-twybwWuRk5vghNWr2iHk5Pkdawb7DjSLyQpstvHwhy18vuyeQ98Sdv5NiIPrnNilHIicsAxSNpAzpnp-2Tc6-sreCpgNPME_hkVKJr3UBsbTjzlRWx9i236EJy3OgqlpGIGVOIUILYqFg4MsGEWRxAS7YJlcFwYLaAWB7hJxpKtHQh1YwLG-gk0Y55EA2jrkJ9Ku5UlcTjrv7FY5oDEJ-nqKDUKSgtFVSFw1mPp4J044-2607es3alqKuwO9VoWu7K5xRdtdjFmWi0_XuvHVhwYxd3DXehko3GZg-djkzu56vtAxRm0So
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58FxEea0PXJBIG8dJEx8LBZWlRUgUbW-Rn6ICWlTSA_wq-Av8MsZJWhCg1V6iSPE4lsfjmfGMvwHYo0Jbl13uUS6UF-q69YSQvmf9QKE7JqnMI6ad83rrKvzTi3ozcDC9C2OMyZPPTNW95rF8PVRjd1RW4wkqG5b8gDnU-xEtbmtNYwZhEhaYyxRFOKj3JkFJn9e6jQt0BYMAPVQeRTkc5bsSyquqfNmKc_1ysgSdyciKtJKb6jiTVfX0CbTxf4e-DIuloUkaxcpYgRkzWIWFD_CDa9BmXpNcjBxihCbNflERp69Ic3hnkHAkHknDZbgPBPnbz67J60vivz6TQyPuyGVW9EKOXA4obkq_4OrkuHvU8srqCp4KOM08gU9GJRrXdfSuDWe-siLWvuUWjUiOoq5iGYmYMYU-ShAbFQsHJ5gwix1oydZhdjAcmA0glkf4iYYSdV1INePCBjpJtMMeRNWoK1CbTHeqSuhxVwHjNs1dEJ-nyKDUMSgtGVSB_SnFfQG78Y-2a26-p-3Kqa7A9oSjaSmXDykaa7GLNNFo83uq3zDf6nbaafv0_GwLfrr_FDcPt2E2G43NDpogmdzNV94bK_vUcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Printed+Dielectric+Dome+Array+Antenna+With+%C2%B180%C2%B0+Beam+Steering+Coverage&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Xiao%2C+Lin&rft.au=Qu%2C+Shi-Wei&rft.au=Yang%2C+Shiwen&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=70&rft.issue=11&rft.spage=10494&rft.epage=10503&rft_id=info:doi/10.1109%2FTAP.2022.3195560&rft.externalDocID=9852138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon