Subject-independent Continuous Estimation of sEMG-based Joint Angles using both Multisource Domain Adaptation and BP Neural Network
Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton system...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of inter-subject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. And feature distribution of the training set and test set is evaluated using the kernel density estimation method. Further, the subject-invariant features obtained through MDA are the input of the back propagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. And the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements. |
---|---|
AbstractList | Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. Also, for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of intersubject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. Also, the feature distribution of the training set and test set is evaluated using the kernel density estimation (KDE) method. Furthermore, the subject-invariant features obtained through MDA are the input of the backpropagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. Also, the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements. Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an optimal way to achieve harmonic interactions between subjects and upper limb rehabilitation exoskeletons. And for upper limb exoskeleton systems with sEMG as the control signal, accurate identification of elbow angles from sEMG is essential. However, sEMG signals have a subject-specific nature, causing the estimation model with sEMG signals as input to have poor generalization across multiple subjects. Aiming at the above problem of inter-subject variability on sEMG, multisource domain adaptation (MDA) is combined into the estimation of continuous joint movements to obtain subject-invariant features of sEMG. And feature distribution of the training set and test set is evaluated using the kernel density estimation method. Further, the subject-invariant features obtained through MDA are the input of the back propagation neural network (BPNN). Different evaluation indicators and the statistical method are used to compare the estimation results between original features and subject-invariant features, which proves the better generalization ability of the model based on subject-invariant features. And the estimation angle error calculated by using subject-invariant features as the input of BPNN is controlled within 10°, which shows the effectiveness of the combination of MDA and shallow neural network for the accurate subject-independent estimation of elbow joint continuous movements. |
Author | Li, He Guo, Shuxiang Bu, Dongdong Wang, Hanze |
Author_xml | – sequence: 1 givenname: He orcidid: 0000-0001-6520-6729 surname: Li fullname: Li, He organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Shuxiang orcidid: 0000-0002-0607-9798 surname: Guo fullname: Guo, Shuxiang organization: Ministry of Industry and Information Technology, Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Hanze orcidid: 0000-0002-1537-1256 surname: Wang fullname: Wang, Hanze organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Dongdong orcidid: 0000-0003-4058-4058 surname: Bu fullname: Bu, Dongdong organization: The Ministry of Industry and Information Technology, School of Life Science, Key Laboratory of Convergence Biomedical Engineering System and Healthcare Technology, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kL1PwzAQxS0EEqWwI7FYYk6xz4lTj6WUL1FAosyR4zjgEuxiO0LM_OMYBTEwsNzTSe_dPf320LZ1ViN0SMmEUiJOVlfLCRCACQMoCC220IgWRZkJzmEbjQih00zkBd9FeyGsCSElz8sR-nzo67VWMTO20Rudho147mw0tnd9wIsQzauMxlnsWhwWy4uslkE3-NqZ5JzZp04H3Adjn3Dt4jNe9l00wfVeaXzmXqWxeNbITRxuSNvg03t8q3svuyTx3fmXfbTTyi7ogx8do8fzxWp-md3cXVzNZzeZAkFjJhoKlCvQxRTavGU1h7JsW8WgqesirU075VwpISmhUkyBKJZLJQklIHgBbIyOh7sb7956HWK1Tj1tellByVnJmGA8ufjgUt6F4HVbKTO0j16arqKk-gZeJeDVN_DqB3gKkj_BjU_s_Md_kaMhYrTWv3YheM4YsC_S1o5Z |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_LRA_2025_3531715 crossref_primary_10_1007_s42235_023_00339_9 crossref_primary_10_1109_TIM_2025_3546405 crossref_primary_10_1109_LRA_2023_3303701 |
Cites_doi | 10.1016/j.bspc.2017.08.015 10.3389/fnhum.2017.00586 10.1177/1545968316666957 10.3390/s21227681 10.1109/TBME.2019.2935182 10.1007/s00542-020-04939-x 10.1007/s41133-020-00043-x 10.1109/CVPR.2012.6247911 10.1177/17474930211065917 10.1016/j.jocs.2018.04.019 10.1109/EMBC46164.2021.9630433 10.1109/TCYB.2016.2633306 10.1016/j.bspc.2020.102074 10.1155/2019/9627438 10.1109/JBHI.2021.3080502 10.1016/j.bspc.2019.02.011 10.1109/TNSRE.2020.3038051 10.1109/JBHI.2020.3027303 10.3390/life12010064 10.1186/s12984-019-0512-1 10.3390/s18051615 10.1109/TNSRE.2021.3086401 10.1109/JSEN.2020.3048983 10.3390/biomimetics6040063 10.1080/10749357.2020.1783918 10.1109/JIOT.2020.2979328 10.1109/TNN.2010.2091281 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3225015 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2022_3225015 9964332 |
Genre | orig-research |
GrantInformation_xml | – fundername: National High-tech Research and Development Program (863 Program) of China grantid: 2015AA043202 – fundername: SPS KAKENHI grantid: 15K2120 – fundername: National Natural Science Foundation of China grantid: 61703305 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-9d1216c2e582f4f3b6277ffc32dbb53b6df866cc9a101a9820c34aca010296523 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:18:30 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 03:07:21 EDT 2025 Wed Aug 27 02:18:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9d1216c2e582f4f3b6277ffc32dbb53b6df866cc9a101a9820c34aca010296523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6520-6729 0000-0002-1537-1256 0000-0002-0607-9798 0000-0003-4058-4058 |
PQID | 2763733936 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2763733936 crossref_citationtrail_10_1109_TIM_2022_3225015 ieee_primary_9964332 crossref_primary_10_1109_TIM_2022_3225015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref27 doi: 10.1016/j.bspc.2017.08.015 – ident: ref23 doi: 10.3389/fnhum.2017.00586 – ident: ref5 doi: 10.1177/1545968316666957 – ident: ref18 doi: 10.3390/s21227681 – ident: ref16 doi: 10.1109/TBME.2019.2935182 – ident: ref9 doi: 10.1007/s00542-020-04939-x – ident: ref4 doi: 10.1007/s41133-020-00043-x – ident: ref25 doi: 10.1109/CVPR.2012.6247911 – ident: ref1 doi: 10.1177/17474930211065917 – ident: ref11 doi: 10.1016/j.jocs.2018.04.019 – ident: ref12 doi: 10.1109/EMBC46164.2021.9630433 – ident: ref26 doi: 10.1109/TCYB.2016.2633306 – ident: ref17 doi: 10.1016/j.bspc.2020.102074 – ident: ref3 doi: 10.1155/2019/9627438 – ident: ref14 doi: 10.1109/JBHI.2021.3080502 – ident: ref7 doi: 10.1016/j.bspc.2019.02.011 – ident: ref8 doi: 10.1109/TNSRE.2020.3038051 – ident: ref15 doi: 10.1109/JBHI.2020.3027303 – ident: ref13 doi: 10.3390/life12010064 – ident: ref10 doi: 10.1186/s12984-019-0512-1 – ident: ref19 doi: 10.3390/s18051615 – ident: ref21 doi: 10.1109/TNSRE.2021.3086401 – ident: ref20 doi: 10.1109/JSEN.2020.3048983 – ident: ref22 doi: 10.3390/biomimetics6040063 – ident: ref2 doi: 10.1080/10749357.2020.1783918 – ident: ref6 doi: 10.1109/JIOT.2020.2979328 – ident: ref24 doi: 10.1109/TNN.2010.2091281 |
SSID | ssj0007647 |
Score | 2.4458869 |
Snippet | Continuous angle estimation from surface electromyography (sEMG) is crucial for robot-assisted upper limb rehabilitation. The sEMG-based control provides an... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation Adaptation models Artificial neural networks Back propagation Back propagation networks BP neural network Continuous angle estimation Domains Elbow Elbow (anatomy) Electromyography Estimation Exoskeletons Inter-subject variability Invariants Limbs Multisource domain adaptation Muscles Neural networks Rehabilitation Statistical methods Surface electromyography (sEMG) Training |
Title | Subject-independent Continuous Estimation of sEMG-based Joint Angles using both Multisource Domain Adaptation and BP Neural Network |
URI | https://ieeexplore.ieee.org/document/9964332 https://www.proquest.com/docview/2763733936 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SQKE59JEH3XZbdMglEO-uJVu7Om7bTbeBDTkkkJvRMyzZ2qG2L732j3ckeU1ISunNBgkE38xoRjPzDcAJeqCKKTlJEFwMUJhUibRcJk6mIS_j8tCVtrrky5vs4ja_3YGzvhfGWhuKz-zIf4Zcvql065_KxsKTRzE0uLsYuMVerd7qTnkW-TFTVGD0CrYpyYkYX39fYSBI6cgL78QPwH10BYWZKs8Mcbhdzl_DanuuWFRyP2obNdK_nlA2_u_B38Crzs0k8ygXb2HHlgew_4h88ABehOJPXR_Cb7Qe_jkmWfczcRviaavWZVu1NVmgGYgdjqRypF6sviX-8jPkolrjynl5t7E18RX0d0Qh8iR09ca0APla_ZDrksyNfIhZfyJLQz5fEU8Lgke8jHXoR3Bzvrj-sky64QyJpiJtEmFSmnJNbT6jLnNMcTqdOqcZNUrl-GvcjHOthUSllwIdDc0yqaXnsBMcw99j2Cur0r4DkmHMI2ZSiNzpzAjpGfiVExa9wZmxLBvAeItXoTvmcj9AY1OECGYiCkS48AgXHcIDOO13PETWjn-sPfSA9es6rAYw3IpE0al1XVC0xlPGBOPv_77rA7z08-jjG80Q9pqfrf2IXkujPgVx_QNr-Oi2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQg48GipWCjgAxcksruxE-_6uMCWbWlWHLZSb5Gf1YqSVCS5cOWPM7azUQUIcUskW7L0jefhmfkG4A16oIopOU0QXAxQmFSJtFwmTqYhL-Py0JVWrPnqIju7zC_34N3QC2OtDcVnduw_Qy7f1LrzT2UT4cmjGCrcO2j38zR2aw16d8azyJCZ4hVGv2CXlJyKyea0wFCQ0rEX36kfgXvLCIWpKn-o4mBfTh5BsTtZLCv5Ou5aNdY_fiNt_N-jP4aHvaNJFlEynsCerQ7gwS36wQO4G8o_dXMIP1F_-AeZZDtMxW2JJ67aVl3dNWSJiiD2OJLakWZZfEq8-TPkrN7iykV1dW0b4mvor4hC7Eno642JAfKx_ia3FVkYeRPz_kRWhrz_QjwxCB5xHSvRn8LFyXLzYZX04xkSTUXaJsKkNOWa2nxOXeaY4nQ2c04zapTK8de4OedaC4nXXgp0NTTLpJaexU5wDICPYL-qK_sMSIZRj5hLIXKnMyOk5-BXTlj0B-fGsmwEkx1epe65y_0IjesyxDBTUSLCpUe47BEewdthx03k7fjH2kMP2LCux2oExzuRKPuL3ZQU9fGMMcH487_veg33VpvivDw_XX9-Aff9dPr4YnMM--33zr5EH6ZVr4Lo_gK1Uev_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-independent+Continuous+Estimation+of+sEMG-based+Joint+Angles+using+both+Multisource+Domain+Adaptation+and+BP+Neural+Network&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+He&rft.au=Guo%2C+Shuxiang&rft.au=Wang%2C+Hanze&rft.au=Bu%2C+Dongdong&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9456&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIM.2022.3225015&rft.externalDocID=9964332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |