Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor
Due to both hydrophilic oxygen–containing groups and hydrophobic unoxidized aromatic rings, graphene oxide (GO) exhibits amphiphilic properties, similar to common surfactants. Here, hydrophobic bulk molybdenum disulfide (MoS 2 ) was successfully exfoliated in GO aqueous dispersion under the conditio...
Saved in:
Published in | Ionics Vol. 28; no. 11; pp. 5223 - 5232 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-7047 1862-0760 |
DOI | 10.1007/s11581-022-04719-9 |
Cover
Loading…
Abstract | Due to both hydrophilic oxygen–containing groups and hydrophobic unoxidized aromatic rings, graphene oxide (GO) exhibits amphiphilic properties, similar to common surfactants. Here, hydrophobic bulk molybdenum disulfide (MoS
2
) was successfully exfoliated in GO aqueous dispersion under the condition of high shear force. The amphiphilic GO nanosheets play an importance role in exfoliation of bulk MoS
2
and inhibiting agglomeration of two-dimensional (2D) MoS
2
. The stacking supramolecular interaction and hydrophobic force enable rapid formation of 2D-MoS
2
/GO composite. Meanwhile, the strong electrostatic repulsion make composite uniformly dispersed in water. The exfoliation conditions were optimum that include pH value, exfoliation time, GO concentration, oxidation level of GO, and size of bulk MoS
2
. The average length and thickness of optimum 2D-MoS
2
nanosheets are 161.3 nm and below 10 nm, respectively. The contents of 2D-MoS
2
in composites are up to 4.87%. The structure characterization and quenched fluorescence also demonstrated that 2D-MoS
2
is adhered to the surface of GO and dispersing in water. The 2D-MoS
2
/rGO film prepared from prepared dispersion shows an outstanding volume specific capacitance and cycle stability in supercapacitor. Overall, this work provides a facile and scalable technology for preparing 2D-MoS
2
/GO composite without any additives, which can be used for supercapacitor electrode. |
---|---|
AbstractList | Due to both hydrophilic oxygen–containing groups and hydrophobic unoxidized aromatic rings, graphene oxide (GO) exhibits amphiphilic properties, similar to common surfactants. Here, hydrophobic bulk molybdenum disulfide (MoS
2
) was successfully exfoliated in GO aqueous dispersion under the condition of high shear force. The amphiphilic GO nanosheets play an importance role in exfoliation of bulk MoS
2
and inhibiting agglomeration of two-dimensional (2D) MoS
2
. The stacking supramolecular interaction and hydrophobic force enable rapid formation of 2D-MoS
2
/GO composite. Meanwhile, the strong electrostatic repulsion make composite uniformly dispersed in water. The exfoliation conditions were optimum that include pH value, exfoliation time, GO concentration, oxidation level of GO, and size of bulk MoS
2
. The average length and thickness of optimum 2D-MoS
2
nanosheets are 161.3 nm and below 10 nm, respectively. The contents of 2D-MoS
2
in composites are up to 4.87%. The structure characterization and quenched fluorescence also demonstrated that 2D-MoS
2
is adhered to the surface of GO and dispersing in water. The 2D-MoS
2
/rGO film prepared from prepared dispersion shows an outstanding volume specific capacitance and cycle stability in supercapacitor. Overall, this work provides a facile and scalable technology for preparing 2D-MoS
2
/GO composite without any additives, which can be used for supercapacitor electrode. |
Author | Wu, Wei Meng, Hong Yin, Xianglu Teng, Aijun Zeng, Zehua |
Author_xml | – sequence: 1 givenname: Xianglu surname: Yin fullname: Yin, Xianglu organization: Ansteel Beijing Research Institute Co., LTD, College of Chemical Engineering, Beijing University of Chemical Technology – sequence: 2 givenname: Aijun surname: Teng fullname: Teng, Aijun organization: Ansteel Beijing Research Institute Co., LTD – sequence: 3 givenname: Zehua surname: Zeng fullname: Zeng, Zehua organization: Ansteel Beijing Research Institute Co., LTD – sequence: 4 givenname: Hong surname: Meng fullname: Meng, Hong organization: College of Chemical Engineering, Beijing University of Chemical Technology – sequence: 5 givenname: Wei surname: Wu fullname: Wu, Wei email: wuwei@mail.buct.edu.cn organization: College of Chemical Engineering, Beijing University of Chemical Technology |
BookMark | eNp9kE1OwzAQhS1UJNrCBVj5AqZjO43jJSoUkIpY8LO1po5dUqVxZKcS3B7TsmLR2YxGo-_NvDchoy50jpBrDjccQM0S5_OKMxCCQaG4ZvqMjHlV5lGVMCJj0IViKu8uyCSlLUBZcqHG5GOJtmkdxa6myWKL6zz00fUYcWhCR4On4o49h1cx20TsP13naPhqakdt2PUhNYOjPkSa9r2LFvssN4R4Sc49tsld_fUpeV_evy0e2erl4Wlxu2JWaD4wbTUHWwNKBbyCoqy89jWiV7lQcr8W2luHWirPC1cVtbYK68LXcymdBjkl4qhrY0gpOm_62OwwfhsO5jcZc0zG5GTMIRmjM1T9g_LPB7dDxKY9jcojmvKdbuOi2YZ97LLFU9QPkqN7Ow |
CitedBy_id | crossref_primary_10_1007_s11581_024_05711_1 crossref_primary_10_1016_j_cej_2022_141220 |
Cites_doi | 10.1002/anie.201105364 10.1021/nn405938z 10.1016/j.apsusc.2017.06.303 10.1021/ja404523s 10.1021/nl403036h 10.1002/adma.201000732 10.1021/nl201874w 10.1039/C4CE00200H 10.1016/j.ensm.2018.05.013 10.3389/fmats.2020.580424 10.1038/nmat3439 10.1021/nl301335q 10.1016/j.electacta.2013.07.094 10.1021/acs.nanolett.7b03968 10.1002/adma.201205157 10.1021/nl404396p 10.1021/ar4002312 10.1016/j.colsurfa.2017.07.074 10.1016/j.carbon.2011.09.008 10.1021/acsami.9b00192 10.1021/cm5044864 10.1103/PhysRevB.82.125403 10.1126/science.1200770 10.1038/nmat3944 10.1021/jp103745g 10.1039/C7NR01501A 10.1039/c2jm30587a 10.1021/jacs.6b08096 10.1002/chem.201001771 10.1021/nn203715c 10.1016/j.ijhydene.2013.08.112 10.1002/smll.201102654 10.1021/acsami.7b10967 10.1016/j.jcis.2015.01.058 10.1039/C5CC02066B 10.1002/adma.201501888 10.1126/science.1194975 10.1126/science.1102896 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11581-022-04719-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1862-0760 |
EndPage | 5232 |
ExternalDocumentID | 10_1007_s11581_022_04719_9 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 2.D 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-9c910cd0a370180468f9fdaaf7777a31fb29fcea937f14e84d9c7ad4fd533e903 |
IEDL.DBID | U2A |
ISSN | 0947-7047 |
IngestDate | Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 00:58:53 EDT 2025 Fri Feb 21 02:45:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Supercapacitor Graphene oxide Molybdenum disulfide Exfoliation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9c910cd0a370180468f9fdaaf7777a31fb29fcea937f14e84d9c7ad4fd533e903 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1007_s11581_022_04719_9 crossref_citationtrail_10_1007_s11581_022_04719_9 springer_journals_10_1007_s11581_022_04719_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | International Journal of Ionics The Science and Technology of Ionic Motion |
PublicationTitle | Ionics |
PublicationTitleAbbrev | Ionics |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Ji, Yang, Zhang, Liu, Tjiu, Phang, Zhang, Pan, Liu (CR3) 2013; 109 Mutawara, Pervaiz, Yang, Iftikhar (CR25) 2020; 7 Gan, Wu, Hao (CR2) 2014; 16 Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR19) 2013; 135 Varrla, Backes, Paton, Harvey, Gholamvand, Mccauley, Coleman (CR37) 2015; 27 Ramakrishnan, Karuppannan, Vinothkannan, Ramachandran, Kwon, Yoo (CR11) 2019; 11 Zhu, Murali, Cai, Li, Suk, Potts, Ruoff (CR30) 2010; 22 Wajid, Das, Irin, Ahmed, Shelburne, Parviz, Fullerton, Jankowski, Hedden, Green (CR22) 2012; 50 Erickson, Erni, Lee, Alem, Gannett, Zettl (CR28) 2010; 22 Radisavljevic, Whitwick (CR13) 2011; 5 Li, Shi, Shao, Hou, Li, Zhang, Wang (CR10) 2019; 16 Qiu, Yang, Gou, Yang, Ma, Wallace, Li (CR32) 2010; 16 Huang, Wang, Liu, Liu, Wang, Gan, Wang (CR26) 2013; 38 Yao, Lin, Li, Song, Moon, Wong (CR36) 2012; 22 Sampath, Basuray, Hartlieb, Aytun, Stupp, Stoddart (CR41) 2013; 25 Ganatra, Zhang (CR1) 2014; 8 Kibsgaard, Chen, Reinecke, Jaramillo (CR4) 2012; 11 Wahid, Chen, Gibson, Raston (CR33) 2015; 51 Zhang, Ren, Wang, Liu (CR29) 2010; 114 Zhan, Liu, Najmaei, Ajayan (CR17) 2012; 8 Pu, Yomogida, Liu, Li, Iwasa, Takenobu (CR7) 2012; 12 Su, Feng, Zheng, Hu, Lu, Liu (CR8) 2017; 9 Yan, Chou (CR31) 2010; 82 Paton, Varrla, Backes, Smith (CR21) 2014; 13 Hai, Chang, Pang, Li, Li, Liu, Shi, Ye (CR16) 2016; 138 Zhou, Mao, Wang, Peng, Zhang (CR20) 2011; 50 Najmaei, Zou, Er, Li, Jin, Gao, Zhang, Park, Ge, Lei, Kono, Shenoy, Yakobson, George, Ajayan, Lou (CR6) 2014; 14 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (CR12) 2004; 306 Guo, Yin, Wu, Meng (CR34) 2017; 531 Zhu, Murali, Stoller, Ganesh, Ruoff (CR35) 2011; 332 Li, Ye, Rui, Kang (CR40) 2015; 27 Hai, Jumiati, Zongyou, Hua (CR14) 2014; 47 Backes, Smith, Mcevoy, Berner, Mccloskey, Nerl, O’Neill, King, Higgins (CR38) 2014; 5 Coleman, Lotya, O'Neill, Bergin, Nicolosi (CR39) 2011; 331 Kwon, Lee, Yu, Lee, Cui, Hone, Lee (CR9) 2017; 9 Mouri, Miyauchi, Matsuda (CR5) 2013; 13 Eda, Yamaguchi, Voiry, Fujita, Chen (CR18) 2011; 11 Irin, Hansen, Bari, Parviz, Metzler, Bhattacharia, Green, Science (CR24) 2015; 446 Koltonow, Kim, Cote, Luo, Huang (CR27) 2011; 11 Hua, Liu, Tang, Peng, Wang (CR15) 2017; 425 Han, Zhang, Gao, Chen, Liu, Mi, Zhang, Ma, Jiang, Chang (CR23) 2017; 17 J Su (4719_CR8) 2017; 9 L Qiu (4719_CR32) 2010; 16 Z Zhan (4719_CR17) 2012; 8 H Eda (4719_CR18) 2011; 11 KJ Huang (4719_CR26) 2013; 38 KS Novoselov (4719_CR12) 2004; 306 L Hua (4719_CR15) 2017; 425 J Kibsgaard (4719_CR4) 2012; 11 KG Zhou (4719_CR20) 2011; 50 MB Mutawara (4719_CR25) 2020; 7 X Hai (4719_CR16) 2016; 138 MH Wahid (4719_CR33) 2015; 51 JN Coleman (4719_CR39) 2011; 331 S Najmaei (4719_CR6) 2014; 14 R Ganatra (4719_CR1) 2014; 8 L Guo (4719_CR34) 2017; 531 C Han (4719_CR23) 2017; 17 K Erickson (4719_CR28) 2010; 22 J Li (4719_CR10) 2019; 16 J Pu (4719_CR7) 2012; 12 MB Radisavljevic (4719_CR13) 2011; 5 S Ramakrishnan (4719_CR11) 2019; 11 AR Koltonow (4719_CR27) 2011; 11 Y Yao (4719_CR36) 2012; 22 S Ji (4719_CR3) 2013; 109 KR Paton (4719_CR21) 2014; 13 S Mouri (4719_CR5) 2013; 13 S Sampath (4719_CR41) 2013; 25 F Irin (4719_CR24) 2015; 446 C Zhang (4719_CR29) 2010; 114 Z Gan (4719_CR2) 2014; 16 L Hai (4719_CR14) 2014; 47 AS Wajid (4719_CR22) 2012; 50 Y Zhu (4719_CR35) 2011; 332 E Varrla (4719_CR37) 2015; 27 JA Yan (4719_CR31) 2010; 82 R Li (4719_CR40) 2015; 27 Y Zhu (4719_CR30) 2010; 22 RJ Backes (4719_CR38) 2014; 5 MA Lukowski (4719_CR19) 2013; 135 J Kwon (4719_CR9) 2017; 9 |
References_xml | – volume: 50 start-page: 10839 year: 2011 end-page: 10842 ident: CR20 article-title: A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues publication-title: Angew Chemie-Int Ed doi: 10.1002/anie.201105364 – volume: 8 start-page: 4074 year: 2014 end-page: 4099 ident: CR1 article-title: Few-layer MoS : a promising layered semiconductor publication-title: ACS Nano doi: 10.1021/nn405938z – volume: 425 start-page: 100 year: 2017 end-page: 106 ident: CR15 article-title: Synergetic effect of MoS and graphene as cocatalysts for enhanced photocatalytic activity of BiPO nanoparticles publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.06.303 – volume: 135 start-page: 10274 year: 2013 end-page: 10277 ident: CR19 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J Am Chem Soc doi: 10.1021/ja404523s – volume: 22 start-page: 3906 year: 2010 end-page: 3924 ident: CR30 article-title: Graphene and graphene oxide: Synthesis, properties, and applications publication-title: ChemInform – volume: 13 start-page: 5944 year: 2013 end-page: 5948 ident: CR5 article-title: Tunable photoluminescence of monolayer MoS via chemical doping publication-title: Nano Lett doi: 10.1021/nl403036h – volume: 22 start-page: 4467 year: 2010 end-page: 4472 ident: CR28 article-title: Determination of the local chemical structure of graphene oxide and reduced graphene oxide publication-title: Adv Mater doi: 10.1002/adma.201000732 – volume: 11 start-page: 1344 year: 2011 ident: CR27 article-title: Graphene oxide as a two-dimensional surfactant publication-title: Mrs Online Proc Libr Arch – volume: 11 start-page: 5111 year: 2011 end-page: 5116 ident: CR18 article-title: Chhowalla, Photoluminescence from chemically exfoliated MoS publication-title: Nano Lett doi: 10.1021/nl201874w – volume: 16 start-page: 4981 year: 2014 end-page: 4986 ident: CR2 article-title: The mechanism of blue photoluminescence from carbon nanodots publication-title: CrystEngComm doi: 10.1039/C4CE00200H – volume: 16 start-page: 212 year: 2019 end-page: 219 ident: CR10 article-title: Cladding nanostructured AgNWs-MoS electrode material for high-rate and long-life transparent in-plane micro-supercapacitor publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.05.013 – volume: 7 start-page: 580424 year: 2020 ident: CR25 article-title: High-performance supercapacitor electrode obtained by directly bonding 2D materials: Hierarchical MoS on reduced graphene oxide publication-title: Front Mater doi: 10.3389/fmats.2020.580424 – volume: 11 start-page: 963 year: 2012 ident: CR4 article-title: Engineering the surface structure of MoS to preferentially expose active edge sites for electrocatalysis publication-title: Nat Mater doi: 10.1038/nmat3439 – volume: 12 start-page: 4013 year: 2012 end-page: 4017 ident: CR7 article-title: Highly flexible MoS thin film transistors with ion gel dielectrics publication-title: Nano Lett doi: 10.1021/nl301335q – volume: 109 start-page: 269 year: 2013 end-page: 275 ident: CR3 article-title: Exfoliated MoS nanosheets as efficient catalysts for electrochemical hydrogen evolution publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.07.094 – volume: 17 start-page: 7767 year: 2017 end-page: 7772 ident: CR23 article-title: High-yield production of MoS and WS quantum sheets from their bulk materials publication-title: Nano Letter doi: 10.1021/acs.nanolett.7b03968 – volume: 25 start-page: 2740 year: 2013 end-page: 2745 ident: CR41 article-title: Direct Exfoliation of graphite to graphene in aqueous media with diazaperopyrenium dications publication-title: Adv Mater doi: 10.1002/adma.201205157 – volume: 14 start-page: 1354 year: 2014 end-page: 1361 ident: CR6 article-title: Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry publication-title: Nano Lett doi: 10.1021/nl404396p – volume: 47 start-page: 1067 year: 2014 end-page: 1075 ident: CR14 article-title: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS and WSe nanosheets publication-title: Acc Chem Res doi: 10.1021/ar4002312 – volume: 531 start-page: 25 year: 2017 end-page: 31 ident: CR34 article-title: Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite publication-title: Colloids Surf, A doi: 10.1016/j.colsurfa.2017.07.074 – volume: 50 start-page: 526 year: 2012 end-page: 534 ident: CR22 article-title: Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production publication-title: Carbon doi: 10.1016/j.carbon.2011.09.008 – volume: 11 start-page: 12504 year: 2019 end-page: 12515 ident: CR11 article-title: Ultrafine Pt nanoparticles stabilized by MoS /N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b00192 – volume: 27 start-page: 1129 year: 2015 end-page: 1139 ident: CR37 article-title: Large-scale production of size-controlled MoS nanosheets by shear exfoliation publication-title: Chem Mater doi: 10.1021/cm5044864 – volume: 82 start-page: 1303 year: 2010 end-page: 1307 ident: CR31 article-title: Oxidation functional groups on graphene: structural and electronic properties publication-title: Phys Rev B: Condens Matter doi: 10.1103/PhysRevB.82.125403 – volume: 332 start-page: 1537 year: 2011 end-page: 1541 ident: CR35 article-title: Carbon-based supercapacitors produced by activation of graphene publication-title: Science doi: 10.1126/science.1200770 – volume: 13 start-page: 624 year: 2014 end-page: 630 ident: CR21 article-title: Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids publication-title: Nat Mater doi: 10.1038/nmat3944 – volume: 114 start-page: 11435 year: 2010 end-page: 11440 ident: CR29 article-title: Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media publication-title: J Phys Chem C doi: 10.1021/jp103745g – volume: 5 start-page: 4576 year: 2014 ident: CR38 article-title: Hanlon, Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets, Nature publication-title: Communications – volume: 9 start-page: 6151 year: 2017 end-page: 6157 ident: CR9 article-title: Thickness-dependent Schottky barrier height of MoS field-effect transistors publication-title: Nanoscale doi: 10.1039/C7NR01501A – volume: 22 start-page: 13494 year: 2012 end-page: 13499 ident: CR36 article-title: Large-scale production of two-dimensional nanosheets publication-title: J Mater Chem doi: 10.1039/c2jm30587a – volume: 138 start-page: 14962 year: 2016 end-page: 14969 ident: CR16 article-title: Engineering the Edges of MoS (WS ) crystals for direct exfoliation into monolayers in polar micromolecular solvents publication-title: J Am Chem Soc doi: 10.1021/jacs.6b08096 – volume: 16 start-page: 10653 year: 2010 end-page: 10658 ident: CR32 article-title: Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives publication-title: Chemistry doi: 10.1002/chem.201001771 – volume: 5 start-page: 9934 year: 2011 end-page: 9938 ident: CR13 article-title: Kis, Integrated circuits and logic operations based on single-layer MoS publication-title: ACS Nano doi: 10.1021/nn203715c – volume: 38 start-page: 14027 year: 2013 end-page: 14034 ident: CR26 article-title: Layered MoS -graphene composites for supercapacitor applications with enhanced capacitive performance publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.112 – volume: 8 start-page: 966 year: 2012 end-page: 971 ident: CR17 article-title: Lou, Large-area vapor-phase growth and characterization of MoS atomic layers on a SiO substrate publication-title: Small doi: 10.1002/smll.201102654 – volume: 9 start-page: 40940 year: 2017 end-page: 40948 ident: CR8 article-title: Promising approach for high-performance MoS nanodevice: doping the BN buffer layer to eliminate the schottky barriers publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b10967 – volume: 446 start-page: 282 year: 2015 end-page: 289 ident: CR24 article-title: Adsorption and removal of graphene dispersants publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.01.058 – volume: 51 start-page: 11709 year: 2015 end-page: 11712 ident: CR33 article-title: Amphiphilic graphene oxide stabilisation of hexagonal BN and MoS sheets publication-title: Chem Commun doi: 10.1039/C5CC02066B – volume: 27 start-page: 5235 year: 2015 end-page: 5240 ident: CR40 article-title: Fang, Graphene quantum dots doping of MoS monolayers publication-title: Adv Mater doi: 10.1002/adma.201501888 – volume: 331 start-page: 568 year: 2011 end-page: 571 ident: CR39 article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1194975 – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR12 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 5 start-page: 4576 year: 2014 ident: 4719_CR38 publication-title: Communications – volume: 50 start-page: 526 year: 2012 ident: 4719_CR22 publication-title: Carbon doi: 10.1016/j.carbon.2011.09.008 – volume: 5 start-page: 9934 year: 2011 ident: 4719_CR13 publication-title: ACS Nano doi: 10.1021/nn203715c – volume: 12 start-page: 4013 year: 2012 ident: 4719_CR7 publication-title: Nano Lett doi: 10.1021/nl301335q – volume: 11 start-page: 1344 year: 2011 ident: 4719_CR27 publication-title: Mrs Online Proc Libr Arch – volume: 27 start-page: 1129 year: 2015 ident: 4719_CR37 publication-title: Chem Mater doi: 10.1021/cm5044864 – volume: 9 start-page: 40940 year: 2017 ident: 4719_CR8 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b10967 – volume: 51 start-page: 11709 year: 2015 ident: 4719_CR33 publication-title: Chem Commun doi: 10.1039/C5CC02066B – volume: 16 start-page: 10653 year: 2010 ident: 4719_CR32 publication-title: Chemistry doi: 10.1002/chem.201001771 – volume: 27 start-page: 5235 year: 2015 ident: 4719_CR40 publication-title: Adv Mater doi: 10.1002/adma.201501888 – volume: 138 start-page: 14962 year: 2016 ident: 4719_CR16 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b08096 – volume: 531 start-page: 25 year: 2017 ident: 4719_CR34 publication-title: Colloids Surf, A doi: 10.1016/j.colsurfa.2017.07.074 – volume: 8 start-page: 4074 year: 2014 ident: 4719_CR1 publication-title: ACS Nano doi: 10.1021/nn405938z – volume: 306 start-page: 666 year: 2004 ident: 4719_CR12 publication-title: Science doi: 10.1126/science.1102896 – volume: 11 start-page: 5111 year: 2011 ident: 4719_CR18 publication-title: Nano Lett doi: 10.1021/nl201874w – volume: 9 start-page: 6151 year: 2017 ident: 4719_CR9 publication-title: Nanoscale doi: 10.1039/C7NR01501A – volume: 16 start-page: 4981 year: 2014 ident: 4719_CR2 publication-title: CrystEngComm doi: 10.1039/C4CE00200H – volume: 135 start-page: 10274 year: 2013 ident: 4719_CR19 publication-title: J Am Chem Soc doi: 10.1021/ja404523s – volume: 82 start-page: 1303 year: 2010 ident: 4719_CR31 publication-title: Phys Rev B: Condens Matter doi: 10.1103/PhysRevB.82.125403 – volume: 22 start-page: 13494 year: 2012 ident: 4719_CR36 publication-title: J Mater Chem doi: 10.1039/c2jm30587a – volume: 16 start-page: 212 year: 2019 ident: 4719_CR10 publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.05.013 – volume: 425 start-page: 100 year: 2017 ident: 4719_CR15 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.06.303 – volume: 22 start-page: 3906 year: 2010 ident: 4719_CR30 publication-title: ChemInform – volume: 11 start-page: 963 year: 2012 ident: 4719_CR4 publication-title: Nat Mater doi: 10.1038/nmat3439 – volume: 22 start-page: 4467 year: 2010 ident: 4719_CR28 publication-title: Adv Mater doi: 10.1002/adma.201000732 – volume: 47 start-page: 1067 year: 2014 ident: 4719_CR14 publication-title: Acc Chem Res doi: 10.1021/ar4002312 – volume: 109 start-page: 269 year: 2013 ident: 4719_CR3 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.07.094 – volume: 13 start-page: 5944 year: 2013 ident: 4719_CR5 publication-title: Nano Lett doi: 10.1021/nl403036h – volume: 114 start-page: 11435 year: 2010 ident: 4719_CR29 publication-title: J Phys Chem C doi: 10.1021/jp103745g – volume: 7 start-page: 580424 year: 2020 ident: 4719_CR25 publication-title: Front Mater doi: 10.3389/fmats.2020.580424 – volume: 331 start-page: 568 year: 2011 ident: 4719_CR39 publication-title: Science doi: 10.1126/science.1194975 – volume: 25 start-page: 2740 year: 2013 ident: 4719_CR41 publication-title: Adv Mater doi: 10.1002/adma.201205157 – volume: 14 start-page: 1354 year: 2014 ident: 4719_CR6 publication-title: Nano Lett doi: 10.1021/nl404396p – volume: 13 start-page: 624 year: 2014 ident: 4719_CR21 publication-title: Nat Mater doi: 10.1038/nmat3944 – volume: 38 start-page: 14027 year: 2013 ident: 4719_CR26 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.112 – volume: 11 start-page: 12504 year: 2019 ident: 4719_CR11 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b00192 – volume: 50 start-page: 10839 year: 2011 ident: 4719_CR20 publication-title: Angew Chemie-Int Ed doi: 10.1002/anie.201105364 – volume: 17 start-page: 7767 year: 2017 ident: 4719_CR23 publication-title: Nano Letter doi: 10.1021/acs.nanolett.7b03968 – volume: 446 start-page: 282 year: 2015 ident: 4719_CR24 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2015.01.058 – volume: 8 start-page: 966 year: 2012 ident: 4719_CR17 publication-title: Small doi: 10.1002/smll.201102654 – volume: 332 start-page: 1537 year: 2011 ident: 4719_CR35 publication-title: Science doi: 10.1126/science.1200770 |
SSID | ssj0066127 |
Score | 2.3034546 |
Snippet | Due to both hydrophilic oxygen–containing groups and hydrophobic unoxidized aromatic rings, graphene oxide (GO) exhibits amphiphilic properties, similar to... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5223 |
SubjectTerms | Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Energy Storage Optical and Electronic Materials Original Paper Renewable and Green Energy |
Title | Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor |
URI | https://link.springer.com/article/10.1007/s11581-022-04719-9 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHWBBPEV5VB7YwCJxnDge29JQgegCRWWKXD8kJNRUSSvx8znnQVUJVSJLlkuGz_bdd_LddwjdxDKKqOEhYWBBmPAkEVJxYlUQSBMraqtqi3E0mrCnaTitm8KKptq9uZIsPfW62c0PY0h9IXnywKMKInZRO4Tc3RXyTWiv8b8QcKpBrYJxwsG0bpX5-x-b4WjzLrQMMckhOqi5Ie5Vi3mEdsz8GO0NmpFsJ-g9kQpOMYbsHxcArmt7wovcVPrd2RxnFtMH8pK90vtSiRocGc6-P7XBrnTc1WcZDCwVF6uFyRXESQUHOj9Fk2T4NhiRejACUVT4SyIUBHmlPRlwp7_FotgKq6W0HB4Z-HZGhVVGAvWwPjMx00JxqZnVQO6M8IIz1Jpnc3OOcCS0pWGslYgUAworVBRKHntSeMYlqh3kN_ikqlYNd8MrvtK13rHDNAVM0xLTVHTQ7e83i0ozY6v1XQN7Wp-fYov5xf_ML9E-dctddg9eodYyX5lroBHLWRe1e0m_P3bvx4_nYbfcRT8AAsBt |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgNBEC00OcSLuxjXPnjTjrP0LH0MMTGamIuJ6Gno9AKizIQsIH69NZtBESFzrhma6p5Xr-iqVwAXofB9RwceZWhBGbcE5UIG1EjXFTqUjsmrLQZ-d8Tun73noilsVla7l1eSGVIvm91sL8TUF5MnCxGVU74OVYY5OKtAtXn70muXCIwhJx_VyllAAzQummX-_srPgPTzNjQLMp0tGJXLy2tL3hqL-bghP38pN666_m3YLFgnaebHZAfWdLwLtVY57G0PnjpCIj4QESsyw21LG6rIZKpzZfAkJokhzg19SB6d60zjGiGSJB-vSpO0KD2t_NIE-S-ZLSZ6KjECS4SK6T6MOu1hq0uLkQtUOtyeUy6RPkhlCTdIlb2YHxpulBAmwEe4thk73EgtkNQYm-mQKS4DoZhRSBs1t9wDqMRJrA-B-FwZxwuV5L5kSI659D0RhJbglk5T4DrYpd8jWeiRp2Mx3qOlknLqsQg9FmUei3gdLr_fmeRqHP9aX5U7ERV_5uwf86PVzM-h1h0-9KP-3aB3DBtOurFZj-IJVObThT5FsjIfnxVn8wtw9d1K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60BfXFW7zdB990bY7NsY-irXcRPNCnsN0DRElKm4L4653NoVZEEPM8CcnOZuYbdr5vAHZjEYaejgLK0IIy7gjKhYyokb4vdCw9U3ZbdMPTO3b-EDx8YfEX3e71kWTJabAqTWne6ivT-iS-uUGMZTAWUg5GV075JDSZFWdvQPPw5PGiXUdjTD_l2FbOIhqhcUWc-fkp48lp_GS0SDidORD1q5Z9Js8Ho7x3IN--qTj-51vmYbZCo-Sw3D4LMKHTRZg-qofALcF9R0iMG0SkigzRnZZoRfoDXSqGZynJDPGO6VV247UK7WsMnSR7fVKa2GZ12xGmCeJiMhz19UBiZpYYQgbLcNdp3x6d0moUA5Ued3PKJcIKqRzhR1bxi4Wx4UYJYSK8hO-anseN1ALBjnGZjpniMhKKGYVwUnPHX4FGmqV6FUjIlfGCWEkeSoagmcswEFHsCO5oWxqvgVv7IJGVTrkdl_GSfCos2xVLcMWSYsUSvgZ7H_f0S5WOX633a68k1R87_MV8_W_mOzB1fdxJLs-6Fxsw41m_FtTFTWjkg5HeQgyT97arbfoOlPTmLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+scalable+preparation+of+2D-MoS2%2Fgraphene+oxide+composite+for+supercapacitor&rft.jtitle=Ionics&rft.au=Yin%2C+Xianglu&rft.au=Teng%2C+Aijun&rft.au=Zeng%2C+Zehua&rft.au=Meng%2C+Hong&rft.date=2022-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0947-7047&rft.eissn=1862-0760&rft.volume=28&rft.issue=11&rft.spage=5223&rft.epage=5232&rft_id=info:doi/10.1007%2Fs11581-022-04719-9&rft.externalDocID=10_1007_s11581_022_04719_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-7047&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-7047&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-7047&client=summon |