Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles Using Deep Reinforcement Learning With Action Trimming

As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 7; pp. 7171 - 7185
Main Authors Fu, Zhumu, Wang, Haocong, Tao, Fazhan, Ji, Baofeng, Dong, Yongsheng, Song, Shuzhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>.
AbstractList As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>.
As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7[Formula Omitted].
Author Dong, Yongsheng
Tao, Fazhan
Ji, Baofeng
Song, Shuzhong
Wang, Haocong
Fu, Zhumu
Author_xml – sequence: 1
  givenname: Zhumu
  orcidid: 0000-0002-2573-3062
  surname: Fu
  fullname: Fu, Zhumu
  email: fuzhumu@haust.edu.cn
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 2
  givenname: Haocong
  orcidid: 0000-0001-8219-7924
  surname: Wang
  fullname: Wang, Haocong
  email: 1183220754@qq.com
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 3
  givenname: Fazhan
  orcidid: 0000-0001-6721-5354
  surname: Tao
  fullname: Tao, Fazhan
  email: taofazhan@haust.edu.cn
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 4
  givenname: Baofeng
  orcidid: 0000-0001-8021-126X
  surname: Ji
  fullname: Ji, Baofeng
  email: fengbaoji@126.com
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 5
  givenname: Yongsheng
  orcidid: 0000-0002-6281-9658
  surname: Dong
  fullname: Dong, Yongsheng
  email: dongyongsheng98@163.com
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 6
  givenname: Shuzhong
  surname: Song
  fullname: Song, Shuzhong
  email: sszhong@haust.edu.cn
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China
BookMark eNp9kD1PwzAQhi0EEi2wI7FYYk7rj3zYYyktIBUhQVvGyHEuxSh1iuMO-RX8ZRy1YmBgOt3d8772vUN0ahsLCF1TMqKUyPFyvRwxwtiI01SIjJygAZVcRpIn8hQNCKEikkmcnKNh236GNo4lHaDvmQW36fCzsmoDW7Aev3mnPIRZ1Tg830ONp1DX4zvlPbhuvKrDXqud0sYH4LErnCnxrAbtndF4DR9G19DiVWvsBt8D7PArGBvM9MF_AcrZfvdu_AeeaG8ai5fObLdheInOKlW3cHWsF2g1ny2nj9Hi5eFpOllEmknqI0U1MJYUiiaESZFmRBYZJbzIVCWqUsQF1XGpJSkFk0B0XPGiEizNkrJMeUH5Bbo9-O5c87WH1uefzd7Z8GTOUiEFETHhgUoPlHZN2zqo8nC06j8cMjB1Tkneh5-H8PM-_PwYfhCSP8JdOFC57j_JzUFiAOAXl1naU_wHVNWTnw
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_energy_2024_132531
crossref_primary_10_1109_TTE_2023_3234994
crossref_primary_10_1002_rnc_7713
crossref_primary_10_1016_j_engappai_2023_106685
crossref_primary_10_1016_j_ijhydene_2023_05_311
crossref_primary_10_3390_machines11040454
crossref_primary_10_1109_TTE_2024_3377809
crossref_primary_10_1007_s00521_024_10488_5
crossref_primary_10_1186_s10033_024_01026_4
crossref_primary_10_1016_j_enconman_2023_117921
crossref_primary_10_1016_j_est_2024_114437
crossref_primary_10_1109_TEC_2024_3426103
crossref_primary_10_1109_JESTPE_2024_3418557
crossref_primary_10_1109_TITS_2024_3368149
crossref_primary_10_1016_j_ijhydene_2022_06_088
crossref_primary_10_1016_j_engappai_2024_107880
crossref_primary_10_1016_j_ijhydene_2023_07_039
crossref_primary_10_1016_j_jpowsour_2024_234674
crossref_primary_10_1016_j_apenergy_2023_121358
crossref_primary_10_1080_15567036_2024_2302951
crossref_primary_10_1109_TITS_2022_3233564
crossref_primary_10_1002_est2_511
crossref_primary_10_1016_j_apenergy_2023_122228
crossref_primary_10_1016_j_ifacol_2024_11_173
crossref_primary_10_1016_j_egyr_2025_02_038
crossref_primary_10_1016_j_ijhydene_2024_12_499
crossref_primary_10_1109_TII_2024_3435359
crossref_primary_10_1109_TTE_2024_3432284
crossref_primary_10_3389_fenrg_2023_1130401
crossref_primary_10_1016_j_apenergy_2024_123080
crossref_primary_10_1016_j_ijhydene_2024_10_192
crossref_primary_10_1109_TASE_2024_3411305
crossref_primary_10_1016_j_energy_2023_128462
crossref_primary_10_1109_TTE_2024_3400020
crossref_primary_10_3390_a18020080
crossref_primary_10_1109_TSG_2024_3460486
crossref_primary_10_1109_TTE_2023_3295651
crossref_primary_10_1016_j_apenergy_2024_124653
crossref_primary_10_1109_ACCESS_2022_3208365
crossref_primary_10_1002_cta_3656
crossref_primary_10_1038_s41598_024_55988_5
crossref_primary_10_1109_TTE_2024_3442689
crossref_primary_10_1109_ACCESS_2024_3493915
crossref_primary_10_3390_wevj13090172
crossref_primary_10_1016_j_epsr_2023_109235
crossref_primary_10_1016_j_renene_2024_120708
crossref_primary_10_1109_ACCESS_2024_3434994
Cites_doi 10.1016/j.jpowsour.2019.227024
10.1016/j.apenergy.2016.02.026
10.1016/j.rser.2020.110648
10.1109/TPWRS.2018.2881359
10.1016/j.energy.2020.117591
10.1109/TPEL.2019.2915675
10.1109/TVT.2020.3031000
10.1016/j.apenergy.2019.113708
10.1016/j.enconman.2020.112474
10.1109/TIE.2015.2475419
10.1016/j.apenergy.2018.03.104
10.1016/j.jpowsour.2020.227964
10.1109/TVT.2019.2950558
10.1109/TVT.2019.2937130
10.1109/TVT.2020.3034800
10.1016/j.enconman.2019.03.090
10.1016/j.promfg.2020.10.203
10.1016/j.apenergy.2014.08.035
10.1016/j.apenergy.2019.113597
10.1016/j.apenergy.2019.113762
10.1016/j.jpowsour.2017.08.107
10.1016/j.apenergy.2014.12.062
10.1109/TVT.2019.2897134
10.1016/j.energy.2018.07.022
10.1109/TVT.2017.2715178
10.1016/j.ijhydene.2013.05.125
10.1016/j.est.2021.102355
10.1109/TVT.2021.3078752
10.1109/TVT.2019.2941523
10.1016/j.ijhydene.2019.06.158
10.1016/j.energy.2015.11.075
10.1016/j.ijhydene.2020.01.017
10.1109/TVT.2005.847445
10.1109/TIE.2013.2257152
10.1109/TVT.2020.3034454
10.1109/TITS.2019.2963785
10.1016/j.apenergy.2016.03.082
10.1016/j.ijhydene.2019.01.190
10.1109/TVT.2010.2047877
10.1109/TVT.2014.2352357
10.1109/TVT.2021.3051201
10.1016/j.jpowsour.2016.11.106
10.1016/j.jpowsour.2018.05.078
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3168870
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 7185
ExternalDocumentID 10_1109_TVT_2022_3168870
9762022
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Henan Province
  grantid: 202300410149
  funderid: 10.13039/501100006407
– fundername: National Natural Science Foundation of China
  grantid: 61473115
  funderid: 10.13039/501100001809
– fundername: Scientific and Technological project of Henan Province
  grantid: 222102240009
– fundername: Henan Provience talent introduction plan
  grantid: HNGD2021042
– fundername: Key Scientific Research Projects of Universities in Henan Province
  grantid: 20A120008; 22A413002
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-a1ce225ba1502986709b7103b7af8fd84b1c4dc90d829e0c4f3bf82675dd63b13
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:23:02 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 01:44:17 EDT 2025
Wed Aug 27 02:25:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-a1ce225ba1502986709b7103b7af8fd84b1c4dc90d829e0c4f3bf82675dd63b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8021-126X
0000-0001-8219-7924
0000-0002-2573-3062
0000-0001-6721-5354
0000-0002-6281-9658
PQID 2689808403
PQPubID 85454
PageCount 15
ParticipantIDs proquest_journals_2689808403
ieee_primary_9762022
crossref_citationtrail_10_1109_TVT_2022_3168870
crossref_primary_10_1109_TVT_2022_3168870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref22
  doi: 10.1016/j.jpowsour.2019.227024
– ident: ref24
  doi: 10.1016/j.apenergy.2016.02.026
– ident: ref1
  doi: 10.1016/j.rser.2020.110648
– ident: ref32
  doi: 10.1109/TPWRS.2018.2881359
– ident: ref33
  doi: 10.1016/j.energy.2020.117591
– ident: ref25
  doi: 10.1109/TPEL.2019.2915675
– ident: ref5
  doi: 10.1109/TVT.2020.3031000
– ident: ref39
  doi: 10.1016/j.apenergy.2019.113708
– ident: ref12
  doi: 10.1016/j.enconman.2020.112474
– ident: ref28
  doi: 10.1109/TIE.2015.2475419
– ident: ref38
  doi: 10.1016/j.apenergy.2018.03.104
– ident: ref31
  doi: 10.1016/j.jpowsour.2020.227964
– ident: ref14
  doi: 10.1109/TVT.2019.2950558
– ident: ref20
  doi: 10.1109/TVT.2019.2937130
– ident: ref36
  doi: 10.1109/TVT.2020.3034800
– ident: ref18
  doi: 10.1016/j.enconman.2019.03.090
– ident: ref34
  doi: 10.1016/j.promfg.2020.10.203
– ident: ref16
  doi: 10.1016/j.apenergy.2014.08.035
– ident: ref2
  doi: 10.1016/j.apenergy.2019.113597
– ident: ref11
  doi: 10.1016/j.apenergy.2019.113762
– ident: ref8
  doi: 10.1016/j.jpowsour.2017.08.107
– ident: ref41
  doi: 10.1016/j.apenergy.2014.12.062
– ident: ref35
  doi: 10.1109/TVT.2019.2897134
– ident: ref30
  doi: 10.1016/j.energy.2018.07.022
– ident: ref7
  doi: 10.1109/TVT.2017.2715178
– ident: ref21
  doi: 10.1016/j.ijhydene.2013.05.125
– ident: ref37
  doi: 10.1016/j.est.2021.102355
– ident: ref9
  doi: 10.1109/TVT.2021.3078752
– ident: ref23
  doi: 10.1109/TVT.2019.2941523
– ident: ref6
  doi: 10.1016/j.ijhydene.2019.06.158
– ident: ref43
  doi: 10.1016/j.energy.2015.11.075
– ident: ref10
  doi: 10.1016/j.ijhydene.2020.01.017
– ident: ref3
  doi: 10.1109/TVT.2005.847445
– ident: ref15
  doi: 10.1109/TIE.2013.2257152
– ident: ref13
  doi: 10.1109/TVT.2020.3034454
– ident: ref27
  doi: 10.1109/TITS.2019.2963785
– ident: ref29
  doi: 10.1016/j.apenergy.2016.03.082
– ident: ref40
  doi: 10.1016/j.ijhydene.2019.01.190
– ident: ref4
  doi: 10.1109/TVT.2010.2047877
– ident: ref19
  doi: 10.1109/TVT.2014.2352357
– ident: ref26
  doi: 10.1109/TVT.2021.3051201
– ident: ref17
  doi: 10.1016/j.jpowsour.2016.11.106
– ident: ref42
  doi: 10.1016/j.jpowsour.2018.05.078
SSID ssj0014491
Score 2.6019394
Snippet As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7171
SubjectTerms Adaptive control
Adaptive filters
Consumption
Dater driven
Deep learning
deep reinforcement learning
Dynamic programming
Electric vehicles
Energy efficiency
Energy management
energy management strategy
fuel cell hybrid electric vehicle
Fuel cells
Fuel consumption
Fuel economy
Fuzzy control
heuristic technique
Hybrid electric vehicles
Hydrogen
Life span
Machine learning
Optimization
Power consumption
Power management
Power sources
Real-time systems
Structural hierarchy
Supercapacitors
Topology
Trimming
Vehicle dynamics
Voltage
Title Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles Using Deep Reinforcement Learning With Action Trimming
URI https://ieeexplore.ieee.org/document/9762022
https://www.proquest.com/docview/2689808403
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxYk8nZTe0TQqkKCAbXAFsX2BSrSgko6lD_BX-bsuAUBQkyJEjuycvbdd_bdd4Qch1pLNKQtL9Uy9xiLtWdQq4cISeSFVEIykzt8dZ12--zyvnm_QE7nuTAAYIPPwDe39ixfP6uJ2SoL0HSir44KdxEdtzpXa35iwJirjhfhAkZYMDuSDEXQu-35pp9vijRxU5b4iwmyNVV-KGJrXTpr5Go2rjqo5MmfVNJXb98oG_878HWy6mAmPavnxQZZgNEmWflCPrhF3ts27Y9-BsBQR1U7pYhkaWcCJT2HsgxqDs5p0C_xvULrqlANjGl3arK9aNsW0hkoeguPNsaO2jAEegHwQm_AMrOq-vuOzPWB3g2qR3pmUypobzwYDvHhNul32r3zrufKM3gqFlHl5ZEC1AYyR0wZC26I4CTilUS28oIXmjMZKaaVCDWPBYSKFYks0JtpNbVOExklO2Rp9DyCXUJlzFOZc4RqUcGAAc_TQqMVaYJOFQjeIMFMYply3OWmhEaZWR8mFBnKODO_OHMybpCTeY-Xmrfjj7ZbRmTzdk5aDXIwmxSZW9ivWZxywUP0ipO933vtk2VzqSN6D8hSNZ7AIeKWSh7ZCfsBASTsWg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7aFwKJSCCBTqAxck9tvZ2MeqJAql6QFtSm-rtT1Lo27TKmwO6Z_gLzP2OqEChLitvPbK2rFn3tgzbwDexcYoMqSDIDeqCjhPTWBRa0AISVa10lJxmzs8Oc_HU3562b_cgg-bXBhEdMFnGNpHd5dvbvXSHpVFZDrJVyeFu0N2v5922VqbOwPOfX28hLYwdVhfSsYyKi6K0I4MbZkmYQsTPzBCrqrKH6rY2ZfRE5isZ9aFlVyHy1aF-v430sb_nfpT2PNAkx13K2MftnD-DB4_oB88gB9Dl_jHfoXAME9Wu2KEZdloiQ07waaJOhbOVTRt6L0m-6pJESzYeGXzvdjQldKZaXaBVy7KjrlABPYR8Y59QcfNqrvvezrXb-zrrL1ixy6pghWL2c0NNT6H6WhYnIwDX6Ah0KlM2qBKNJI-UBWhylQKSwWnCLFkalDVojaCq0Rzo2VsRCox1rzOVE3-zKBvTJ6pJHsB2_PbOb4EplKRq0oQWEtqjhxFldeG7EgfTa5Rih5Ea4mV2rOX2yIaTem8mFiWJOPS_uLSy7gH7zcj7jrmjn_0PbAi2_Tz0urB4XpRlH5rfy_TXEgRk1-cvfr7qCPYHReTs_Ls0_nn1_DINnXxvYew3S6W-IZQTKveusX7E3qX76Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Management+Strategy+for+Fuel+Cell%2FBattery%2FUltracapacitor+Hybrid+Electric+Vehicles+Using+Deep+Reinforcement+Learning+With+Action+Trimming&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Fu%2C+Zhumu&rft.au=Wang%2C+Haocong&rft.au=Tao%2C+Fazhan&rft.au=Ji%2C+Baofeng&rft.date=2022-07-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=7&rft.spage=7171&rft.epage=7185&rft_id=info:doi/10.1109%2FTVT.2022.3168870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3168870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon