Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates
In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measu...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 3; pp. 1600 - 1613 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2022.3154347 |
Cover
Abstract | In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results. |
---|---|
AbstractList | In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results. |
Author | Li, Huaying Chi, Ronghu Hou, Zhongsheng Huang, Biao Shen, Dong |
Author_xml | – sequence: 1 givenname: Ronghu orcidid: 0000-0002-1325-7863 surname: Chi fullname: Chi, Ronghu email: rhchi@163.com organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China – sequence: 2 givenname: Huaying orcidid: 0000-0002-8582-8725 surname: Li fullname: Li, Huaying email: lhyqust@163.com organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China – sequence: 3 givenname: Dong orcidid: 0000-0003-1063-1351 surname: Shen fullname: Shen, Dong email: dshen@ieee.org organization: School of Mathematics, Renmin University of China, Beijing, China – sequence: 4 givenname: Zhongsheng orcidid: 0000-0001-5278-3420 surname: Hou fullname: Hou, Zhongsheng email: zhshhou@bjtu.edu.cn organization: School of Automation, Qingdao University, Qingdao, China – sequence: 5 givenname: Biao orcidid: 0000-0001-9082-2216 surname: Huang fullname: Huang, Biao email: biao.huang@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada |
BookMark | eNp9kM9LwzAUx4NMcJveBS8Bz51JmjaJt1GcTgYO3M4hbV41Y0trmgn77-3Y8ODB0-PB9_N-fEZo4BsPCN1SMqGUqIfVtJgwwtgkpRlPubhAQ5plMmEZSwdoSAiViWIyv0Kjrtv0bc45HaLXJ_9pfAUWL5PVoQVcND6GZvuI5966AFXEU2va6L4BL8AE7_wHnoVmh98hJsvG-YjXrTURumt0WZttBzfnOkbr2dOqeEkWb8_zYrpIKqZoTBTIDGSlJBG1rcuyNorkeco5ySsFWX9ZyYhSoqwZpLkSNVBrrZR9y0mWV-kY3Z_mtqH52kMX9abZB9-v1ExIoqQURPSp_JSqQtN1AWpduWiiO75n3FZToo_edO9NH73ps7ceJH_ANridCYf_kLsT4gDgN64Eo4Ty9Acr-Xi0 |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_3390_agriculture12091367 crossref_primary_10_1109_ACCESS_2024_3519416 crossref_primary_10_1109_TAC_2024_3417717 crossref_primary_10_32604_cmes_2024_049837 crossref_primary_10_3390_math10224350 crossref_primary_10_1109_ACCESS_2025_3529915 crossref_primary_10_3390_a15090301 crossref_primary_10_3390_math10152655 crossref_primary_10_3390_s23218721 crossref_primary_10_1109_TSMC_2024_3417378 crossref_primary_10_3390_electronics12132771 crossref_primary_10_1109_ACCESS_2023_3281405 crossref_primary_10_3390_e24070889 crossref_primary_10_1016_j_neucom_2025_129671 crossref_primary_10_3390_math11051204 crossref_primary_10_1080_03772063_2023_2290669 crossref_primary_10_3390_electronics11131959 crossref_primary_10_1088_1361_6501_ad6468 crossref_primary_10_1002_rnc_6736 crossref_primary_10_3390_math11061326 crossref_primary_10_1109_TCSII_2024_3363032 crossref_primary_10_3390_biomimetics9020119 crossref_primary_10_3390_act12040165 crossref_primary_10_1002_rnc_6940 crossref_primary_10_3390_math10121970 crossref_primary_10_1016_j_ymssp_2025_112513 crossref_primary_10_3390_math11010148 crossref_primary_10_3390_sym14061084 crossref_primary_10_1002_rnc_7795 crossref_primary_10_1049_ell2_13244 crossref_primary_10_1016_j_jtrangeo_2023_103604 crossref_primary_10_3390_math11091997 crossref_primary_10_3390_electronics12153299 crossref_primary_10_3389_fnbot_2024_1428358 crossref_primary_10_1002_rnc_6964 crossref_primary_10_3390_computers12090168 crossref_primary_10_1016_j_autcon_2024_105889 crossref_primary_10_1016_j_isatra_2023_12_044 crossref_primary_10_1038_s41598_024_73901_y crossref_primary_10_3390_axioms12010001 crossref_primary_10_1080_00207721_2024_2441456 crossref_primary_10_3390_mca28050101 crossref_primary_10_3390_biomedicines11020497 crossref_primary_10_3390_math11204263 crossref_primary_10_3390_math11143184 crossref_primary_10_1016_j_rineng_2025_104234 crossref_primary_10_1002_eng2_12741 crossref_primary_10_3390_s23135796 crossref_primary_10_1109_JAS_2024_124968 crossref_primary_10_1109_ACCESS_2023_3273603 crossref_primary_10_1007_s00202_024_02478_6 crossref_primary_10_3390_math10193614 crossref_primary_10_1109_TASE_2023_3329784 crossref_primary_10_3390_machines10070528 crossref_primary_10_3390_app132111949 crossref_primary_10_1002_jemt_24629 crossref_primary_10_3390_s22145297 crossref_primary_10_1016_j_heliyon_2024_e38555 crossref_primary_10_3390_math11010088 |
Cites_doi | 10.1002/we.2437 10.1109/TCST.2018.2816906 10.1016/j.jprocont.2009.01.006 10.1016/j.automatica.2007.12.004 10.9746/sicetr1965.14.706 10.1021/ie200021t 10.1109/TSMC.2017.2677959 10.1109/TCST.2017.2734041 10.1016/j.automatica.2012.08.038 10.1177/0142331219880110 10.1016/j.jprocont.2009.10.008 10.3390/app9091807 10.1002/rnc.5107 10.1109/TCST.2015.2418311 10.1134/S0005117920030078 10.1109/CDC.2009.5400713 10.1002/asjc.2230 10.1016/j.jprocont.2014.07.004 10.1177/0142331219877052 10.1016/j.jprocont.2014.07.002 10.1016/j.isatra.2013.05.005 10.1109/TNNLS.2019.2951752 10.1109/TCSII.2019.2907141 10.1016/j.ces.2011.12.028 10.1109/TAC.2002.806668 10.1016/j.ijhydene.2020.01.136 10.1007/s40815-019-00780-1 10.1109/TCST.2010.2040476 10.1109/TCYB.2019.2895319 10.1049/ip-cta:20041125 10.1243/09544062JMES996 10.1007/s00500-019-04152-7 10.1360/aas-007-1061 10.1109/ChiCC.2016.7553842 10.1007/s005000000039 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2022.3154347 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 1613 |
ExternalDocumentID | 10_1109_TAC_2022_3154347 9721014 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873139; 61833001 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province of China grantid: ZR2019MF036 – fundername: Taishan Scholar Program of Shandong Province of China |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-9e85e8c9807fdfbbfa906634406c9e5001b20997bf2e3697fe1ddd88f2e4056c3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Thu Aug 28 08:29:19 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 03:36:41 EDT 2025 Wed Aug 27 02:14:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9e85e8c9807fdfbbfa906634406c9e5001b20997bf2e3697fe1ddd88f2e4056c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8582-8725 0000-0001-5278-3420 0000-0001-9082-2216 0000-0002-1325-7863 0000-0003-1063-1351 |
PQID | 2780988707 |
PQPubID | 85475 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2022_3154347 crossref_primary_10_1109_TAC_2022_3154347 ieee_primary_9721014 proquest_journals_2780988707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 wang (ref19) 0 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref18 ref23 goodwin (ref36) 1984 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 tao (ref24) 2010; 20 ref9 sun (ref37) 1999 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref32 doi: 10.1002/we.2437 – ident: ref18 doi: 10.1109/TCST.2018.2816906 – ident: ref25 doi: 10.1016/j.jprocont.2009.01.006 – ident: ref29 doi: 10.1016/j.automatica.2007.12.004 – ident: ref8 doi: 10.9746/sicetr1965.14.706 – ident: ref22 doi: 10.1021/ie200021t – ident: ref30 doi: 10.1109/TSMC.2017.2677959 – ident: ref11 doi: 10.1109/TCST.2017.2734041 – ident: ref10 doi: 10.1016/j.automatica.2012.08.038 – ident: ref15 doi: 10.1177/0142331219880110 – year: 1984 ident: ref36 publication-title: Adaptive Filtering Prediction and Control – volume: 20 start-page: 173 year: 2010 ident: ref24 article-title: IMC-based iterative learning control for batch processes with uncertain time delay publication-title: J Process Control doi: 10.1016/j.jprocont.2009.10.008 – ident: ref26 doi: 10.3390/app9091807 – ident: ref34 doi: 10.1002/rnc.5107 – ident: ref27 doi: 10.1109/TCST.2015.2418311 – ident: ref14 doi: 10.1134/S0005117920030078 – ident: ref16 doi: 10.1109/CDC.2009.5400713 – ident: ref33 doi: 10.1002/asjc.2230 – ident: ref23 doi: 10.1016/j.jprocont.2014.07.004 – ident: ref17 doi: 10.1177/0142331219877052 – ident: ref21 doi: 10.1016/j.jprocont.2014.07.002 – ident: ref2 doi: 10.1016/j.isatra.2013.05.005 – year: 1999 ident: ref37 publication-title: Iterative Learning Control – ident: ref9 doi: 10.1109/TNNLS.2019.2951752 – ident: ref3 doi: 10.1109/TCSII.2019.2907141 – ident: ref20 doi: 10.1016/j.ces.2011.12.028 – ident: ref13 doi: 10.1109/TAC.2002.806668 – ident: ref6 doi: 10.1016/j.ijhydene.2020.01.136 – ident: ref1 doi: 10.1007/s40815-019-00780-1 – ident: ref12 doi: 10.1109/TCST.2010.2040476 – start-page: 5857 year: 0 ident: ref19 article-title: Stability analysis of set-point-related indirect iterative learning control with PI-type local controller publication-title: Proc 29th Chin Control Conf – ident: ref4 doi: 10.1109/TCYB.2019.2895319 – ident: ref31 doi: 10.1049/ip-cta:20041125 – ident: ref38 doi: 10.1243/09544062JMES996 – ident: ref5 doi: 10.1007/s00500-019-04152-7 – ident: ref28 doi: 10.1360/aas-007-1061 – ident: ref35 doi: 10.1109/ChiCC.2016.7553842 – ident: ref7 doi: 10.1007/s005000000039 |
SSID | ssj0016441 |
Score | 2.6425896 |
Snippet | In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1600 |
SubjectTerms | Adaptive control Adaptive iterative learning control Adaptive learning Adaptive systems Algorithms Analytical models Convergence convergence analysis Data models Iterative methods Learning Linear systems Nonlinear systems Nonlinearity P-type controller set-point updating method System theory Systems theory Tuning Uncertainty |
Title | Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates |
URI | https://ieeexplore.ieee.org/document/9721014 https://www.proquest.com/docview/2780988707 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg5eBLfNvhNvpbRooVKwhd6WTTZRUbel3V789WaS7eIL8bYLCYSZyTwyM98gdMljRSOXe04aZr4TRClxmPaOoGM5BfwzFUp47xjdR7fTYDgLZzV0XfXCSClN8Zlsw6fJ5WdzsYansg4gzRCYWr2lxcz2alUZA7DrVuvqC-zRKiVJWGfS7elA0PN0fAqNlPEXE2RmqvxQxMa6DPbQaHMuW1Ty0l4XvC3ev0E2_vfg-2i3dDNx18rFAarJ_BDtfAIfbKBhP38y6X88diAaxT1btX6D73Jr6HA3SxegDnGJwvqIB8v5G36QhTOeP-cFni7gwWB1hKaD_qR365STFRzhMbdwmKShpIJREqtMca5SBq5HoK27YDLUROSmpZYrT_oRi5V0syyjVP9qBy8S_jGq5_NcniBMIuVLRlKuTX_gCpb6TArfY8RPXeUq0kSdDbETUcKOw_SL18SEH4Qlmj0JsCcp2dNEV9WOhYXc-GNtA6hdrSsJ3UStDT-T8k6uEi-mhGmdSuLT33edoW0YJm8rzFqoXizX8ly7HAW_MLL2ATUpz9U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamcQAOvAZiPHPggkS39N1wm6ZNA7ZpEpu0W9WkCSCgm0Z34dcTt13FS4hbKyVSZCf-7MT-DHDBfRV4JreMyI1tw_EiajDtHWHFcoT8Z8qVeN8xGHq9iXM7dacVuCprYaSUWfKZbOBn9pYfz8QSr8qayDRDsWv1msZ9x82rtco3A0T23O7qI2wF5aMkZc1xq61DQcvSESqWUvpfQCjrqvLDFGf40t2GwWpleVrJc2OZ8oZ4_0ba-N-l78BW4WiSVr4zdqEikz3Y_EQ_WIPbTvKYJQCQkYHxKGnneevX5CbJoY604miOBpEUPKwPpLuYvZJ7mRqj2VOSkskcrwze9mHS7YzbPaPorWAIi5mpwWTgykCwgPoqVpyriKHz4Wh8F0y6Wog8K6rlypK2x3wlzTiOg0D_ahfPE_YBVJNZIg-BUE_ZktGIa_B3TMEim0lhW4zakalMRevQXAk7FAXxOPa_eAmzAISyUKsnRPWEhXrqcFnOmOekG3-MraG0y3GFoOtwstJnWJzKt9DyA8q0VaX-0e-zzmG9Nx70w_7N8O4YNrC1fJ5vdgLVdLGUp9oBSflZtu8-AESf0yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+P-Type+Control%3A+Indirect+Adaptive+Learning+From+Set-Point+Updates&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chi%2C+Ronghu&rft.au=Li%2C+Huaying&rft.au=Shen%2C+Dong&rft.au=Hou%2C+Zhongsheng&rft.date=2023-03-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=3&rft.spage=1600&rft.epage=1613&rft_id=info:doi/10.1109%2FTAC.2022.3154347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3154347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |