Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates

In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 3; pp. 1600 - 1613
Main Authors Chi, Ronghu, Li, Huaying, Shen, Dong, Hou, Zhongsheng, Huang, Biao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2022.3154347

Cover

Abstract In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results.
AbstractList In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results.
Author Li, Huaying
Chi, Ronghu
Hou, Zhongsheng
Huang, Biao
Shen, Dong
Author_xml – sequence: 1
  givenname: Ronghu
  orcidid: 0000-0002-1325-7863
  surname: Chi
  fullname: Chi, Ronghu
  email: rhchi@163.com
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Huaying
  orcidid: 0000-0002-8582-8725
  surname: Li
  fullname: Li, Huaying
  email: lhyqust@163.com
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China
– sequence: 3
  givenname: Dong
  orcidid: 0000-0003-1063-1351
  surname: Shen
  fullname: Shen, Dong
  email: dshen@ieee.org
  organization: School of Mathematics, Renmin University of China, Beijing, China
– sequence: 4
  givenname: Zhongsheng
  orcidid: 0000-0001-5278-3420
  surname: Hou
  fullname: Hou, Zhongsheng
  email: zhshhou@bjtu.edu.cn
  organization: School of Automation, Qingdao University, Qingdao, China
– sequence: 5
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: biao.huang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
BookMark eNp9kM9LwzAUx4NMcJveBS8Bz51JmjaJt1GcTgYO3M4hbV41Y0trmgn77-3Y8ODB0-PB9_N-fEZo4BsPCN1SMqGUqIfVtJgwwtgkpRlPubhAQ5plMmEZSwdoSAiViWIyv0Kjrtv0bc45HaLXJ_9pfAUWL5PVoQVcND6GZvuI5966AFXEU2va6L4BL8AE7_wHnoVmh98hJsvG-YjXrTURumt0WZttBzfnOkbr2dOqeEkWb8_zYrpIKqZoTBTIDGSlJBG1rcuyNorkeco5ySsFWX9ZyYhSoqwZpLkSNVBrrZR9y0mWV-kY3Z_mtqH52kMX9abZB9-v1ExIoqQURPSp_JSqQtN1AWpduWiiO75n3FZToo_edO9NH73ps7ceJH_ANridCYf_kLsT4gDgN64Eo4Ty9Acr-Xi0
CODEN IETAA9
CitedBy_id crossref_primary_10_3390_agriculture12091367
crossref_primary_10_1109_ACCESS_2024_3519416
crossref_primary_10_1109_TAC_2024_3417717
crossref_primary_10_32604_cmes_2024_049837
crossref_primary_10_3390_math10224350
crossref_primary_10_1109_ACCESS_2025_3529915
crossref_primary_10_3390_a15090301
crossref_primary_10_3390_math10152655
crossref_primary_10_3390_s23218721
crossref_primary_10_1109_TSMC_2024_3417378
crossref_primary_10_3390_electronics12132771
crossref_primary_10_1109_ACCESS_2023_3281405
crossref_primary_10_3390_e24070889
crossref_primary_10_1016_j_neucom_2025_129671
crossref_primary_10_3390_math11051204
crossref_primary_10_1080_03772063_2023_2290669
crossref_primary_10_3390_electronics11131959
crossref_primary_10_1088_1361_6501_ad6468
crossref_primary_10_1002_rnc_6736
crossref_primary_10_3390_math11061326
crossref_primary_10_1109_TCSII_2024_3363032
crossref_primary_10_3390_biomimetics9020119
crossref_primary_10_3390_act12040165
crossref_primary_10_1002_rnc_6940
crossref_primary_10_3390_math10121970
crossref_primary_10_1016_j_ymssp_2025_112513
crossref_primary_10_3390_math11010148
crossref_primary_10_3390_sym14061084
crossref_primary_10_1002_rnc_7795
crossref_primary_10_1049_ell2_13244
crossref_primary_10_1016_j_jtrangeo_2023_103604
crossref_primary_10_3390_math11091997
crossref_primary_10_3390_electronics12153299
crossref_primary_10_3389_fnbot_2024_1428358
crossref_primary_10_1002_rnc_6964
crossref_primary_10_3390_computers12090168
crossref_primary_10_1016_j_autcon_2024_105889
crossref_primary_10_1016_j_isatra_2023_12_044
crossref_primary_10_1038_s41598_024_73901_y
crossref_primary_10_3390_axioms12010001
crossref_primary_10_1080_00207721_2024_2441456
crossref_primary_10_3390_mca28050101
crossref_primary_10_3390_biomedicines11020497
crossref_primary_10_3390_math11204263
crossref_primary_10_3390_math11143184
crossref_primary_10_1016_j_rineng_2025_104234
crossref_primary_10_1002_eng2_12741
crossref_primary_10_3390_s23135796
crossref_primary_10_1109_JAS_2024_124968
crossref_primary_10_1109_ACCESS_2023_3273603
crossref_primary_10_1007_s00202_024_02478_6
crossref_primary_10_3390_math10193614
crossref_primary_10_1109_TASE_2023_3329784
crossref_primary_10_3390_machines10070528
crossref_primary_10_3390_app132111949
crossref_primary_10_1002_jemt_24629
crossref_primary_10_3390_s22145297
crossref_primary_10_1016_j_heliyon_2024_e38555
crossref_primary_10_3390_math11010088
Cites_doi 10.1002/we.2437
10.1109/TCST.2018.2816906
10.1016/j.jprocont.2009.01.006
10.1016/j.automatica.2007.12.004
10.9746/sicetr1965.14.706
10.1021/ie200021t
10.1109/TSMC.2017.2677959
10.1109/TCST.2017.2734041
10.1016/j.automatica.2012.08.038
10.1177/0142331219880110
10.1016/j.jprocont.2009.10.008
10.3390/app9091807
10.1002/rnc.5107
10.1109/TCST.2015.2418311
10.1134/S0005117920030078
10.1109/CDC.2009.5400713
10.1002/asjc.2230
10.1016/j.jprocont.2014.07.004
10.1177/0142331219877052
10.1016/j.jprocont.2014.07.002
10.1016/j.isatra.2013.05.005
10.1109/TNNLS.2019.2951752
10.1109/TCSII.2019.2907141
10.1016/j.ces.2011.12.028
10.1109/TAC.2002.806668
10.1016/j.ijhydene.2020.01.136
10.1007/s40815-019-00780-1
10.1109/TCST.2010.2040476
10.1109/TCYB.2019.2895319
10.1049/ip-cta:20041125
10.1243/09544062JMES996
10.1007/s00500-019-04152-7
10.1360/aas-007-1061
10.1109/ChiCC.2016.7553842
10.1007/s005000000039
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2022.3154347
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1613
ExternalDocumentID 10_1109_TAC_2022_3154347
9721014
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873139; 61833001
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province of China
  grantid: ZR2019MF036
– fundername: Taishan Scholar Program of Shandong Province of China
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-9e85e8c9807fdfbbfa906634406c9e5001b20997bf2e3697fe1ddd88f2e4056c3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Thu Aug 28 08:29:19 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 03:36:41 EDT 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9e85e8c9807fdfbbfa906634406c9e5001b20997bf2e3697fe1ddd88f2e4056c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8582-8725
0000-0001-5278-3420
0000-0001-9082-2216
0000-0002-1325-7863
0000-0003-1063-1351
PQID 2780988707
PQPubID 85475
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TAC_2022_3154347
crossref_primary_10_1109_TAC_2022_3154347
ieee_primary_9721014
proquest_journals_2780988707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
wang (ref19) 0
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref18
ref23
goodwin (ref36) 1984
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
tao (ref24) 2010; 20
ref9
sun (ref37) 1999
ref4
ref3
ref6
ref5
References_xml – ident: ref32
  doi: 10.1002/we.2437
– ident: ref18
  doi: 10.1109/TCST.2018.2816906
– ident: ref25
  doi: 10.1016/j.jprocont.2009.01.006
– ident: ref29
  doi: 10.1016/j.automatica.2007.12.004
– ident: ref8
  doi: 10.9746/sicetr1965.14.706
– ident: ref22
  doi: 10.1021/ie200021t
– ident: ref30
  doi: 10.1109/TSMC.2017.2677959
– ident: ref11
  doi: 10.1109/TCST.2017.2734041
– ident: ref10
  doi: 10.1016/j.automatica.2012.08.038
– ident: ref15
  doi: 10.1177/0142331219880110
– year: 1984
  ident: ref36
  publication-title: Adaptive Filtering Prediction and Control
– volume: 20
  start-page: 173
  year: 2010
  ident: ref24
  article-title: IMC-based iterative learning control for batch processes with uncertain time delay
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2009.10.008
– ident: ref26
  doi: 10.3390/app9091807
– ident: ref34
  doi: 10.1002/rnc.5107
– ident: ref27
  doi: 10.1109/TCST.2015.2418311
– ident: ref14
  doi: 10.1134/S0005117920030078
– ident: ref16
  doi: 10.1109/CDC.2009.5400713
– ident: ref33
  doi: 10.1002/asjc.2230
– ident: ref23
  doi: 10.1016/j.jprocont.2014.07.004
– ident: ref17
  doi: 10.1177/0142331219877052
– ident: ref21
  doi: 10.1016/j.jprocont.2014.07.002
– ident: ref2
  doi: 10.1016/j.isatra.2013.05.005
– year: 1999
  ident: ref37
  publication-title: Iterative Learning Control
– ident: ref9
  doi: 10.1109/TNNLS.2019.2951752
– ident: ref3
  doi: 10.1109/TCSII.2019.2907141
– ident: ref20
  doi: 10.1016/j.ces.2011.12.028
– ident: ref13
  doi: 10.1109/TAC.2002.806668
– ident: ref6
  doi: 10.1016/j.ijhydene.2020.01.136
– ident: ref1
  doi: 10.1007/s40815-019-00780-1
– ident: ref12
  doi: 10.1109/TCST.2010.2040476
– start-page: 5857
  year: 0
  ident: ref19
  article-title: Stability analysis of set-point-related indirect iterative learning control with PI-type local controller
  publication-title: Proc 29th Chin Control Conf
– ident: ref4
  doi: 10.1109/TCYB.2019.2895319
– ident: ref31
  doi: 10.1049/ip-cta:20041125
– ident: ref38
  doi: 10.1243/09544062JMES996
– ident: ref5
  doi: 10.1007/s00500-019-04152-7
– ident: ref28
  doi: 10.1360/aas-007-1061
– ident: ref35
  doi: 10.1109/ChiCC.2016.7553842
– ident: ref7
  doi: 10.1007/s005000000039
SSID ssj0016441
Score 2.6425896
Snippet In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1600
SubjectTerms Adaptive control
Adaptive iterative learning control
Adaptive learning
Adaptive systems
Algorithms
Analytical models
Convergence
convergence analysis
Data models
Iterative methods
Learning
Linear systems
Nonlinear systems
Nonlinearity
P-type controller
set-point updating method
System theory
Systems theory
Tuning
Uncertainty
Title Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates
URI https://ieeexplore.ieee.org/document/9721014
https://www.proquest.com/docview/2780988707
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBLfNvhNvpbRooVKwhd6WTTZRUbel3V789WaS7eIL8bYLCYSZyTwyM98gdMljRSOXe04aZr4TRClxmPaOoGM5BfwzFUp47xjdR7fTYDgLZzV0XfXCSClN8Zlsw6fJ5WdzsYansg4gzRCYWr2lxcz2alUZA7DrVuvqC-zRKiVJWGfS7elA0PN0fAqNlPEXE2RmqvxQxMa6DPbQaHMuW1Ty0l4XvC3ev0E2_vfg-2i3dDNx18rFAarJ_BDtfAIfbKBhP38y6X88diAaxT1btX6D73Jr6HA3SxegDnGJwvqIB8v5G36QhTOeP-cFni7gwWB1hKaD_qR365STFRzhMbdwmKShpIJREqtMca5SBq5HoK27YDLUROSmpZYrT_oRi5V0syyjVP9qBy8S_jGq5_NcniBMIuVLRlKuTX_gCpb6TArfY8RPXeUq0kSdDbETUcKOw_SL18SEH4Qlmj0JsCcp2dNEV9WOhYXc-GNtA6hdrSsJ3UStDT-T8k6uEi-mhGmdSuLT33edoW0YJm8rzFqoXizX8ly7HAW_MLL2ATUpz9U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamcQAOvAZiPHPggkS39N1wm6ZNA7ZpEpu0W9WkCSCgm0Z34dcTt13FS4hbKyVSZCf-7MT-DHDBfRV4JreMyI1tw_EiajDtHWHFcoT8Z8qVeN8xGHq9iXM7dacVuCprYaSUWfKZbOBn9pYfz8QSr8qayDRDsWv1msZ9x82rtco3A0T23O7qI2wF5aMkZc1xq61DQcvSESqWUvpfQCjrqvLDFGf40t2GwWpleVrJc2OZ8oZ4_0ba-N-l78BW4WiSVr4zdqEikz3Y_EQ_WIPbTvKYJQCQkYHxKGnneevX5CbJoY604miOBpEUPKwPpLuYvZJ7mRqj2VOSkskcrwze9mHS7YzbPaPorWAIi5mpwWTgykCwgPoqVpyriKHz4Wh8F0y6Wog8K6rlypK2x3wlzTiOg0D_ahfPE_YBVJNZIg-BUE_ZktGIa_B3TMEim0lhW4zakalMRevQXAk7FAXxOPa_eAmzAISyUKsnRPWEhXrqcFnOmOekG3-MraG0y3GFoOtwstJnWJzKt9DyA8q0VaX-0e-zzmG9Nx70w_7N8O4YNrC1fJ5vdgLVdLGUp9oBSflZtu8-AESf0yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+P-Type+Control%3A+Indirect+Adaptive+Learning+From+Set-Point+Updates&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chi%2C+Ronghu&rft.au=Li%2C+Huaying&rft.au=Shen%2C+Dong&rft.au=Hou%2C+Zhongsheng&rft.date=2023-03-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=3&rft.spage=1600&rft.epage=1613&rft_id=info:doi/10.1109%2FTAC.2022.3154347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3154347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon