Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles Using Deep Reinforcement Learning With Action Trimming
As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 7; pp. 7171 - 7185 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. |
---|---|
AbstractList | As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>. As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different characteristics of three power sources induce challenges in energy management for fuel economy, power sources lifespan, and dynamic performance of the vehicle. In this paper, an energy management strategy (EMS) based on a hierarchical power splitting structure and deep reinforcement learning (DRL) is proposed. In the higher layer strategy of the proposed EMS, the UC is employed to supply peak power and recover braking energy through the adaptive filter based on fuzzy control. Then, the integrated DRL and equivalent consumption minimization strategy framework is proposed to optimize the power allocation of fuel cell (FC) and BAT in the lower layer, to ensure the highly efficient operation of FC and reduce hydrogen consumption. And the action trimming based on heuristic technique is proposed to further restrain the adverse effect of sudden peak power on FC lifespan. The simulation results show the proposed EMS can make the output of FC smoother, improve its working efficiency to alleviate the stress of BAT, and increase by 14.8% compared with the Q-learning strategy in fuel economy under WLTP driving cycle. Meanwhile, the obtained results under UDDSHDV show fuel economy of the proposed EMS can reach dynamic programming (DP) benchmark level of 89.7[Formula Omitted]. |
Author | Dong, Yongsheng Tao, Fazhan Ji, Baofeng Song, Shuzhong Wang, Haocong Fu, Zhumu |
Author_xml | – sequence: 1 givenname: Zhumu orcidid: 0000-0002-2573-3062 surname: Fu fullname: Fu, Zhumu email: fuzhumu@haust.edu.cn organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 2 givenname: Haocong orcidid: 0000-0001-8219-7924 surname: Wang fullname: Wang, Haocong email: 1183220754@qq.com organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 3 givenname: Fazhan orcidid: 0000-0001-6721-5354 surname: Tao fullname: Tao, Fazhan email: taofazhan@haust.edu.cn organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 4 givenname: Baofeng orcidid: 0000-0001-8021-126X surname: Ji fullname: Ji, Baofeng email: fengbaoji@126.com organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 5 givenname: Yongsheng orcidid: 0000-0002-6281-9658 surname: Dong fullname: Dong, Yongsheng email: dongyongsheng98@163.com organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 6 givenname: Shuzhong surname: Song fullname: Song, Shuzhong email: sszhong@haust.edu.cn organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, China |
BookMark | eNp9kD1PwzAQhi0EEi2wI7FYYk7rj3zYYyktIBUhQVvGyHEuxSh1iuMO-RX8ZRy1YmBgOt3d8772vUN0ahsLCF1TMqKUyPFyvRwxwtiI01SIjJygAZVcRpIn8hQNCKEikkmcnKNh236GNo4lHaDvmQW36fCzsmoDW7Aev3mnPIRZ1Tg830ONp1DX4zvlPbhuvKrDXqud0sYH4LErnCnxrAbtndF4DR9G19DiVWvsBt8D7PArGBvM9MF_AcrZfvdu_AeeaG8ai5fObLdheInOKlW3cHWsF2g1ny2nj9Hi5eFpOllEmknqI0U1MJYUiiaESZFmRBYZJbzIVCWqUsQF1XGpJSkFk0B0XPGiEizNkrJMeUH5Bbo9-O5c87WH1uefzd7Z8GTOUiEFETHhgUoPlHZN2zqo8nC06j8cMjB1Tkneh5-H8PM-_PwYfhCSP8JdOFC57j_JzUFiAOAXl1naU_wHVNWTnw |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_132531 crossref_primary_10_1109_TTE_2023_3234994 crossref_primary_10_1002_rnc_7713 crossref_primary_10_1016_j_engappai_2023_106685 crossref_primary_10_1016_j_ijhydene_2023_05_311 crossref_primary_10_3390_machines11040454 crossref_primary_10_1109_TTE_2024_3377809 crossref_primary_10_1007_s00521_024_10488_5 crossref_primary_10_1186_s10033_024_01026_4 crossref_primary_10_1016_j_enconman_2023_117921 crossref_primary_10_1016_j_est_2024_114437 crossref_primary_10_1109_TEC_2024_3426103 crossref_primary_10_1109_JESTPE_2024_3418557 crossref_primary_10_1109_TITS_2024_3368149 crossref_primary_10_1016_j_ijhydene_2022_06_088 crossref_primary_10_1016_j_engappai_2024_107880 crossref_primary_10_1016_j_ijhydene_2023_07_039 crossref_primary_10_1016_j_jpowsour_2024_234674 crossref_primary_10_1016_j_apenergy_2023_121358 crossref_primary_10_1080_15567036_2024_2302951 crossref_primary_10_1109_TITS_2022_3233564 crossref_primary_10_1002_est2_511 crossref_primary_10_1016_j_apenergy_2023_122228 crossref_primary_10_1016_j_ifacol_2024_11_173 crossref_primary_10_1016_j_egyr_2025_02_038 crossref_primary_10_1016_j_ijhydene_2024_12_499 crossref_primary_10_1109_TII_2024_3435359 crossref_primary_10_1109_TTE_2024_3432284 crossref_primary_10_3389_fenrg_2023_1130401 crossref_primary_10_1016_j_apenergy_2024_123080 crossref_primary_10_1016_j_ijhydene_2024_10_192 crossref_primary_10_1109_TASE_2024_3411305 crossref_primary_10_1016_j_energy_2023_128462 crossref_primary_10_1109_TTE_2024_3400020 crossref_primary_10_3390_a18020080 crossref_primary_10_1109_TSG_2024_3460486 crossref_primary_10_1109_TTE_2023_3295651 crossref_primary_10_1016_j_apenergy_2024_124653 crossref_primary_10_1109_ACCESS_2022_3208365 crossref_primary_10_1002_cta_3656 crossref_primary_10_1038_s41598_024_55988_5 crossref_primary_10_1109_TTE_2024_3442689 crossref_primary_10_1109_ACCESS_2024_3493915 crossref_primary_10_3390_wevj13090172 crossref_primary_10_1016_j_epsr_2023_109235 crossref_primary_10_1016_j_renene_2024_120708 crossref_primary_10_1109_ACCESS_2024_3434994 |
Cites_doi | 10.1016/j.jpowsour.2019.227024 10.1016/j.apenergy.2016.02.026 10.1016/j.rser.2020.110648 10.1109/TPWRS.2018.2881359 10.1016/j.energy.2020.117591 10.1109/TPEL.2019.2915675 10.1109/TVT.2020.3031000 10.1016/j.apenergy.2019.113708 10.1016/j.enconman.2020.112474 10.1109/TIE.2015.2475419 10.1016/j.apenergy.2018.03.104 10.1016/j.jpowsour.2020.227964 10.1109/TVT.2019.2950558 10.1109/TVT.2019.2937130 10.1109/TVT.2020.3034800 10.1016/j.enconman.2019.03.090 10.1016/j.promfg.2020.10.203 10.1016/j.apenergy.2014.08.035 10.1016/j.apenergy.2019.113597 10.1016/j.apenergy.2019.113762 10.1016/j.jpowsour.2017.08.107 10.1016/j.apenergy.2014.12.062 10.1109/TVT.2019.2897134 10.1016/j.energy.2018.07.022 10.1109/TVT.2017.2715178 10.1016/j.ijhydene.2013.05.125 10.1016/j.est.2021.102355 10.1109/TVT.2021.3078752 10.1109/TVT.2019.2941523 10.1016/j.ijhydene.2019.06.158 10.1016/j.energy.2015.11.075 10.1016/j.ijhydene.2020.01.017 10.1109/TVT.2005.847445 10.1109/TIE.2013.2257152 10.1109/TVT.2020.3034454 10.1109/TITS.2019.2963785 10.1016/j.apenergy.2016.03.082 10.1016/j.ijhydene.2019.01.190 10.1109/TVT.2010.2047877 10.1109/TVT.2014.2352357 10.1109/TVT.2021.3051201 10.1016/j.jpowsour.2016.11.106 10.1016/j.jpowsour.2018.05.078 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2022.3168870 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 7185 |
ExternalDocumentID | 10_1109_TVT_2022_3168870 9762022 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Henan Province grantid: 202300410149 funderid: 10.13039/501100006407 – fundername: National Natural Science Foundation of China grantid: 61473115 funderid: 10.13039/501100001809 – fundername: Scientific and Technological project of Henan Province grantid: 222102240009 – fundername: Henan Provience talent introduction plan grantid: HNGD2021042 – fundername: Key Scientific Research Projects of Universities in Henan Province grantid: 20A120008; 22A413002 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-a1ce225ba1502986709b7103b7af8fd84b1c4dc90d829e0c4f3bf82675dd63b13 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:23:02 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 01:44:17 EDT 2025 Wed Aug 27 02:25:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-a1ce225ba1502986709b7103b7af8fd84b1c4dc90d829e0c4f3bf82675dd63b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8021-126X 0000-0001-8219-7924 0000-0002-2573-3062 0000-0001-6721-5354 0000-0002-6281-9658 |
PQID | 2689808403 |
PQPubID | 85454 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2689808403 ieee_primary_9762022 crossref_citationtrail_10_1109_TVT_2022_3168870 crossref_primary_10_1109_TVT_2022_3168870 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref22 doi: 10.1016/j.jpowsour.2019.227024 – ident: ref24 doi: 10.1016/j.apenergy.2016.02.026 – ident: ref1 doi: 10.1016/j.rser.2020.110648 – ident: ref32 doi: 10.1109/TPWRS.2018.2881359 – ident: ref33 doi: 10.1016/j.energy.2020.117591 – ident: ref25 doi: 10.1109/TPEL.2019.2915675 – ident: ref5 doi: 10.1109/TVT.2020.3031000 – ident: ref39 doi: 10.1016/j.apenergy.2019.113708 – ident: ref12 doi: 10.1016/j.enconman.2020.112474 – ident: ref28 doi: 10.1109/TIE.2015.2475419 – ident: ref38 doi: 10.1016/j.apenergy.2018.03.104 – ident: ref31 doi: 10.1016/j.jpowsour.2020.227964 – ident: ref14 doi: 10.1109/TVT.2019.2950558 – ident: ref20 doi: 10.1109/TVT.2019.2937130 – ident: ref36 doi: 10.1109/TVT.2020.3034800 – ident: ref18 doi: 10.1016/j.enconman.2019.03.090 – ident: ref34 doi: 10.1016/j.promfg.2020.10.203 – ident: ref16 doi: 10.1016/j.apenergy.2014.08.035 – ident: ref2 doi: 10.1016/j.apenergy.2019.113597 – ident: ref11 doi: 10.1016/j.apenergy.2019.113762 – ident: ref8 doi: 10.1016/j.jpowsour.2017.08.107 – ident: ref41 doi: 10.1016/j.apenergy.2014.12.062 – ident: ref35 doi: 10.1109/TVT.2019.2897134 – ident: ref30 doi: 10.1016/j.energy.2018.07.022 – ident: ref7 doi: 10.1109/TVT.2017.2715178 – ident: ref21 doi: 10.1016/j.ijhydene.2013.05.125 – ident: ref37 doi: 10.1016/j.est.2021.102355 – ident: ref9 doi: 10.1109/TVT.2021.3078752 – ident: ref23 doi: 10.1109/TVT.2019.2941523 – ident: ref6 doi: 10.1016/j.ijhydene.2019.06.158 – ident: ref43 doi: 10.1016/j.energy.2015.11.075 – ident: ref10 doi: 10.1016/j.ijhydene.2020.01.017 – ident: ref3 doi: 10.1109/TVT.2005.847445 – ident: ref15 doi: 10.1109/TIE.2013.2257152 – ident: ref13 doi: 10.1109/TVT.2020.3034454 – ident: ref27 doi: 10.1109/TITS.2019.2963785 – ident: ref29 doi: 10.1016/j.apenergy.2016.03.082 – ident: ref40 doi: 10.1016/j.ijhydene.2019.01.190 – ident: ref4 doi: 10.1109/TVT.2010.2047877 – ident: ref19 doi: 10.1109/TVT.2014.2352357 – ident: ref26 doi: 10.1109/TVT.2021.3051201 – ident: ref17 doi: 10.1016/j.jpowsour.2016.11.106 – ident: ref42 doi: 10.1016/j.jpowsour.2018.05.078 |
SSID | ssj0014491 |
Score | 2.6019394 |
Snippet | As for fuel cell hybrid electric vehicle equipped with battery (BAT) and ultracapacitor (UC), its dynamic topology structure is complex and different... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7171 |
SubjectTerms | Adaptive control Adaptive filters Consumption Dater driven Deep learning deep reinforcement learning Dynamic programming Electric vehicles Energy efficiency Energy management energy management strategy fuel cell hybrid electric vehicle Fuel cells Fuel consumption Fuel economy Fuzzy control heuristic technique Hybrid electric vehicles Hydrogen Life span Machine learning Optimization Power consumption Power management Power sources Real-time systems Structural hierarchy Supercapacitors Topology Trimming Vehicle dynamics Voltage |
Title | Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles Using Deep Reinforcement Learning With Action Trimming |
URI | https://ieeexplore.ieee.org/document/9762022 https://www.proquest.com/docview/2689808403 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxYk8nZTe0TQqkKCAbXAFsX2BSrSgko6lD_BX-bsuAUBQkyJEjuycvbdd_bdd4Qch1pLNKQtL9Uy9xiLtWdQq4cISeSFVEIykzt8dZ12--zyvnm_QE7nuTAAYIPPwDe39ixfP6uJ2SoL0HSir44KdxEdtzpXa35iwJirjhfhAkZYMDuSDEXQu-35pp9vijRxU5b4iwmyNVV-KGJrXTpr5Go2rjqo5MmfVNJXb98oG_878HWy6mAmPavnxQZZgNEmWflCPrhF3ts27Y9-BsBQR1U7pYhkaWcCJT2HsgxqDs5p0C_xvULrqlANjGl3arK9aNsW0hkoeguPNsaO2jAEegHwQm_AMrOq-vuOzPWB3g2qR3pmUypobzwYDvHhNul32r3zrufKM3gqFlHl5ZEC1AYyR0wZC26I4CTilUS28oIXmjMZKaaVCDWPBYSKFYks0JtpNbVOExklO2Rp9DyCXUJlzFOZc4RqUcGAAc_TQqMVaYJOFQjeIMFMYply3OWmhEaZWR8mFBnKODO_OHMybpCTeY-Xmrfjj7ZbRmTzdk5aDXIwmxSZW9ivWZxywUP0ipO933vtk2VzqSN6D8hSNZ7AIeKWSh7ZCfsBASTsWg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7aFwKJSCCBTqAxck9tvZ2MeqJAql6QFtSm-rtT1Lo27TKmwO6Z_gLzP2OqEChLitvPbK2rFn3tgzbwDexcYoMqSDIDeqCjhPTWBRa0AISVa10lJxmzs8Oc_HU3562b_cgg-bXBhEdMFnGNpHd5dvbvXSHpVFZDrJVyeFu0N2v5922VqbOwPOfX28hLYwdVhfSsYyKi6K0I4MbZkmYQsTPzBCrqrKH6rY2ZfRE5isZ9aFlVyHy1aF-v430sb_nfpT2PNAkx13K2MftnD-DB4_oB88gB9Dl_jHfoXAME9Wu2KEZdloiQ07waaJOhbOVTRt6L0m-6pJESzYeGXzvdjQldKZaXaBVy7KjrlABPYR8Y59QcfNqrvvezrXb-zrrL1ixy6pghWL2c0NNT6H6WhYnIwDX6Ah0KlM2qBKNJI-UBWhylQKSwWnCLFkalDVojaCq0Rzo2VsRCox1rzOVE3-zKBvTJ6pJHsB2_PbOb4EplKRq0oQWEtqjhxFldeG7EgfTa5Rih5Ea4mV2rOX2yIaTem8mFiWJOPS_uLSy7gH7zcj7jrmjn_0PbAi2_Tz0urB4XpRlH5rfy_TXEgRk1-cvfr7qCPYHReTs_Ls0_nn1_DINnXxvYew3S6W-IZQTKveusX7E3qX76Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+Management+Strategy+for+Fuel+Cell%2FBattery%2FUltracapacitor+Hybrid+Electric+Vehicles+Using+Deep+Reinforcement+Learning+With+Action+Trimming&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Fu%2C+Zhumu&rft.au=Wang%2C+Haocong&rft.au=Tao%2C+Fazhan&rft.au=Ji%2C+Baofeng&rft.date=2022-07-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=7&rft.spage=7171&rft.epage=7185&rft_id=info:doi/10.1109%2FTVT.2022.3168870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3168870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |