Cooperative P2P Energy Trading in Active Distribution Networks: An MILP-Based Nash Bargaining Solution
This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the sa...
Saved in:
Published in | IEEE transactions on smart grid Vol. 12; no. 2; pp. 1264 - 1276 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the same time: 1) each of buyers/sellers trades energy with the DN operator; 2) buyers and sellers trade energy in a Peer-to-Peer (P2P) manner and pay network usage fees to the DN operator. In the market, the DN operator actively manages voltage and reactive power (Volt-VAR) via controlling on-load tap changers of transformers and shunt capacitors. The payments among participants are subject to price constraints. The GNB problem for the proposed market is formulated and then decomposed into two subproblems: social welfare maximization problem (P1) and energy trading problem (P2). Both P1 and P2 are nonconvex problems. Next, linearization techniques are employed and a grid propagation algorithm is developed, transforming P1 and P2 into their equivalent Mixed-Integer Linear Programming (MILP) problems. In simulation, the proposed market model is compared with other GNB-based market models. The results show that the proposed one can significantly increase social welfare through Volt-VAR control and also can maximize the extent of fairness of profit allocation under the price constraints. |
---|---|
AbstractList | This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the same time: 1) each of buyers/sellers trades energy with the DN operator; 2) buyers and sellers trade energy in a Peer-to-Peer (P2P) manner and pay network usage fees to the DN operator. In the market, the DN operator actively manages voltage and reactive power (Volt-VAR) via controlling on-load tap changers of transformers and shunt capacitors. The payments among participants are subject to price constraints. The GNB problem for the proposed market is formulated and then decomposed into two subproblems: social welfare maximization problem (P1) and energy trading problem (P2). Both P1 and P2 are nonconvex problems. Next, linearization techniques are employed and a grid propagation algorithm is developed, transforming P1 and P2 into their equivalent Mixed-Integer Linear Programming (MILP) problems. In simulation, the proposed market model is compared with other GNB-based market models. The results show that the proposed one can significantly increase social welfare through Volt-VAR control and also can maximize the extent of fairness of profit allocation under the price constraints. |
Author | Yang, Qiyu Xie, Kan Xie, Lihua Zhong, Weifeng Xie, Shengli |
Author_xml | – sequence: 1 givenname: Weifeng orcidid: 0000-0003-3588-2018 surname: Zhong fullname: Zhong, Weifeng email: wfzhongs@gmail.com organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Shengli orcidid: 0000-0003-2041-5214 surname: Xie fullname: Xie, Shengli email: shlxie@gdut.edu.cn organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Kan orcidid: 0000-0002-9932-8131 surname: Xie fullname: Xie, Kan email: kxie@gdut.edu.cn organization: Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Qiyu orcidid: 0000-0002-4468-7030 surname: Yang fullname: Yang, Qiyu email: yangqiyu@gdut.edu.cn organization: 111 Center for Intelligent Batch Manufacturing Based on IoT Technology, Guangdong University of Technology, Guangzhou, China – sequence: 5 givenname: Lihua orcidid: 0000-0002-7137-4136 surname: Xie fullname: Xie, Lihua email: elhxie@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kE1PAjEQhhujiYjcTbw08bzY6ZRd6g0QkQSRBDxvym4Xi9hiu2j49y4f4eDBucwk8z7z8V6Rc-usJuQGWBOAyfvZdNDkjLMmMgQGeEZqIIWMkMVwfqpbeEkaISxZFYgYc1kjRc-5tfaqNN-aTviE9q32iy2deZUbu6DG0k62bz6aUHoz35TGWTrW5Y_zH-GBdix9GY4mUVcFndOxCu-0q_xCGbvDp261B67JRaFWQTeOuU7envqz3nM0eh0Me51RlHEJZSQVZCDy6gVoxRJjwdq5QKXnWcwVJLEuBBNJS_AMgIPK55pDW3OFrM2KJGljndwd5q69-9roUKZLt_G2WplyIQUmCQpRqeKDKvMuBK-LNDOl2t1ZemVWKbB0Z2ta2ZrubE2PtlYg-wOuvflUfvsfcntAjNb6JJecYyIQfwE_CoIt |
CODEN | ITSGBQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3116795 crossref_primary_10_1109_TPWRS_2022_3152517 crossref_primary_10_1109_TPWRS_2024_3369591 crossref_primary_10_1109_TVT_2022_3196063 crossref_primary_10_1016_j_ijepes_2023_109644 crossref_primary_10_1109_TSG_2022_3158442 crossref_primary_10_1109_TSG_2023_3344571 crossref_primary_10_1109_TIA_2024_3481207 crossref_primary_10_1109_TTE_2022_3165804 crossref_primary_10_1007_s40518_021_00198_0 crossref_primary_10_1016_j_ijepes_2022_108837 crossref_primary_10_1109_ACCESS_2024_3481509 crossref_primary_10_1109_TSG_2024_3452064 crossref_primary_10_1109_TII_2024_3366995 crossref_primary_10_1109_TPDS_2023_3299309 crossref_primary_10_1109_TII_2021_3077008 crossref_primary_10_1109_TSG_2021_3124465 crossref_primary_10_1109_TSG_2022_3175801 crossref_primary_10_1109_ACCESS_2021_3107156 crossref_primary_10_1109_TSG_2021_3109140 crossref_primary_10_1109_TSG_2021_3110889 crossref_primary_10_1109_TSTE_2023_3240203 crossref_primary_10_1016_j_apenergy_2021_117434 crossref_primary_10_1109_TPWRS_2022_3196708 crossref_primary_10_1109_TIFS_2023_3235152 crossref_primary_10_1109_JIOT_2024_3379746 crossref_primary_10_1109_JPROC_2022_3177230 crossref_primary_10_1109_TSTE_2023_3343723 crossref_primary_10_1109_TSG_2023_3293549 crossref_primary_10_1109_TSG_2023_3250321 crossref_primary_10_1016_j_energy_2024_133855 crossref_primary_10_1080_15567036_2023_2195368 crossref_primary_10_1109_ACCESS_2021_3104354 crossref_primary_10_1109_TITS_2022_3211883 crossref_primary_10_1109_ACCESS_2024_3402226 crossref_primary_10_1109_ACCESS_2022_3182698 crossref_primary_10_1109_TSG_2022_3167862 crossref_primary_10_1109_TSG_2022_3206912 crossref_primary_10_1109_ACCESS_2021_3129050 crossref_primary_10_1002_er_8318 crossref_primary_10_1016_j_energy_2021_122435 crossref_primary_10_1109_JIOT_2023_3284679 crossref_primary_10_1016_j_apenergy_2022_119552 crossref_primary_10_1109_TSG_2021_3131959 crossref_primary_10_1109_TSG_2024_3495701 |
Cites_doi | 10.1109/TIE.2018.2874578 10.1109/TCNS.2014.2323634 10.1109/MNET.001.1900008 10.1109/TSG.2019.2957426 10.1016/j.ijepes.2007.08.004 10.1109/TSG.2018.2878445 10.1002/aic.14511 10.1109/TSG.2017.2786668 10.1049/PBRN006E 10.1287/moor.26.2.193.10561 10.1109/TSG.2018.2849227 10.1109/TSG.2020.2986468 10.2307/1907266 10.1016/S0167-6377(03)00059-2 10.1109/TPWRS.2019.2926305 10.1109/61.25627 10.1109/TSG.2015.2500729 10.1109/TPWRS.2016.2608178 10.1109/TSG.2017.2673860 10.1109/TSG.2015.2445794 10.1109/TPWRS.2018.2854649 10.1016/j.compchemeng.2007.03.011 10.1109/TSG.2019.2902255 10.1109/TPWRS.2018.2856283 10.1109/TSG.2018.2789940 10.1109/TII.2020.2973008 10.1109/TSG.2012.2203341 10.1109/TSG.2019.2937981 10.1109/TSG.2018.2844877 10.1016/j.apenergy.2020.114613 10.1109/TSG.2016.2614988 10.1109/TPWRS.2006.876672 10.1109/TPWRS.2019.2961330 10.1109/TPDS.2013.285 10.1109/JIOT.2020.3016644 10.1109/TSG.2020.2997956 10.1109/TSG.2016.2647246 10.1007/BF01580665 10.1109/TSG.2016.2552642 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TSG.2020.3031013 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 1276 |
ExternalDocumentID | 10_1109_TSG_2020_3031013 9223743 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2019M662811 funderid: 10.13039/501100002858 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2018A0303130080; 2019A1515011377; 2019A1515011114 – fundername: Pearl River S&T Nova Program of Guangzhou grantid: 201806010176 funderid: 10.13039/501100010450 – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: 2020-KF-21-02 funderid: 10.13039/501100011248 – fundername: National Natural Science Foundation of China grantid: 62003099; 61973087; U1911401 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-9a1c14d101156936408d43aebc62a176ef4047542c1121adbe218e2a3080f7783 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Mon Jun 30 09:52:42 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Tue Jul 01 02:29:06 EDT 2025 Wed Aug 27 02:44:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-9a1c14d101156936408d43aebc62a176ef4047542c1121adbe218e2a3080f7783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2041-5214 0000-0002-7137-4136 0000-0002-9932-8131 0000-0002-4468-7030 0000-0003-3588-2018 |
PQID | 2494377344 |
PQPubID | 2040408 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2494377344 crossref_citationtrail_10_1109_TSG_2020_3031013 crossref_primary_10_1109_TSG_2020_3031013 ieee_primary_9223743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 roth (ref15) 2012; 170 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref13 doi: 10.1109/TIE.2018.2874578 – ident: ref32 doi: 10.1109/TCNS.2014.2323634 – ident: ref8 doi: 10.1109/MNET.001.1900008 – ident: ref2 doi: 10.1109/TSG.2019.2957426 – ident: ref38 doi: 10.1016/j.ijepes.2007.08.004 – ident: ref7 doi: 10.1109/TSG.2018.2878445 – ident: ref29 doi: 10.1002/aic.14511 – ident: ref10 doi: 10.1109/TSG.2017.2786668 – ident: ref5 doi: 10.1049/PBRN006E – ident: ref33 doi: 10.1287/moor.26.2.193.10561 – ident: ref34 doi: 10.1109/TSG.2018.2849227 – volume: 170 year: 2012 ident: ref15 publication-title: Axiomatic models of bargaining – ident: ref12 doi: 10.1109/TSG.2020.2986468 – ident: ref14 doi: 10.2307/1907266 – ident: ref36 doi: 10.1016/S0167-6377(03)00059-2 – ident: ref16 doi: 10.1109/TPWRS.2019.2926305 – ident: ref25 doi: 10.1109/61.25627 – ident: ref20 doi: 10.1109/TSG.2015.2500729 – ident: ref27 doi: 10.1109/TPWRS.2016.2608178 – ident: ref26 doi: 10.1109/TSG.2017.2673860 – ident: ref30 doi: 10.1109/TSG.2015.2445794 – ident: ref18 doi: 10.1109/TPWRS.2018.2854649 – ident: ref37 doi: 10.1016/j.compchemeng.2007.03.011 – ident: ref40 doi: 10.1109/TSG.2019.2902255 – ident: ref3 doi: 10.1109/TPWRS.2018.2856283 – ident: ref24 doi: 10.1109/TSG.2018.2789940 – ident: ref4 doi: 10.1109/TII.2020.2973008 – ident: ref39 doi: 10.1109/TSG.2012.2203341 – ident: ref11 doi: 10.1109/TSG.2019.2937981 – ident: ref1 doi: 10.1109/TSG.2018.2844877 – ident: ref31 doi: 10.1016/j.apenergy.2020.114613 – ident: ref17 doi: 10.1109/TSG.2016.2614988 – ident: ref28 doi: 10.1109/TPWRS.2006.876672 – ident: ref6 doi: 10.1109/TPWRS.2019.2961330 – ident: ref22 doi: 10.1109/TPDS.2013.285 – ident: ref9 doi: 10.1109/JIOT.2020.3016644 – ident: ref23 doi: 10.1109/TSG.2020.2997956 – ident: ref21 doi: 10.1109/TSG.2016.2647246 – ident: ref35 doi: 10.1007/BF01580665 – ident: ref19 doi: 10.1109/TSG.2016.2552642 |
SSID | ssj0000333629 |
Score | 2.636042 |
Snippet | This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1264 |
SubjectTerms | Active distribution networks Algorithms Automation Capacitors Distribution networks Energy distribution Energy industry Games generalized Nash bargaining Integer programming Linear programming Mixed integer network usage fees Peer-to-peer computing peer-to-peer energy trading Reactive power Resource management Shunt capacitors Social networks Tap changers Volt-VAR control |
Title | Cooperative P2P Energy Trading in Active Distribution Networks: An MILP-Based Nash Bargaining Solution |
URI | https://ieeexplore.ieee.org/document/9223743 https://www.proquest.com/docview/2494377344 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwRoyXcuCCRLe2ydqG23gOxKZJgMStSlJXIFCH2Hbh1-Ok7cRLiFsPiRTJqb_Psf0Z4IAQXQlufE-HOvFELtBTthIgx0QJk4hMG9vv3B9EvXtx_dB5aMDRrBcGEV3xGbbsp8vlZyMztU9lbUlYRog3B3MUuJW9WrP3FJ9z8sXSJZGFTed3eJ2V9GX77vaSYsGQQlQrhRnwLyjkxqr88MUOYC6WoV8frawreW5NJ7pl3r-pNv737CuwVDFN1i2vxio0sFiDxU_6g-uQn45Gr1hqf7NhOGTnrhOQEYBZSGNPBes6f8jOrL5uNRqLDcrS8fEx6xasf3Uz9E4ICzM2UONHdmIn57qpE6x-ctuA-4vzu9OeVw1e8Ewog4knVWACkQWWLkaSR8JPMsEVahOFKogjzIUv7OhcQ2wtUJlGIgoYKk70M4_jhG_CfDEqcAuYRIrYdCfQGXFDiSrJMc6FVsRDjdSYNaFdGyI1lSq5HY7xkrroxJcpmS61pksr0zXhcLbjtVTk-GPturXEbF1lhCbs1rZOq192nFIcKngccyG2f9-1AwuhvcauAG0X5idvU9wjRjLR--4qfgAh-tr9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAe6AdFDR-tD71U6ibrtbO77i0BQoAkitQgcVvZ3lm1arVBJLnw6xl7dyMKFeK2B1uyNN55bzwzbwC-EqJrKWwYmMikgSwkBtpVAhSYamlTmRvr-p3Hk3h4JS-uu9cb8H3dC4OIvvgM2-7T5_LzuV25p7KOIiwjxHsFW4T7XV51a61fVEIhyBsrn0aWLqHfFU1eMlSd2c8zigYjClKdGCYX_-CQH6zyxBt7iBm8hXFzuKqy5E97tTRte_dIt_Glp38HOzXXZL3qcryHDSw_wJsHCoS7UBzP5zdYqX-zaTRlp74XkBGEOVBjv0vW8x6RnTiF3Xo4FptUxeOLH6xXsvH5aBr0CQ1zNtGLX6zvZuf6uROseXT7CFeD09nxMKhHLwQ2UnwZKM0tlzl3hDFWIpZhmkuh0dg40jyJsZChdMNzLfE1rnODRBUw0oIIaJEkqdiDzXJe4idgCilmM11ucmKHCnVaYFJIo4mJWmUwb0GnMURma11yNx7jb-bjk1BlZLrMmS6rTdeCb-sdN5UmxzNrd50l1utqI7TgsLF1Vv-0i4wiUSmSREi5__9dX2B7OBuPstH55PIAXkfuUvtytEPYXN6u8Ij4ydJ89tfyHrqc3kY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+P2P+Energy+Trading+in+Active+Distribution+Networks%3A+An+MILP-Based+Nash+Bargaining+Solution&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Zhong%2C+Weifeng&rft.au=Xie%2C+Shengli&rft.au=Xie%2C+Kan&rft.au=Yang%2C+Qiyu&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=12&rft.issue=2&rft.spage=1264&rft_id=info:doi/10.1109%2FTSG.2020.3031013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |