Observer-based adaptive guaranteed control of wind turbine system subject to pitch angle sensor fault
This research presents an observer-based adaptive fault-tolerant control for wind turbine systems subject to the pitch angle sensor fault. The design mechanism is based on integrating a robust fuzzy observer with a backstepping-based adaptive control approach. The Lyapunov concept is adopted to deri...
Saved in:
Published in | International journal of dynamics and control Vol. 12; no. 6; pp. 1987 - 1999 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research presents an observer-based adaptive fault-tolerant control for wind turbine systems subject to the pitch angle sensor fault. The design mechanism is based on integrating a robust fuzzy observer with a backstepping-based adaptive control approach. The Lyapunov concept is adopted to derive the uniformly ultimate boundedness stability of the overall system by taking into account the fuzzy approximation error. Therefore, the generator speed as a control objective is appropriately regulated. Different simulation scenarios verify the ability of the proposed control algorithm applied to a wind turbine system against the external disturbance, the fuzzy approximation error, the parametric uncertainties and the sensor fault. |
---|---|
AbstractList | This research presents an observer-based adaptive fault-tolerant control for wind turbine systems subject to the pitch angle sensor fault. The design mechanism is based on integrating a robust fuzzy observer with a backstepping-based adaptive control approach. The Lyapunov concept is adopted to derive the uniformly ultimate boundedness stability of the overall system by taking into account the fuzzy approximation error. Therefore, the generator speed as a control objective is appropriately regulated. Different simulation scenarios verify the ability of the proposed control algorithm applied to a wind turbine system against the external disturbance, the fuzzy approximation error, the parametric uncertainties and the sensor fault. |
Author | Bakhshi, Ali Alfi, Alireza |
Author_xml | – sequence: 1 givenname: Ali surname: Bakhshi fullname: Bakhshi, Ali organization: Faculty of Electrical Engineering, Shahrood University of Technology – sequence: 2 givenname: Alireza orcidid: 0000-0002-7034-0735 surname: Alfi fullname: Alfi, Alireza email: a_alfi@shahroodut.ac.ir organization: Faculty of Electrical Engineering, Shahrood University of Technology |
BookMark | eNp9kE1LAzEQhoNUsNb-AU_5A9F8bbs5SvELCr0oeFtmk9m6ZZuUJFvpv3drxYOHnmaY4Znhfa7JyAePhNwKfic4n98nzbUqGJeKcaE0Z_yCjKUwBZMzU47--vLjikxT2nDOpdBcajMmuKoTxj1GVkNCR8HBLrd7pOseIviMw8wGn2PoaGjoV-sdzX2sW480HVLGLU19vUGbaQ5012b7ScGvu2GLPoVIG-i7fEMuG-gSTn_rhLw_Pb4tXthy9fy6eFgyK43IzDinSyi0dUI2XM-NsYUEgaiKelY4p5QBhahxrkps9BBhDg0oIWcIqtROTYg83bUxpBSxqXax3UI8VIJXR1fVyVU1uKp-XFV8gMp_kG0z5PaYGtruPKpOaBr--DXGahP66IeI56hvvNiCCg |
CitedBy_id | crossref_primary_10_3390_sym17030448 |
Cites_doi | 10.1016/j.apm.2018.08.030 10.1109/TVT.2020.2968961 10.1007/s10665-023-10272-9 10.1016/S0167-6911(97)00068-6 10.1016/j.apm.2018.03.002 10.1016/j.ifacol.2015.09.714 10.1016/j.renene.2016.12.005 10.1049/iet-gtd.2018.6736 10.1088/1742-6596/524/1/012053 10.1109/MED.2012.6265799 10.1016/j.renene.2017.12.102 10.1109/TSTE.2011.2178105 10.1080/00207178008961043 10.3390/app8050794 10.1007/s12555-014-0159-4 10.1049/iet-cta.2019.0816 10.1016/j.ifacol.2018.09.717 10.1016/j.renene.2006.06.010 10.3390/en5072424 10.1088/1742-6596/753/9/092012 10.1002/acs.2800 10.1049/iet-cta.2014.0726 10.1109/EEEIC.2018.8494619 10.3390/s22082913 10.1002/we.2496 10.1002/2050-7038.12174 10.1109/9.989150 10.1109/TSTE.2013.2268615 10.1177/0142331218754620 10.1016/j.ijepes.2019.105802 10.1016/j.renene.2018.12.066 10.3390/en12244712 10.1109/SysTol.2013.6693892 10.3182/20120829-3-MX-2028.00131 10.1016/j.renene.2014.10.061 10.1016/j.ifacol.2018.09.723 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40435-023-01340-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2195-2698 |
EndPage | 1999 |
ExternalDocumentID | 10_1007_s40435_023_01340_0 |
GroupedDBID | -EM 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-9dd48a54cd12f04799c52a1ee35b65dd339a3ee4e738ef44027afa3126ea384d3 |
IEDL.DBID | AGYKE |
ISSN | 2195-268X |
IngestDate | Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 02:44:19 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | Stability analysis Fault Wind turbine Observer Fuzzy approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9dd48a54cd12f04799c52a1ee35b65dd339a3ee4e738ef44027afa3126ea384d3 |
ORCID | 0000-0002-7034-0735 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1007_s40435_023_01340_0 crossref_citationtrail_10_1007_s40435_023_01340_0 springer_journals_10_1007_s40435_023_01340_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | International journal of dynamics and control |
PublicationTitleAbbrev | Int. J. Dynam. Control |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Chen L, Shi F, Patton R (2013) Active ftc for hydraulic pitch system for an off-shore wind turbine. In: 2013 Conference on control and fault-tolerant systems (SysTol). IEEE, pp 510–515 TaoGChenSJoshiSMAn adaptive actuator failure compensation controller using output feedbackIEEE Trans Autom Control2002473506511189133610.1109/9.989150 BakhshiAAlfiARobust LMI-based active fault tolerant pitch control of a wind turbine using fuzzy modelJ Control Eng Appl Inform20202243442 LiuYPattonRJLanJFault-tolerant individual pitch control using adaptive sliding mode observerIFAC-PapersOnLine201851241127113210.1016/j.ifacol.2018.09.723 TaherkhaniABayatFWind turbines robust fault reconstruction using adaptive sliding mode observerIET Gener Transm Distrib201913143096310410.1049/iet-gtd.2018.6736 GeorgSSchulteHFault-tolerant control of wind turbines using a Takagi-Sugeno sliding mode observerJ Phys Conf Ser201452410.1088/1742-6596/524/1/012053 ŠiljakDDReliable control using multiple control systemsInt J Control198031230332956592510.1080/00207178008961043 ChenLXueMLopesAWuRChenYAsymptotic behavior of fractional-order nonlinear systems with two different derivativesJ Eng Math202314019459146510.1007/s10665-023-10272-9 BoukhezzarBLupuLSiguerdidjaneHHandMMultivariable control strategy for variable speed, variable pitch wind turbinesRenew Energy20073281273128710.1016/j.renene.2006.06.010 LiuYPattonRJShiSWind turbine asymmetrical load reduction with pitch sensor fault compensationWind Energy20202371523154110.1002/we.2496 KamalEAitoucheAGhorbaniRBayartMRobust fuzzy fault-tolerant control of wind energy conversion systems subject to sensor faultsIEEE Trans Sustain Energy20123223124110.1109/TSTE.2011.2178105 BadihiHZhangYFault-tolerant individual pitch control of a wind turbine with actuator faultsIFAC-PapersOnLine201851241133114010.1016/j.ifacol.2018.09.717 DengHKrstićMStochastic nonlinear stabilizationi: a backstepping designSyst Control Lett199732314315010.1016/S0167-6911(97)00068-6 LanJPattonRJZhuXFault-tolerant wind turbine pitch control using adaptive sliding mode estimationRenew Energy201811621923110.1016/j.renene.2016.12.005 ShiFPattonRAn active fault tolerant control approach to an offshore wind turbine modelRenew Energy20157578879810.1016/j.renene.2014.10.061 LopesAAraújoREActive fault diagnosis method for vehicles in platoon formationIEEE Trans Veh Technol20206943590360310.1109/TVT.2020.2968961 SamiMPattonRJAn ftc approach to wind turbine power maximisation via ts fuzzy modelling and controlIFAC Proc Vol2012452034935410.3182/20120829-3-MX-2028.00131 Cho S, Gao Z, Moan T (2016) Model-based fault detection of blade pitch system in floating wind turbines HabibiHRahimi NohoojiHHowardISimaniSFault-tolerant neuro adaptive constrained control of wind turbines for power regulation with uncertain wind speed variationEnergies20191224471210.3390/en12244712 HabibiHHowardISimaniSReliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A reviewRenew Energy201913587789610.1016/j.renene.2018.12.066 GucFChenYSensor fault diagnostics using physics-informed transfer learning frameworkSensors2022228291310.3390/s22082913 OdgaardPFSanchezHEscobetTPuigVFault diagnosis and fault tolerant control with application on a wind turbine low speed shaft encoderIFAC-PapersOnLine201548211357136210.1016/j.ifacol.2015.09.714 Patton R (1997) Fault tolerant control-the 1997 situations (survey). IFAC Safe Process’ 97, Hull 2:1033–1055 WangXShenYFault-tolerant control strategy of a wind energy conversion system considering multiple fault reconstructionAppl Sci20188579410.3390/app8050794 KühnePPöschkeFSchulteHFault estimation and fault-tolerant control of the fast nrel 5-mw reference wind turbine using a proportional multi-integral observerInt J Adapt Control Signal Process2018324568585379605710.1002/acs.2800 YangJZhuFWangXBuXRobust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systemsInt J Control Autom Syst20151351037104610.1007/s12555-014-0159-4 GunasekaranNJooYHNie-tan fuzzy method of fault-tolerant wind energy conversion systems via sampled-data controlIET Control Theory Appl2020141115161523441788210.1049/iet-cta.2019.0816 RahnavardMAyatiMYazdiMRHRobust actuator and sensor fault reconstruction of wind turbine using modified sliding mode observerTrans Inst Meas Control20194161504151810.1177/0142331218754620 TabatabaeipourSMOdgaardPFBakTStoustrupJFault detection of wind turbines with uncertain parameters: a set-membership approachEnergies2012572424244810.3390/en5072424 Abdo A, Siam J, Abdou A, Shehadeh H, Al-Rimawi A (2018) An efficient approach for fault detection and fault tolerant control of wind turbines. In: 2018 IEEE international conference on environment and electrical engineering and 2018 ieee industrial and commercial power systems Europe (EEEIC/I &CPS Europe). IEEE, pp 1–6 WangLXA course in fuzzy systems and control1996New YorkPrentice-Hall Inc Sami M, Patton RJ (2012) Wind turbine power maximisation based on adaptive sensor fault tolerant sliding mode control. In: 2012 20th Mediterranean conference on control and automation (MED). IEEE, pp 1183–1188 WangGHuangZData-driven fault-tolerant control design for wind turbines with robust residual generatorIET Control Theory Appl2015971173117910.1049/iet-cta.2014.0726 ChoSGaoZMoanTModel-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbinesRenew Energy201812030632110.1016/j.renene.2017.12.102 JainTYaméJJSauterDA novel approach to real-time fault accommodation in Nrel’s 5-mw wind turbine systemsIEEE Trans Sustain Energy2013441082109010.1109/TSTE.2013.2268615 GhanbarpourKBayatFJalilvandADependable power extraction in wind turbines using model predictive fault tolerant controlInt J Electr Power Energy Syst202011810.1016/j.ijepes.2019.105802 GolnaryFMoradiHDynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speedAppl Math Model201965566585388094710.1016/j.apm.2018.08.030 GhanbarpourKBayatFJalilvandAWind turbines sustainable power generation subject to sensor faults: Observer-based mpc approachInternational Transactions on Electrical Energy Systems202030110.1002/2050-7038.12174 MoradiMChaibakhshARamezaniAAn intelligent hybrid technique for fault detection and condition monitoring of a thermal power plantAppl Math Model2018603447380261510.1016/j.apm.2018.03.002 1340_CR5 DD Šiljak (1340_CR32) 1980; 31 1340_CR7 H Deng (1340_CR9) 1997; 32 A Lopes (1340_CR24) 2020; 69 PF Odgaard (1340_CR26) 2015; 48 1340_CR1 1340_CR27 X Wang (1340_CR38) 2018; 8 K Ghanbarpour (1340_CR12) 2020; 30 F Guc (1340_CR14) 2022; 22 H Habibi (1340_CR16) 2019; 135 G Tao (1340_CR35) 2002; 47 A Taherkhani (1340_CR34) 2019; 13 E Kamal (1340_CR19) 2012; 3 M Rahnavard (1340_CR28) 2019; 41 M Moradi (1340_CR25) 2018; 60 S Georg (1340_CR10) 2014; 524 H Habibi (1340_CR17) 2019; 12 N Gunasekaran (1340_CR15) 2020; 14 Y Liu (1340_CR23) 2020; 23 LX Wang (1340_CR37) 1996 K Ghanbarpour (1340_CR11) 2020; 118 B Boukhezzar (1340_CR4) 2007; 32 F Golnary (1340_CR13) 2019; 65 P Kühne (1340_CR20) 2018; 32 A Bakhshi (1340_CR3) 2020; 22 J Lan (1340_CR21) 2018; 116 1340_CR30 H Badihi (1340_CR2) 2018; 51 Y Liu (1340_CR22) 2018; 51 F Shi (1340_CR31) 2015; 75 J Yang (1340_CR39) 2015; 13 G Wang (1340_CR36) 2015; 9 L Chen (1340_CR6) 2023; 140 T Jain (1340_CR18) 2013; 4 S Cho (1340_CR8) 2018; 120 M Sami (1340_CR29) 2012; 45 SM Tabatabaeipour (1340_CR33) 2012; 5 |
References_xml | – reference: KühnePPöschkeFSchulteHFault estimation and fault-tolerant control of the fast nrel 5-mw reference wind turbine using a proportional multi-integral observerInt J Adapt Control Signal Process2018324568585379605710.1002/acs.2800 – reference: Patton R (1997) Fault tolerant control-the 1997 situations (survey). IFAC Safe Process’ 97, Hull 2:1033–1055 – reference: WangLXA course in fuzzy systems and control1996New YorkPrentice-Hall Inc – reference: LanJPattonRJZhuXFault-tolerant wind turbine pitch control using adaptive sliding mode estimationRenew Energy201811621923110.1016/j.renene.2016.12.005 – reference: TabatabaeipourSMOdgaardPFBakTStoustrupJFault detection of wind turbines with uncertain parameters: a set-membership approachEnergies2012572424244810.3390/en5072424 – reference: ChoSGaoZMoanTModel-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbinesRenew Energy201812030632110.1016/j.renene.2017.12.102 – reference: TaherkhaniABayatFWind turbines robust fault reconstruction using adaptive sliding mode observerIET Gener Transm Distrib201913143096310410.1049/iet-gtd.2018.6736 – reference: ŠiljakDDReliable control using multiple control systemsInt J Control198031230332956592510.1080/00207178008961043 – reference: JainTYaméJJSauterDA novel approach to real-time fault accommodation in Nrel’s 5-mw wind turbine systemsIEEE Trans Sustain Energy2013441082109010.1109/TSTE.2013.2268615 – reference: GeorgSSchulteHFault-tolerant control of wind turbines using a Takagi-Sugeno sliding mode observerJ Phys Conf Ser201452410.1088/1742-6596/524/1/012053 – reference: Chen L, Shi F, Patton R (2013) Active ftc for hydraulic pitch system for an off-shore wind turbine. In: 2013 Conference on control and fault-tolerant systems (SysTol). IEEE, pp 510–515 – reference: ShiFPattonRAn active fault tolerant control approach to an offshore wind turbine modelRenew Energy20157578879810.1016/j.renene.2014.10.061 – reference: HabibiHHowardISimaniSReliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A reviewRenew Energy201913587789610.1016/j.renene.2018.12.066 – reference: ChenLXueMLopesAWuRChenYAsymptotic behavior of fractional-order nonlinear systems with two different derivativesJ Eng Math202314019459146510.1007/s10665-023-10272-9 – reference: DengHKrstićMStochastic nonlinear stabilizationi: a backstepping designSyst Control Lett199732314315010.1016/S0167-6911(97)00068-6 – reference: LiuYPattonRJLanJFault-tolerant individual pitch control using adaptive sliding mode observerIFAC-PapersOnLine201851241127113210.1016/j.ifacol.2018.09.723 – reference: RahnavardMAyatiMYazdiMRHRobust actuator and sensor fault reconstruction of wind turbine using modified sliding mode observerTrans Inst Meas Control20194161504151810.1177/0142331218754620 – reference: BadihiHZhangYFault-tolerant individual pitch control of a wind turbine with actuator faultsIFAC-PapersOnLine201851241133114010.1016/j.ifacol.2018.09.717 – reference: GolnaryFMoradiHDynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speedAppl Math Model201965566585388094710.1016/j.apm.2018.08.030 – reference: LiuYPattonRJShiSWind turbine asymmetrical load reduction with pitch sensor fault compensationWind Energy20202371523154110.1002/we.2496 – reference: OdgaardPFSanchezHEscobetTPuigVFault diagnosis and fault tolerant control with application on a wind turbine low speed shaft encoderIFAC-PapersOnLine201548211357136210.1016/j.ifacol.2015.09.714 – reference: LopesAAraújoREActive fault diagnosis method for vehicles in platoon formationIEEE Trans Veh Technol20206943590360310.1109/TVT.2020.2968961 – reference: HabibiHRahimi NohoojiHHowardISimaniSFault-tolerant neuro adaptive constrained control of wind turbines for power regulation with uncertain wind speed variationEnergies20191224471210.3390/en12244712 – reference: BoukhezzarBLupuLSiguerdidjaneHHandMMultivariable control strategy for variable speed, variable pitch wind turbinesRenew Energy20073281273128710.1016/j.renene.2006.06.010 – reference: GunasekaranNJooYHNie-tan fuzzy method of fault-tolerant wind energy conversion systems via sampled-data controlIET Control Theory Appl2020141115161523441788210.1049/iet-cta.2019.0816 – reference: WangXShenYFault-tolerant control strategy of a wind energy conversion system considering multiple fault reconstructionAppl Sci20188579410.3390/app8050794 – reference: Cho S, Gao Z, Moan T (2016) Model-based fault detection of blade pitch system in floating wind turbines – reference: YangJZhuFWangXBuXRobust sliding-mode observer-based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systemsInt J Control Autom Syst20151351037104610.1007/s12555-014-0159-4 – reference: Sami M, Patton RJ (2012) Wind turbine power maximisation based on adaptive sensor fault tolerant sliding mode control. In: 2012 20th Mediterranean conference on control and automation (MED). IEEE, pp 1183–1188 – reference: Abdo A, Siam J, Abdou A, Shehadeh H, Al-Rimawi A (2018) An efficient approach for fault detection and fault tolerant control of wind turbines. In: 2018 IEEE international conference on environment and electrical engineering and 2018 ieee industrial and commercial power systems Europe (EEEIC/I &CPS Europe). IEEE, pp 1–6 – reference: TaoGChenSJoshiSMAn adaptive actuator failure compensation controller using output feedbackIEEE Trans Autom Control2002473506511189133610.1109/9.989150 – reference: GhanbarpourKBayatFJalilvandAWind turbines sustainable power generation subject to sensor faults: Observer-based mpc approachInternational Transactions on Electrical Energy Systems202030110.1002/2050-7038.12174 – reference: GucFChenYSensor fault diagnostics using physics-informed transfer learning frameworkSensors2022228291310.3390/s22082913 – reference: SamiMPattonRJAn ftc approach to wind turbine power maximisation via ts fuzzy modelling and controlIFAC Proc Vol2012452034935410.3182/20120829-3-MX-2028.00131 – reference: BakhshiAAlfiARobust LMI-based active fault tolerant pitch control of a wind turbine using fuzzy modelJ Control Eng Appl Inform20202243442 – reference: GhanbarpourKBayatFJalilvandADependable power extraction in wind turbines using model predictive fault tolerant controlInt J Electr Power Energy Syst202011810.1016/j.ijepes.2019.105802 – reference: MoradiMChaibakhshARamezaniAAn intelligent hybrid technique for fault detection and condition monitoring of a thermal power plantAppl Math Model2018603447380261510.1016/j.apm.2018.03.002 – reference: WangGHuangZData-driven fault-tolerant control design for wind turbines with robust residual generatorIET Control Theory Appl2015971173117910.1049/iet-cta.2014.0726 – reference: KamalEAitoucheAGhorbaniRBayartMRobust fuzzy fault-tolerant control of wind energy conversion systems subject to sensor faultsIEEE Trans Sustain Energy20123223124110.1109/TSTE.2011.2178105 – volume: 65 start-page: 566 year: 2019 ident: 1340_CR13 publication-title: Appl Math Model doi: 10.1016/j.apm.2018.08.030 – volume: 69 start-page: 3590 issue: 4 year: 2020 ident: 1340_CR24 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2968961 – volume: 140 start-page: 9 issue: 1 year: 2023 ident: 1340_CR6 publication-title: J Eng Math doi: 10.1007/s10665-023-10272-9 – volume: 32 start-page: 143 issue: 3 year: 1997 ident: 1340_CR9 publication-title: Syst Control Lett doi: 10.1016/S0167-6911(97)00068-6 – volume: 60 start-page: 34 year: 2018 ident: 1340_CR25 publication-title: Appl Math Model doi: 10.1016/j.apm.2018.03.002 – volume: 48 start-page: 1357 issue: 21 year: 2015 ident: 1340_CR26 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.714 – volume: 116 start-page: 219 year: 2018 ident: 1340_CR21 publication-title: Renew Energy doi: 10.1016/j.renene.2016.12.005 – ident: 1340_CR27 – volume: 22 start-page: 34 issue: 4 year: 2020 ident: 1340_CR3 publication-title: J Control Eng Appl Inform – volume: 13 start-page: 3096 issue: 14 year: 2019 ident: 1340_CR34 publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2018.6736 – volume: 524 year: 2014 ident: 1340_CR10 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/524/1/012053 – ident: 1340_CR30 doi: 10.1109/MED.2012.6265799 – volume: 120 start-page: 306 year: 2018 ident: 1340_CR8 publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.102 – volume: 3 start-page: 231 issue: 2 year: 2012 ident: 1340_CR19 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2011.2178105 – volume: 31 start-page: 303 issue: 2 year: 1980 ident: 1340_CR32 publication-title: Int J Control doi: 10.1080/00207178008961043 – volume: 8 start-page: 794 issue: 5 year: 2018 ident: 1340_CR38 publication-title: Appl Sci doi: 10.3390/app8050794 – volume: 13 start-page: 1037 issue: 5 year: 2015 ident: 1340_CR39 publication-title: Int J Control Autom Syst doi: 10.1007/s12555-014-0159-4 – volume: 14 start-page: 1516 issue: 11 year: 2020 ident: 1340_CR15 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2019.0816 – volume: 51 start-page: 1133 issue: 24 year: 2018 ident: 1340_CR2 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.717 – volume: 32 start-page: 1273 issue: 8 year: 2007 ident: 1340_CR4 publication-title: Renew Energy doi: 10.1016/j.renene.2006.06.010 – volume: 5 start-page: 2424 issue: 7 year: 2012 ident: 1340_CR33 publication-title: Energies doi: 10.3390/en5072424 – ident: 1340_CR7 doi: 10.1088/1742-6596/753/9/092012 – volume: 32 start-page: 568 issue: 4 year: 2018 ident: 1340_CR20 publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.2800 – volume: 9 start-page: 1173 issue: 7 year: 2015 ident: 1340_CR36 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2014.0726 – ident: 1340_CR1 doi: 10.1109/EEEIC.2018.8494619 – volume: 22 start-page: 2913 issue: 8 year: 2022 ident: 1340_CR14 publication-title: Sensors doi: 10.3390/s22082913 – volume: 23 start-page: 1523 issue: 7 year: 2020 ident: 1340_CR23 publication-title: Wind Energy doi: 10.1002/we.2496 – volume: 30 issue: 1 year: 2020 ident: 1340_CR12 publication-title: International Transactions on Electrical Energy Systems doi: 10.1002/2050-7038.12174 – volume: 47 start-page: 506 issue: 3 year: 2002 ident: 1340_CR35 publication-title: IEEE Trans Autom Control doi: 10.1109/9.989150 – volume: 4 start-page: 1082 issue: 4 year: 2013 ident: 1340_CR18 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2013.2268615 – volume: 41 start-page: 1504 issue: 6 year: 2019 ident: 1340_CR28 publication-title: Trans Inst Meas Control doi: 10.1177/0142331218754620 – volume-title: A course in fuzzy systems and control year: 1996 ident: 1340_CR37 – volume: 118 year: 2020 ident: 1340_CR11 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.105802 – volume: 135 start-page: 877 year: 2019 ident: 1340_CR16 publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.066 – volume: 12 start-page: 4712 issue: 24 year: 2019 ident: 1340_CR17 publication-title: Energies doi: 10.3390/en12244712 – ident: 1340_CR5 doi: 10.1109/SysTol.2013.6693892 – volume: 45 start-page: 349 issue: 20 year: 2012 ident: 1340_CR29 publication-title: IFAC Proc Vol doi: 10.3182/20120829-3-MX-2028.00131 – volume: 75 start-page: 788 year: 2015 ident: 1340_CR31 publication-title: Renew Energy doi: 10.1016/j.renene.2014.10.061 – volume: 51 start-page: 1127 issue: 24 year: 2018 ident: 1340_CR22 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.723 |
SSID | ssj0002140249 ssib031263557 |
Score | 2.2787702 |
Snippet | This research presents an observer-based adaptive fault-tolerant control for wind turbine systems subject to the pitch angle sensor fault. The design mechanism... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1987 |
SubjectTerms | Complexity Control Control and Systems Theory Dynamical Systems Engineering Vibration |
Title | Observer-based adaptive guaranteed control of wind turbine system subject to pitch angle sensor fault |
URI | https://link.springer.com/article/10.1007/s40435-023-01340-0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBt1hf7MGbpjT7yONYpLUo6sVCPYVNdraIpS1tiuCvdzbZFCtS6DXZDcnMZB47M98QcsMzQLdbgadjZINQEfciYLHHQRmVShPrYg7Z80vQ64vHgRy4prB5Ve1epSQLTb1sdrM4MLab2Nb_cFuUuE3q6H-0RI3U2w_vT51KjrhvEVZcNs9qZIZRBCs8YWZHE7IgGrj-mf8fvGqjVhOkhd3p7pN-9cZluclnc5Gnzez7D5jjpp90QPacI0rbpeQcki0YH5HdX_CExwReU3tmCzPP2jpNlVZTqx3pEOXKcgSvuVJ3OjH0C8N7ihYMY22gJUI0nS9Se9BD8wmdfqCAUDUejvAuBs-TGTVqMcpPSL_bebvveW4sg5ex2M-9WGsRKSky7TNjEerjTDLlA3CZBlJrzmPFAQSEPAIjkPQh8t0yBRSPhOanpDaejOGMUJsmNhHXMgxbQgU6lkb7xkQmZEopIRvErxiRZA6z3I7OGCVLtOWChAmSMClImLQa5Ha5Z1oidqxdfVexJnF_73zN8vPNll-QHYaSV5aWXZJaPlvAFToxeXrtZPYH_v_low |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHNSDbyM-9-BNS-w-aHskRkTxcYEET822O0uMBAiUmPjrnW23RI0h8dpum3bm685MZ-YbQi54Cuh2K_B0hGoQKuReCCzyOCijEmkinc8he3putHvioS_7rilsVla7lynJfKdeNLtZHhjbTWzrf7gtSlwlVYExOOK62rx77dyWOOK-ZVhx2Ty7IzOMIljuCTM7mpA1wr7rn_n7xj9t1M8EaW53WlukVz5xUW7yXp9nST39_EXm-N9X2iabzhGlzQI5O2QFRrtk4xs94R6Bl8T-s4WpZ22dpkqrid0d6QBxZTWCx1ypOx0b-oHhPUULhrE20IIhms7mif3RQ7MxnbwhQKgaDYZ4FoPn8ZQaNR9m-6TXuu3etD03lsFLWeRnXqS1CJUUqfaZsQz1USqZ8gG4TBpSa84jxQEEBDwEI1D0AerdKgUUD4XmB6QyGo_gkFCbJjYh1zIIroVq6Ega7RsTmoAppYSsEb9URJw6znI7OmMYL9iWcxHGKMI4F2F8XSOXi2smBWPH0tVXpWpi9_XOliw_-t_yc7LW7j49xo_3z51jss4QhUWZ2QmpZNM5nKJDkyVnDr9f8NPokg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLboIlXlUKAtgvKaA7cSIPPYJEcELG_oAaTtKXIyHoRYZVdLVpX66xnnsQKEkCquyUyUjL-M7bH9GWBL5eTNbqTAJl4MGmMVxCSTQBE6zIxLbNWH7PKqe3Krz_qm_6yKv8p2b0OSdU0DszQV5e7Iut1p4RtzwnBlMecCKU5Q_ASzmrntOjC7f_zn_KjFlAqZbaWJ7PHuLL1HISurWHKbQtmN-00tzdsPfqmvXgZLKx3Umwds375OPXnYmZTZTv7vFbHjRz5vAb42BqrYrxG1CDNUfIO5Z7SF34GuMz7LpXHAOtAKtDjiXVPcebyxpPy1JgVeDJ34691-4TWb98FJ1MzR4nGS8QGQKIdidO-BI7C4G_i73qkejoXDyaD8Abe9o5uDk6Bp1xDkMgnLILFWx2h0bkPpmLk-yY3EkEiZrGusVSpBRaQpUjE57cUQeTywgAhVrK1agk4xLGgZBIePXaysiaI9jV2bGGdD52IXSUTUZgXCVihp3nCZc0uNQTplYa6WMPVLmFZLmO6twK_pnFHN5PHu6O1WTGnzVz--M_zn_w3fhM-_D3vpxenV-Sp8kR6QdfbZGnTK8YTWvZ1TZhsNlJ8AMjXxdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observer-based+adaptive+guaranteed+control+of+wind+turbine+system+subject+to+pitch+angle+sensor+fault&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Bakhshi%2C+Ali&rft.au=Alfi%2C+Alireza&rft.date=2024-06-01&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=12&rft.issue=6&rft.spage=1987&rft.epage=1999&rft_id=info:doi/10.1007%2Fs40435-023-01340-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40435_023_01340_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |