3-D Printed Dielectric Dome Array Antenna With ±80° Beam Steering Coverage
An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inli...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 70; no. 11; pp. 10494 - 10503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inline-formula> <tex-math notation="LaTeX">\phi (\theta) </tex-math></inline-formula> over a dome surface <inline-formula> <tex-math notation="LaTeX">r(\theta) </tex-math></inline-formula>. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor <inline-formula> <tex-math notation="LaTeX">K(\theta) </tex-math></inline-formula> of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air-dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an <inline-formula> <tex-math notation="LaTeX">8 \times 8 </tex-math></inline-formula> E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design. |
---|---|
AbstractList | An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution [Formula Omitted] over a dome surface [Formula Omitted]. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor [Formula Omitted] of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air–dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an [Formula Omitted] E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design. An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using optimization tools, the inner and outer contours of the dielectric dome lens (DDL) are determined by the derived phase distribution <inline-formula> <tex-math notation="LaTeX">\phi (\theta) </tex-math></inline-formula> over a dome surface <inline-formula> <tex-math notation="LaTeX">r(\theta) </tex-math></inline-formula>. The scan gain of the DDA can be manipulated by properly choosing the defined scan amplification factor <inline-formula> <tex-math notation="LaTeX">K(\theta) </tex-math></inline-formula> of the DDL. After determining the contours of the DDL, two finite-by-infinite 1-D DDA models are constructed to predict the E- and H-plane scanning performances, respectively, wherein both the full-wave performances of feed array and the effect of multiple reflections at the air-dielectric interfaces are considered. Since the phase distribution over the planar array is nonlinear due to the presence of the DDL, the array excitation phases are optimized by the particle swarm optimization (PSO) method with the optimization goal of the maximum gain at each scan angle. As a proof of concept, a 3-D printed DDL fed by an <inline-formula> <tex-math notation="LaTeX">8 \times 8 </tex-math></inline-formula> E-shaped patch array at 20 GHz is manufactured and tested. When combined with the DDL, a ±60° scan range of the planar array can be extended to ±80° with relatively flat scan gain. The experimental results are in acceptable agreement with simulations, verifying the feasibility of the DDL design. |
Author | Yang, Shiwen Xiao, Lin Qu, Shi-Wei |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0001-7886-8123 surname: Xiao fullname: Xiao, Lin organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Shi-Wei orcidid: 0000-0001-6683-9034 surname: Qu fullname: Qu, Shi-Wei email: shiweiqu@uestc.edu.cn organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Shiwen orcidid: 0000-0002-1546-8947 surname: Yang fullname: Yang, Shiwen organization: School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China |
BookMark | eNp9kE1LAzEQhoNUsFbvgpeA56352GyS49r6BQULVvS2ZNPZmtLu1mwq9F_pX-gvM6XFgwcvMwzzPjPwnKJO3dSA0AUlfUqJvp7k4z4jjPU51UJk5Ah1qRAqYYzRDuoSQlWiWfZ2gk7bdh7HVKVpF414MsRj7-oAUzx0sAAbvLN42CwB596bDc7jrq4NfnXhHW-_Fdl-4RswS_wcACI5w4PmE7yZwRk6rsyihfND76GXu9vJ4CEZPd0_DvJRYpmmITGxclpKpjMoGWhObGXklFS6UoRoqriVpTCSc5uljEmw0jCZpopX8cC05D10tb-78s3HGtpQzJu1r-PLgkkuhRSUipjK9inrm7b1UBXWBRNcUwdv3KKgpNiZK6K5YmeuOJiLIPkDrrxbGr_5D7ncIw4AfuNaCUa54j-Ctnmd |
CODEN | IETPAK |
CitedBy_id | crossref_primary_10_1109_OJAP_2024_3365039 crossref_primary_10_1109_TAP_2024_3463798 crossref_primary_10_1109_TAP_2024_3508103 crossref_primary_10_1007_s11227_024_06763_w crossref_primary_10_1002_mop_70064 crossref_primary_10_1109_JIOT_2023_3335357 crossref_primary_10_1109_TAP_2024_3399920 crossref_primary_10_1109_OJAP_2023_3273488 crossref_primary_10_1109_ACCESS_2024_3498052 crossref_primary_10_1109_TAP_2024_3372553 crossref_primary_10_1109_TAP_2024_3487356 |
Cites_doi | 10.1109/TAP.2015.2505703 10.1109/TAP.2018.2835575 10.1109/TAP.2015.2415516 10.1109/TAP.2020.3022960 10.1051/epjam/2016010 10.1109/JMMCT.2017.2713826 10.1109/TAP.2015.2446999 10.1109/TAP.2017.2730241 10.1109/LAWP.2021.3054042 10.1109/TAP.2006.889849 10.1109/TAP.2011.2167916 10.1109/TAP.2019.2891460 10.1109/MAP.2015.2397154 10.1109/TAP.2020.2983798 10.1109/TAP.2015.2507167 10.1109/74.370587 10.1109/ICMTCE.2013.6812439 10.1002/047178012X 10.1002/ecjb.20254 10.2528/PIER07061909 10.1109/TAP.1979.1142192 10.1109/TAP.2021.3060125 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TAP.2022.3195560 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2221 |
EndPage | 10503 |
ExternalDocumentID | 10_1109_TAP_2022_3195560 9852138 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: U20A20165; 61721001 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-a29131b7296eb2e930cfa7d0f9f8009183c7b5a733c64227ec7a274483fc29db3 |
IEDL.DBID | RIE |
ISSN | 0018-926X |
IngestDate | Mon Jun 30 10:16:38 EDT 2025 Tue Jul 01 03:23:06 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Wed Aug 27 02:14:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a29131b7296eb2e930cfa7d0f9f8009183c7b5a733c64227ec7a274483fc29db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6683-9034 0000-0002-1546-8947 0000-0001-7886-8123 |
PQID | 2737575115 |
PQPubID | 85476 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9852138 crossref_citationtrail_10_1109_TAP_2022_3195560 crossref_primary_10_1109_TAP_2022_3195560 proquest_journals_2737575115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on antennas and propagation |
PublicationTitleAbbrev | TAP |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref12 ref15 ref14 ref20 ref11 ref22 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 balanis (ref23) 2016 valentino (ref21) 1973 |
References_xml | – ident: ref24 doi: 10.1109/TAP.2015.2505703 – ident: ref17 doi: 10.1109/TAP.2018.2835575 – ident: ref10 doi: 10.1109/TAP.2015.2415516 – ident: ref19 doi: 10.1109/TAP.2020.3022960 – ident: ref9 doi: 10.1051/epjam/2016010 – ident: ref16 doi: 10.1109/JMMCT.2017.2713826 – ident: ref11 doi: 10.1109/TAP.2015.2446999 – ident: ref14 doi: 10.1109/TAP.2017.2730241 – ident: ref5 doi: 10.1109/LAWP.2021.3054042 – ident: ref3 doi: 10.1109/TAP.2006.889849 – ident: ref6 doi: 10.1109/TAP.2011.2167916 – ident: ref8 doi: 10.1109/TAP.2019.2891460 – ident: ref1 doi: 10.1109/MAP.2015.2397154 – ident: ref4 doi: 10.1109/TAP.2020.2983798 – ident: ref7 doi: 10.1109/TAP.2015.2507167 – ident: ref2 doi: 10.1109/74.370587 – ident: ref20 doi: 10.1109/ICMTCE.2013.6812439 – year: 1973 ident: ref21 publication-title: Phased array fed lens antenna – year: 2016 ident: ref23 publication-title: Antenna Theory Analysis and Design – ident: ref12 doi: 10.1002/047178012X – ident: ref18 doi: 10.1002/ecjb.20254 – ident: ref22 doi: 10.2528/PIER07061909 – ident: ref15 doi: 10.1109/TAP.1979.1142192 – ident: ref13 doi: 10.1109/TAP.2021.3060125 |
SSID | ssj0014844 |
Score | 2.4730678 |
Snippet | An efficient design of a 3-D printed dielectric dome array (DDA) antenna featuring ultrawide-angle beam scanning is presented in this article. Instead of using... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10494 |
SubjectTerms | Antenna arrays Antennas Beam steering Contours Delays Dielectric dome antenna Dielectrics Domes Lenses Optimization Particle swarm optimization Phase distribution phased array antenna Phased arrays Planar arrays scan loss mitigation Scanning Three dimensional printing Ultra wideband antennas ultrawide-angle beam scanning |
Title | 3-D Printed Dielectric Dome Array Antenna With ±80° Beam Steering Coverage |
URI | https://ieeexplore.ieee.org/document/9852138 https://www.proquest.com/docview/2737575115 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34FuuLPXgRTJvNJk32WK0ioiLYYm9hn1i0rdT0oL9K_0J_mbNJWkVFvIRAdpdlZndnvszsNwAHVGjrsss9yoXyQt2wnhDS96wfKIRjkso8Ynp13TjvhBfdqDsHR7O7MMaYPPnM1NxrHsvXQzV2v8rqPEFjw5J5mEfgVtzVmkUMwiQsGJcpbuCg0Z2GJH1ebzdvEAgGAeJTHkU5GeWnCcprqvw4iHPrcrYMV9N5FUklD7VxJmvq9Rtl438nvgJLpZtJmsW6WIU5M1iDxS_kg-twybwWuRk5vghNWr2iHk5Pkdawb7DjSLyQpstvHwhy18vuyeQ98Sdv5NiIPrnNilHIicsAxSNpAzpnp-2Tc6-sreCpgNPME_hkVKJr3UBsbTjzlRWx9i236EJy3OgqlpGIGVOIUILYqFg4MsGEWRxAS7YJlcFwYLaAWB7hJxpKtHQh1YwLG-gk0Y55EA2jrkJ9Ku5UlcTjrv7FY5oDEJ-nqKDUKSgtFVSFw1mPp4J044-2607es3alqKuwO9VoWu7K5xRdtdjFmWi0_XuvHVhwYxd3DXehko3GZg-djkzu56vtAxRm0So |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58FxEea0PXJBIG8dJEx8LBZWlRUgUbW-Rn6ICWlTSA_wq-Av8MsZJWhCg1V6iSPE4lsfjmfGMvwHYo0Jbl13uUS6UF-q69YSQvmf9QKE7JqnMI6ad83rrKvzTi3ozcDC9C2OMyZPPTNW95rF8PVRjd1RW4wkqG5b8gDnU-xEtbmtNYwZhEhaYyxRFOKj3JkFJn9e6jQt0BYMAPVQeRTkc5bsSyquqfNmKc_1ysgSdyciKtJKb6jiTVfX0CbTxf4e-DIuloUkaxcpYgRkzWIWFD_CDa9BmXpNcjBxihCbNflERp69Ic3hnkHAkHknDZbgPBPnbz67J60vivz6TQyPuyGVW9EKOXA4obkq_4OrkuHvU8srqCp4KOM08gU9GJRrXdfSuDWe-siLWvuUWjUiOoq5iGYmYMYU-ShAbFQsHJ5gwix1oydZhdjAcmA0glkf4iYYSdV1INePCBjpJtMMeRNWoK1CbTHeqSuhxVwHjNs1dEJ-nyKDUMSgtGVSB_SnFfQG78Y-2a26-p-3Kqa7A9oSjaSmXDykaa7GLNNFo83uq3zDf6nbaafv0_GwLfrr_FDcPt2E2G43NDpogmdzNV94bK_vUcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Printed+Dielectric+Dome+Array+Antenna+With+%C2%B180%C2%B0+Beam+Steering+Coverage&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Xiao%2C+Lin&rft.au=Qu%2C+Shi-Wei&rft.au=Yang%2C+Shiwen&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=0018-926X&rft.volume=70&rft.issue=11&rft.spage=10494&rft.epage=10503&rft_id=info:doi/10.1109%2FTAP.2022.3195560&rft.externalDocID=9852138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |