Cooperative P2P Energy Trading in Active Distribution Networks: An MILP-Based Nash Bargaining Solution

This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the sa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 12; no. 2; pp. 1264 - 1276
Main Authors Zhong, Weifeng, Xie, Shengli, Xie, Kan, Yang, Qiyu, Xie, Lihua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the same time: 1) each of buyers/sellers trades energy with the DN operator; 2) buyers and sellers trade energy in a Peer-to-Peer (P2P) manner and pay network usage fees to the DN operator. In the market, the DN operator actively manages voltage and reactive power (Volt-VAR) via controlling on-load tap changers of transformers and shunt capacitors. The payments among participants are subject to price constraints. The GNB problem for the proposed market is formulated and then decomposed into two subproblems: social welfare maximization problem (P1) and energy trading problem (P2). Both P1 and P2 are nonconvex problems. Next, linearization techniques are employed and a grid propagation algorithm is developed, transforming P1 and P2 into their equivalent Mixed-Integer Linear Programming (MILP) problems. In simulation, the proposed market model is compared with other GNB-based market models. The results show that the proposed one can significantly increase social welfare through Volt-VAR control and also can maximize the extent of fairness of profit allocation under the price constraints.
AbstractList This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The proposed energy market has three types of participants: the DN operator, buyers, and sellers. Two energy trading manners are allowed at the same time: 1) each of buyers/sellers trades energy with the DN operator; 2) buyers and sellers trade energy in a Peer-to-Peer (P2P) manner and pay network usage fees to the DN operator. In the market, the DN operator actively manages voltage and reactive power (Volt-VAR) via controlling on-load tap changers of transformers and shunt capacitors. The payments among participants are subject to price constraints. The GNB problem for the proposed market is formulated and then decomposed into two subproblems: social welfare maximization problem (P1) and energy trading problem (P2). Both P1 and P2 are nonconvex problems. Next, linearization techniques are employed and a grid propagation algorithm is developed, transforming P1 and P2 into their equivalent Mixed-Integer Linear Programming (MILP) problems. In simulation, the proposed market model is compared with other GNB-based market models. The results show that the proposed one can significantly increase social welfare through Volt-VAR control and also can maximize the extent of fairness of profit allocation under the price constraints.
Author Yang, Qiyu
Xie, Kan
Xie, Lihua
Zhong, Weifeng
Xie, Shengli
Author_xml – sequence: 1
  givenname: Weifeng
  orcidid: 0000-0003-3588-2018
  surname: Zhong
  fullname: Zhong, Weifeng
  email: wfzhongs@gmail.com
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Shengli
  orcidid: 0000-0003-2041-5214
  surname: Xie
  fullname: Xie, Shengli
  email: shlxie@gdut.edu.cn
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Kan
  orcidid: 0000-0002-9932-8131
  surname: Xie
  fullname: Xie, Kan
  email: kxie@gdut.edu.cn
  organization: Guangdong Key Laboratory of IoT Information Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Qiyu
  orcidid: 0000-0002-4468-7030
  surname: Yang
  fullname: Yang, Qiyu
  email: yangqiyu@gdut.edu.cn
  organization: 111 Center for Intelligent Batch Manufacturing Based on IoT Technology, Guangdong University of Technology, Guangzhou, China
– sequence: 5
  givenname: Lihua
  orcidid: 0000-0002-7137-4136
  surname: Xie
  fullname: Xie, Lihua
  email: elhxie@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BookMark eNp9kE1PAjEQhhujiYjcTbw08bzY6ZRd6g0QkQSRBDxvym4Xi9hiu2j49y4f4eDBucwk8z7z8V6Rc-usJuQGWBOAyfvZdNDkjLMmMgQGeEZqIIWMkMVwfqpbeEkaISxZFYgYc1kjRc-5tfaqNN-aTviE9q32iy2deZUbu6DG0k62bz6aUHoz35TGWTrW5Y_zH-GBdix9GY4mUVcFndOxCu-0q_xCGbvDp261B67JRaFWQTeOuU7envqz3nM0eh0Me51RlHEJZSQVZCDy6gVoxRJjwdq5QKXnWcwVJLEuBBNJS_AMgIPK55pDW3OFrM2KJGljndwd5q69-9roUKZLt_G2WplyIQUmCQpRqeKDKvMuBK-LNDOl2t1ZemVWKbB0Z2ta2ZrubE2PtlYg-wOuvflUfvsfcntAjNb6JJecYyIQfwE_CoIt
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3116795
crossref_primary_10_1109_TPWRS_2022_3152517
crossref_primary_10_1109_TPWRS_2024_3369591
crossref_primary_10_1109_TVT_2022_3196063
crossref_primary_10_1016_j_ijepes_2023_109644
crossref_primary_10_1109_TSG_2022_3158442
crossref_primary_10_1109_TSG_2023_3344571
crossref_primary_10_1109_TIA_2024_3481207
crossref_primary_10_1109_TTE_2022_3165804
crossref_primary_10_1007_s40518_021_00198_0
crossref_primary_10_1016_j_ijepes_2022_108837
crossref_primary_10_1109_ACCESS_2024_3481509
crossref_primary_10_1109_TSG_2024_3452064
crossref_primary_10_1109_TII_2024_3366995
crossref_primary_10_1109_TPDS_2023_3299309
crossref_primary_10_1109_TII_2021_3077008
crossref_primary_10_1109_TSG_2021_3124465
crossref_primary_10_1109_TSG_2022_3175801
crossref_primary_10_1109_ACCESS_2021_3107156
crossref_primary_10_1109_TSG_2021_3109140
crossref_primary_10_1109_TSG_2021_3110889
crossref_primary_10_1109_TSTE_2023_3240203
crossref_primary_10_1016_j_apenergy_2021_117434
crossref_primary_10_1109_TPWRS_2022_3196708
crossref_primary_10_1109_TIFS_2023_3235152
crossref_primary_10_1109_JIOT_2024_3379746
crossref_primary_10_1109_JPROC_2022_3177230
crossref_primary_10_1109_TSTE_2023_3343723
crossref_primary_10_1109_TSG_2023_3293549
crossref_primary_10_1109_TSG_2023_3250321
crossref_primary_10_1016_j_energy_2024_133855
crossref_primary_10_1080_15567036_2023_2195368
crossref_primary_10_1109_ACCESS_2021_3104354
crossref_primary_10_1109_TITS_2022_3211883
crossref_primary_10_1109_ACCESS_2024_3402226
crossref_primary_10_1109_ACCESS_2022_3182698
crossref_primary_10_1109_TSG_2022_3167862
crossref_primary_10_1109_TSG_2022_3206912
crossref_primary_10_1109_ACCESS_2021_3129050
crossref_primary_10_1002_er_8318
crossref_primary_10_1016_j_energy_2021_122435
crossref_primary_10_1109_JIOT_2023_3284679
crossref_primary_10_1016_j_apenergy_2022_119552
crossref_primary_10_1109_TSG_2021_3131959
crossref_primary_10_1109_TSG_2024_3495701
Cites_doi 10.1109/TIE.2018.2874578
10.1109/TCNS.2014.2323634
10.1109/MNET.001.1900008
10.1109/TSG.2019.2957426
10.1016/j.ijepes.2007.08.004
10.1109/TSG.2018.2878445
10.1002/aic.14511
10.1109/TSG.2017.2786668
10.1049/PBRN006E
10.1287/moor.26.2.193.10561
10.1109/TSG.2018.2849227
10.1109/TSG.2020.2986468
10.2307/1907266
10.1016/S0167-6377(03)00059-2
10.1109/TPWRS.2019.2926305
10.1109/61.25627
10.1109/TSG.2015.2500729
10.1109/TPWRS.2016.2608178
10.1109/TSG.2017.2673860
10.1109/TSG.2015.2445794
10.1109/TPWRS.2018.2854649
10.1016/j.compchemeng.2007.03.011
10.1109/TSG.2019.2902255
10.1109/TPWRS.2018.2856283
10.1109/TSG.2018.2789940
10.1109/TII.2020.2973008
10.1109/TSG.2012.2203341
10.1109/TSG.2019.2937981
10.1109/TSG.2018.2844877
10.1016/j.apenergy.2020.114613
10.1109/TSG.2016.2614988
10.1109/TPWRS.2006.876672
10.1109/TPWRS.2019.2961330
10.1109/TPDS.2013.285
10.1109/JIOT.2020.3016644
10.1109/TSG.2020.2997956
10.1109/TSG.2016.2647246
10.1007/BF01580665
10.1109/TSG.2016.2552642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2020.3031013
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 1276
ExternalDocumentID 10_1109_TSG_2020_3031013
9223743
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2019M662811
  funderid: 10.13039/501100002858
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2018A0303130080; 2019A1515011377; 2019A1515011114
– fundername: Pearl River S&T Nova Program of Guangzhou
  grantid: 201806010176
  funderid: 10.13039/501100010450
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2020-KF-21-02
  funderid: 10.13039/501100011248
– fundername: National Natural Science Foundation of China
  grantid: 62003099; 61973087; U1911401
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-9a1c14d101156936408d43aebc62a176ef4047542c1121adbe218e2a3080f7783
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Mon Jun 30 09:52:42 EDT 2025
Thu Apr 24 23:07:16 EDT 2025
Tue Jul 01 02:29:06 EDT 2025
Wed Aug 27 02:44:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-9a1c14d101156936408d43aebc62a176ef4047542c1121adbe218e2a3080f7783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2041-5214
0000-0002-7137-4136
0000-0002-9932-8131
0000-0002-4468-7030
0000-0003-3588-2018
PQID 2494377344
PQPubID 2040408
PageCount 13
ParticipantIDs proquest_journals_2494377344
crossref_citationtrail_10_1109_TSG_2020_3031013
crossref_primary_10_1109_TSG_2020_3031013
ieee_primary_9223743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
roth (ref15) 2012; 170
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref13
  doi: 10.1109/TIE.2018.2874578
– ident: ref32
  doi: 10.1109/TCNS.2014.2323634
– ident: ref8
  doi: 10.1109/MNET.001.1900008
– ident: ref2
  doi: 10.1109/TSG.2019.2957426
– ident: ref38
  doi: 10.1016/j.ijepes.2007.08.004
– ident: ref7
  doi: 10.1109/TSG.2018.2878445
– ident: ref29
  doi: 10.1002/aic.14511
– ident: ref10
  doi: 10.1109/TSG.2017.2786668
– ident: ref5
  doi: 10.1049/PBRN006E
– ident: ref33
  doi: 10.1287/moor.26.2.193.10561
– ident: ref34
  doi: 10.1109/TSG.2018.2849227
– volume: 170
  year: 2012
  ident: ref15
  publication-title: Axiomatic models of bargaining
– ident: ref12
  doi: 10.1109/TSG.2020.2986468
– ident: ref14
  doi: 10.2307/1907266
– ident: ref36
  doi: 10.1016/S0167-6377(03)00059-2
– ident: ref16
  doi: 10.1109/TPWRS.2019.2926305
– ident: ref25
  doi: 10.1109/61.25627
– ident: ref20
  doi: 10.1109/TSG.2015.2500729
– ident: ref27
  doi: 10.1109/TPWRS.2016.2608178
– ident: ref26
  doi: 10.1109/TSG.2017.2673860
– ident: ref30
  doi: 10.1109/TSG.2015.2445794
– ident: ref18
  doi: 10.1109/TPWRS.2018.2854649
– ident: ref37
  doi: 10.1016/j.compchemeng.2007.03.011
– ident: ref40
  doi: 10.1109/TSG.2019.2902255
– ident: ref3
  doi: 10.1109/TPWRS.2018.2856283
– ident: ref24
  doi: 10.1109/TSG.2018.2789940
– ident: ref4
  doi: 10.1109/TII.2020.2973008
– ident: ref39
  doi: 10.1109/TSG.2012.2203341
– ident: ref11
  doi: 10.1109/TSG.2019.2937981
– ident: ref1
  doi: 10.1109/TSG.2018.2844877
– ident: ref31
  doi: 10.1016/j.apenergy.2020.114613
– ident: ref17
  doi: 10.1109/TSG.2016.2614988
– ident: ref28
  doi: 10.1109/TPWRS.2006.876672
– ident: ref6
  doi: 10.1109/TPWRS.2019.2961330
– ident: ref22
  doi: 10.1109/TPDS.2013.285
– ident: ref9
  doi: 10.1109/JIOT.2020.3016644
– ident: ref23
  doi: 10.1109/TSG.2020.2997956
– ident: ref21
  doi: 10.1109/TSG.2016.2647246
– ident: ref35
  doi: 10.1007/BF01580665
– ident: ref19
  doi: 10.1109/TSG.2016.2552642
SSID ssj0000333629
Score 2.636042
Snippet This article proposes a cooperative energy market model for an active Distribution Network (DN) by using the theory of Generalized Nash Bargaining (GNB). The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1264
SubjectTerms Active distribution networks
Algorithms
Automation
Capacitors
Distribution networks
Energy distribution
Energy industry
Games
generalized Nash bargaining
Integer programming
Linear programming
Mixed integer
network usage fees
Peer-to-peer computing
peer-to-peer energy trading
Reactive power
Resource management
Shunt capacitors
Social networks
Tap changers
Volt-VAR control
Title Cooperative P2P Energy Trading in Active Distribution Networks: An MILP-Based Nash Bargaining Solution
URI https://ieeexplore.ieee.org/document/9223743
https://www.proquest.com/docview/2494377344
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwRoyXcuCCRLe2ydqG23gOxKZJgMStSlJXIFCH2Hbh1-Ok7cRLiFsPiRTJqb_Psf0Z4IAQXQlufE-HOvFELtBTthIgx0QJk4hMG9vv3B9EvXtx_dB5aMDRrBcGEV3xGbbsp8vlZyMztU9lbUlYRog3B3MUuJW9WrP3FJ9z8sXSJZGFTed3eJ2V9GX77vaSYsGQQlQrhRnwLyjkxqr88MUOYC6WoV8frawreW5NJ7pl3r-pNv737CuwVDFN1i2vxio0sFiDxU_6g-uQn45Gr1hqf7NhOGTnrhOQEYBZSGNPBes6f8jOrL5uNRqLDcrS8fEx6xasf3Uz9E4ICzM2UONHdmIn57qpE6x-ctuA-4vzu9OeVw1e8Ewog4knVWACkQWWLkaSR8JPMsEVahOFKogjzIUv7OhcQ2wtUJlGIgoYKk70M4_jhG_CfDEqcAuYRIrYdCfQGXFDiSrJMc6FVsRDjdSYNaFdGyI1lSq5HY7xkrroxJcpmS61pksr0zXhcLbjtVTk-GPturXEbF1lhCbs1rZOq192nFIcKngccyG2f9-1AwuhvcauAG0X5idvU9wjRjLR--4qfgAh-tr9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAe6AdFDR-tD71U6ibrtbO77i0BQoAkitQgcVvZ3lm1arVBJLnw6xl7dyMKFeK2B1uyNN55bzwzbwC-EqJrKWwYmMikgSwkBtpVAhSYamlTmRvr-p3Hk3h4JS-uu9cb8H3dC4OIvvgM2-7T5_LzuV25p7KOIiwjxHsFW4T7XV51a61fVEIhyBsrn0aWLqHfFU1eMlSd2c8zigYjClKdGCYX_-CQH6zyxBt7iBm8hXFzuKqy5E97tTRte_dIt_Glp38HOzXXZL3qcryHDSw_wJsHCoS7UBzP5zdYqX-zaTRlp74XkBGEOVBjv0vW8x6RnTiF3Xo4FptUxeOLH6xXsvH5aBr0CQ1zNtGLX6zvZuf6uROseXT7CFeD09nxMKhHLwQ2UnwZKM0tlzl3hDFWIpZhmkuh0dg40jyJsZChdMNzLfE1rnODRBUw0oIIaJEkqdiDzXJe4idgCilmM11ucmKHCnVaYFJIo4mJWmUwb0GnMURma11yNx7jb-bjk1BlZLrMmS6rTdeCb-sdN5UmxzNrd50l1utqI7TgsLF1Vv-0i4wiUSmSREi5__9dX2B7OBuPstH55PIAXkfuUvtytEPYXN6u8Ij4ydJ89tfyHrqc3kY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+P2P+Energy+Trading+in+Active+Distribution+Networks%3A+An+MILP-Based+Nash+Bargaining+Solution&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Zhong%2C+Weifeng&rft.au=Xie%2C+Shengli&rft.au=Xie%2C+Kan&rft.au=Yang%2C+Qiyu&rft.date=2021-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=12&rft.issue=2&rft.spage=1264&rft_id=info:doi/10.1109%2FTSG.2020.3031013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon