Subject-independent Continuous Estimation of sEMG-based Joint Angles using both Multisource Domain Adaptation and BP Neural Network

Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton system...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 72; p. 1
Main Authors Li, He, Guo, Shuxiang, Wang, Hanze, Bu, Dongdong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of inter-subject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. And feature distribution of the training set and test set is evaluated using the kernel density estimation method. Further, the subject-invariant features obtained through MDA are the input of the back propagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. And the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.
AbstractList Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. Also, for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of intersubject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. Also, the feature distribution of the training set and test set is evaluated using the kernel density estimation (KDE) method. Furthermore, the subject-invariant features obtained through MDA are the input of the backpropagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. Also, the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.
Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of inter-subject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. And feature distribution of the training set and test set is evaluated using the kernel density estimation method. Further, the subject-invariant features obtained through MDA are the input of the back propagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. And the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements.
Author Li, He
Guo, Shuxiang
Bu, Dongdong
Wang, Hanze
Author_xml – sequence: 1
  givenname: He
  orcidid: 0000-0001-6520-6729
  surname: Li
  fullname: Li, He
  organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Shuxiang
  orcidid: 0000-0002-0607-9798
  surname: Guo
  fullname: Guo, Shuxiang
  organization: Ministry of Industry and Information Technology, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Hanze
  orcidid: 0000-0002-1537-1256
  surname: Wang
  fullname: Wang, Hanze
  organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Dongdong
  orcidid: 0000-0003-4058-4058
  surname: Bu
  fullname: Bu, Dongdong
  organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China
BookMark eNp9kL1PwzAQxS0EEqWwI7FYYk6xz4lTj6WUL1FAosyR4zjgEuxiO0LM_OMYBTEwsNzTSe_dPf320LZ1ViN0SMmEUiJOVlfLCRCACQMoCC220IgWRZkJzmEbjQih00zkBd9FeyGsCSElz8sR-nzo67VWMTO20Rudho147mw0tnd9wIsQzauMxlnsWhwWy4uslkE3-NqZ5JzZp04H3Adjn3Dt4jNe9l00wfVeaXzmXqWxeNbITRxuSNvg03t8q3svuyTx3fmXfbTTyi7ogx8do8fzxWp-md3cXVzNZzeZAkFjJhoKlCvQxRTavGU1h7JsW8WgqesirU075VwpISmhUkyBKJZLJQklIHgBbIyOh7sb7956HWK1Tj1tellByVnJmGA8ufjgUt6F4HVbKTO0j16arqKk-gZeJeDVN_DqB3gKkj_BjU_s_Md_kaMhYrTWv3YheM4YsC_S1o5Z
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_LRA_2025_3531715
crossref_primary_10_1007_s42235_023_00339_9
crossref_primary_10_1109_TIM_2025_3546405
crossref_primary_10_1109_LRA_2023_3303701
Cites_doi 10.1016/j.bspc.2017.08.015
10.3389/fnhum.2017.00586
10.1177/1545968316666957
10.3390/s21227681
10.1109/TBME.2019.2935182
10.1007/s00542-020-04939-x
10.1007/s41133-020-00043-x
10.1109/CVPR.2012.6247911
10.1177/17474930211065917
10.1016/j.jocs.2018.04.019
10.1109/EMBC46164.2021.9630433
10.1109/TCYB.2016.2633306
10.1016/j.bspc.2020.102074
10.1155/2019/9627438
10.1109/JBHI.2021.3080502
10.1016/j.bspc.2019.02.011
10.1109/TNSRE.2020.3038051
10.1109/JBHI.2020.3027303
10.3390/life12010064
10.1186/s12984-019-0512-1
10.3390/s18051615
10.1109/TNSRE.2021.3086401
10.1109/JSEN.2020.3048983
10.3390/biomimetics6040063
10.1080/10749357.2020.1783918
10.1109/JIOT.2020.2979328
10.1109/TNN.2010.2091281
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3225015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2022_3225015
9964332
Genre orig-research
GrantInformation_xml – fundername: National High-tech Research and Development Program (863 Program) of China
  grantid: 2015AA043202
– fundername: SPS KAKENHI
  grantid: 15K2120
– fundername: National Natural Science Foundation of China
  grantid: 61703305
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-9d1216c2e582f4f3b6277ffc32dbb53b6df866cc9a101a9820c34aca010296523
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:30 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 03:07:21 EDT 2025
Wed Aug 27 02:18:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9d1216c2e582f4f3b6277ffc32dbb53b6df866cc9a101a9820c34aca010296523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6520-6729
0000-0002-1537-1256
0000-0002-0607-9798
0000-0003-4058-4058
PQID 2763733936
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_2763733936
crossref_citationtrail_10_1109_TIM_2022_3225015
ieee_primary_9964332
crossref_primary_10_1109_TIM_2022_3225015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1016/j.bspc.2017.08.015
– ident: ref23
  doi: 10.3389/fnhum.2017.00586
– ident: ref5
  doi: 10.1177/1545968316666957
– ident: ref18
  doi: 10.3390/s21227681
– ident: ref16
  doi: 10.1109/TBME.2019.2935182
– ident: ref9
  doi: 10.1007/s00542-020-04939-x
– ident: ref4
  doi: 10.1007/s41133-020-00043-x
– ident: ref25
  doi: 10.1109/CVPR.2012.6247911
– ident: ref1
  doi: 10.1177/17474930211065917
– ident: ref11
  doi: 10.1016/j.jocs.2018.04.019
– ident: ref12
  doi: 10.1109/EMBC46164.2021.9630433
– ident: ref26
  doi: 10.1109/TCYB.2016.2633306
– ident: ref17
  doi: 10.1016/j.bspc.2020.102074
– ident: ref3
  doi: 10.1155/2019/9627438
– ident: ref14
  doi: 10.1109/JBHI.2021.3080502
– ident: ref7
  doi: 10.1016/j.bspc.2019.02.011
– ident: ref8
  doi: 10.1109/TNSRE.2020.3038051
– ident: ref15
  doi: 10.1109/JBHI.2020.3027303
– ident: ref13
  doi: 10.3390/life12010064
– ident: ref10
  doi: 10.1186/s12984-019-0512-1
– ident: ref19
  doi: 10.3390/s18051615
– ident: ref21
  doi: 10.1109/TNSRE.2021.3086401
– ident: ref20
  doi: 10.1109/JSEN.2020.3048983
– ident: ref22
  doi: 10.3390/biomimetics6040063
– ident: ref2
  doi: 10.1080/10749357.2020.1783918
– ident: ref6
  doi: 10.1109/JIOT.2020.2979328
– ident: ref24
  doi: 10.1109/TNN.2010.2091281
SSID ssj0007647
Score 2.4458869
Snippet Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Adaptation models
Artificial neural networks
Back propagation
Back propagation networks
BP neural network
Continuous angle estimation
Domains
Elbow
Elbow (anatomy)
Electromyography
Estimation
Exoskeletons
Inter-subject variability
Invariants
Limbs
Multisource domain adaptation
Muscles
Neural networks
Rehabilitation
Statistical methods
Surface electromyography (sEMG)
Training
Title Subject-independent Continuous Estimation of sEMG-based Joint Angles using both Multisource Domain Adaptation and BP Neural Network
URI https://ieeexplore.ieee.org/document/9964332
https://www.proquest.com/docview/2763733936
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE59JEH3XZbdMglEO-uJVu7Om7bTbeBDTkkkJvRMyzZ2qG2L732j3ckeU1ISunNBgkE38xoRjPzDcAJeqCKKTlJEFwMUJhUibRcJk6mIS_j8tCVtrrky5vs4ja_3YGzvhfGWhuKz-zIf4Zcvql065_KxsKTRzE0uLsYuMVerd7qTnkW-TFTVGD0CrYpyYkYX39fYSBI6cgL78QPwH10BYWZKs8Mcbhdzl_DanuuWFRyP2obNdK_nlA2_u_B38Crzs0k8ygXb2HHlgew_4h88ABehOJPXR_Cb7Qe_jkmWfczcRviaavWZVu1NVmgGYgdjqRypF6sviX-8jPkolrjynl5t7E18RX0d0Qh8iR09ca0APla_ZDrksyNfIhZfyJLQz5fEU8Lgke8jHXoR3Bzvrj-sky64QyJpiJtEmFSmnJNbT6jLnNMcTqdOqcZNUrl-GvcjHOthUSllwIdDc0yqaXnsBMcw99j2Cur0r4DkmHMI2ZSiNzpzAjpGfiVExa9wZmxLBvAeItXoTvmcj9AY1OECGYiCkS48AgXHcIDOO13PETWjn-sPfSA9es6rAYw3IpE0al1XVC0xlPGBOPv_77rA7z08-jjG80Q9pqfrf2IXkujPgVx_QNr-Oi2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQg48GipWCjgAxcksruxE-_6uMCWbWlWHLZSb5Gf1YqSVCS5cOWPM7azUQUIcUskW7L0jefhmfkG4A16oIopOU0QXAxQmFSJtFwmTqYhL-Py0JVWrPnqIju7zC_34N3QC2OtDcVnduw_Qy7f1LrzT2UT4cmjGCrcO2j38zR2aw16d8azyJCZ4hVGv2CXlJyKyea0wFCQ0rEX36kfgXvLCIWpKn-o4mBfTh5BsTtZLCv5Ou5aNdY_fiNt_N-jP4aHvaNJFlEynsCerQ7gwS36wQO4G8o_dXMIP1F_-AeZZDtMxW2JJ67aVl3dNWSJiiD2OJLakWZZfEq8-TPkrN7iykV1dW0b4mvor4hC7Eno642JAfKx_ia3FVkYeRPz_kRWhrz_QjwxCB5xHSvRn8LFyXLzYZX04xkSTUXaJsKkNOWa2nxOXeaY4nQ2c04zapTK8de4OedaC4nXXgp0NTTLpJaexU5wDICPYL-qK_sMSIZRj5hLIXKnMyOk5-BXTlj0B-fGsmwEkx1epe65y_0IjesyxDBTUSLCpUe47BEewdthx03k7fjH2kMP2LCux2oExzuRKPuL3ZQU9fGMMcH487_veg33VpvivDw_XX9-Aff9dPr4YnMM--33zr5EH6ZVr4Lo_gK1Uev_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-independent+Continuous+Estimation+of+sEMG-based+Joint+Angles+using+both+Multisource+Domain+Adaptation+and+BP+Neural+Network&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+He&rft.au=Guo%2C+Shuxiang&rft.au=Wang%2C+Hanze&rft.au=Bu%2C+Dongdong&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3225015&rft.externalDocID=9964332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon