Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates
In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measu...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 3; pp. 1600 - 1613 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2022.3154347 |
Cover
Loading…
Summary: | In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3154347 |