Coverage-Based Greybox Fuzzing as Markov Chain
Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it is discarded. We observe that most tests ex...
Saved in:
Published in | IEEE transactions on software engineering Vol. 45; no. 5; pp. 489 - 506 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2019
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it is discarded. We observe that most tests exercise the same few "high-frequency" paths and develop strategies to explore significantly more paths with the same number of tests by gravitating towards low-frequency paths. We explain the challenges and opportunities of CGF using a Markov chain model which specifies the probability that fuzzing the seed that exercises path i generates an input that exercises path j. Each state (i.e., seed) has an energy that specifies the number of inputs to be generated from that seed. We show that CGF is considerably more efficient if energy is inversely proportional to the density of the stationary distribution and increases monotonically every time that seed is chosen. Energy is controlled with a power schedule. We implemented several schedules by extending AFL. In 24 hours, AFLFast exposes 3 previously unreported CVEs that are not exposed by AFL and exposes 6 previously unreported CVEs 7x faster than AFL. AFLFast produces at least an order of magnitude more unique crashes than AFL. We compared AFLFast to the symbolic executor Klee. In terms of vulnerability detection, AFLFast is significantly more effective than Klee on the same subject programs that were discussed in the original Klee paper. In terms of code coverage, AFLFast only slightly outperforms Klee while a combination of both tools achieves best results by mitigating the individual weaknesses. |
---|---|
AbstractList | Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it is discarded. We observe that most tests exercise the same few "high-frequency" paths and develop strategies to explore significantly more paths with the same number of tests by gravitating towards low-frequency paths. We explain the challenges and opportunities of CGF using a Markov chain model which specifies the probability that fuzzing the seed that exercises path i generates an input that exercises path j. Each state (i.e., seed) has an energy that specifies the number of inputs to be generated from that seed. We show that CGF is considerably more efficient if energy is inversely proportional to the density of the stationary distribution and increases monotonically every time that seed is chosen. Energy is controlled with a power schedule. We implemented several schedules by extending AFL. In 24 hours, AFLFast exposes 3 previously unreported CVEs that are not exposed by AFL and exposes 6 previously unreported CVEs 7x faster than AFL. AFLFast produces at least an order of magnitude more unique crashes than AFL. We compared AFLFast to the symbolic executor Klee. In terms of vulnerability detection, AFLFast is significantly more effective than Klee on the same subject programs that were discussed in the original Klee paper. In terms of code coverage, AFLFast only slightly outperforms Klee while a combination of both tools achieves best results by mitigating the individual weaknesses. Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it is discarded. We observe that most tests exercise the same few “high-frequency” paths and develop strategies to explore significantly more paths with the same number of tests by gravitating towards low-frequency paths. We explain the challenges and opportunities of CGF using a Markov chain model which specifies the probability that fuzzing the seed that exercises path $i$ i generates an input that exercises path $j$ j . Each state (i.e., seed) has an energy that specifies the number of inputs to be generated from that seed. We show that CGF is considerably more efficient if energy is inversely proportional to the density of the stationary distribution and increases monotonically every time that seed is chosen. Energy is controlled with a power schedule. We implemented several schedules by extending AFL. In 24 hours, AFLFast exposes 3 previously unreported CVEs that are not exposed by AFL and exposes 6 previously unreported CVEs 7x faster than AFL. AFLFast produces at least an order of magnitude more unique crashes than AFL. We compared AFLFast to the symbolic executor Klee. In terms of vulnerability detection, AFLFast is significantly more effective than Klee on the same subject programs that were discussed in the original Klee paper. In terms of code coverage, AFLFast only slightly outperforms Klee while a combination of both tools achieves best results by mitigating the individual weaknesses. |
Author | Van-Thuan Pham Bohme, Marcel Roychoudhury, Abhik |
Author_xml | – sequence: 1 givenname: Marcel surname: Bohme fullname: Bohme, Marcel email: marcel@comp.nus.edu.sg organization: Dept. of Comput. Sci., Nat. Univ. of Singpore, Singapore, Singapore – sequence: 2 surname: Van-Thuan Pham fullname: Van-Thuan Pham email: thuanpv@comp.nus.edu.sg organization: Dept. of Comput. Sci., Nat. Univ. of Singpore, Singapore, Singapore – sequence: 3 givenname: Abhik surname: Roychoudhury fullname: Roychoudhury, Abhik email: abhik@comp.nus.edu.sg organization: Dept. of Comput. Sci., Nat. Univ. of Singpore, Singapore, Singapore |
BookMark | eNp9kEFPwjAUgBuDiYDeTbws8bz5Xrdu7VEXQBOMB_HctKPDIq7YDiL8ekcgHjx4al7yfe-l34D0GtcYQq4REkQQd7PXUUIBi4QWnPEMz0gfRSrilFHokT6A4DFjXFyQQQhLAGBFwfokKd3WeLUw8YMKZh5NvNlp9x2NN_u9bRaRCtGz8h9uG5XvyjaX5LxWq2CuTu-QvI1Hs_Ixnr5Mnsr7aVxRgW3Ma8NrNJpnGQMBlQJQuqKFylUmuiGnlZrTXIOGTBesA7A-UKnGSmMm0iG5Pe5de_e1MaGVS7fxTXdSUkpzzKH7V0flR6ryLgRvalnZVrXWNa1XdiUR5KGN7NrIQxt5atOJ8Edce_up_O4_5eaoWGPML85pmiLD9AfeZ289 |
CODEN | IESEDJ |
CitedBy_id | crossref_primary_10_1145_3628160 crossref_primary_10_1109_TDSC_2023_3253120 crossref_primary_10_1155_2021_1987844 crossref_primary_10_3390_electronics13244935 crossref_primary_10_1186_s42400_022_00120_1 crossref_primary_10_1016_j_cose_2022_102894 crossref_primary_10_1109_TIFS_2022_3192991 crossref_primary_10_1109_TSE_2023_3326144 crossref_primary_10_1145_3697014 crossref_primary_10_1145_3647994 crossref_primary_10_32604_cmc_2021_017697 crossref_primary_10_1016_j_cose_2023_103618 crossref_primary_10_1109_TSE_2020_3016778 crossref_primary_10_1109_TNNLS_2022_3156620 crossref_primary_10_1145_3510416 crossref_primary_10_1007_s11432_020_3403_2 crossref_primary_10_1016_j_ins_2025_121959 crossref_primary_10_3390_app132312556 crossref_primary_10_1109_ACCESS_2021_3114202 crossref_primary_10_1186_s42400_022_00116_x crossref_primary_10_1109_TSE_2019_2956932 crossref_primary_10_1007_s11390_021_1693_1 crossref_primary_10_1109_TR_2022_3161634 crossref_primary_10_1109_TIFS_2023_3237370 crossref_primary_10_32604_cmc_2023_042361 crossref_primary_10_3390_electronics10243142 crossref_primary_10_1007_s11390_021_1196_0 crossref_primary_10_1109_TSE_2021_3121994 crossref_primary_10_1109_ACCESS_2019_2936235 crossref_primary_10_1145_3674725 crossref_primary_10_3390_math12213431 crossref_primary_10_1109_TSE_2023_3338129 crossref_primary_10_1145_3527317 crossref_primary_10_1093_comjnl_bxad110 crossref_primary_10_4236_jsea_2023_166010 crossref_primary_10_1007_s11227_020_03245_7 crossref_primary_10_1145_3623375 crossref_primary_10_3390_s22031265 crossref_primary_10_1016_j_cose_2022_102813 crossref_primary_10_1016_j_jss_2023_111886 crossref_primary_10_1016_j_swevo_2024_101747 crossref_primary_10_1109_ACCESS_2024_3421989 crossref_primary_10_1109_TSE_2023_3321381 crossref_primary_10_1016_j_compeleceng_2025_110266 crossref_primary_10_1145_3538644 crossref_primary_10_1002_cpe_5756 crossref_primary_10_2139_ssrn_4129684 crossref_primary_10_3390_fi12040074 crossref_primary_10_1145_3665337 crossref_primary_10_1145_3712186 crossref_primary_10_1109_JIOT_2021_3056179 crossref_primary_10_1016_j_cose_2024_104099 crossref_primary_10_1016_j_eswa_2022_118162 crossref_primary_10_1016_j_engappai_2025_110094 crossref_primary_10_3390_math9111245 crossref_primary_10_1016_j_cose_2022_102995 crossref_primary_10_1109_ACCESS_2022_3233875 crossref_primary_10_1109_ACCESS_2020_3025037 crossref_primary_10_1109_TSE_2022_3219520 crossref_primary_10_3390_math9030272 crossref_primary_10_1016_j_cose_2021_102308 crossref_primary_10_1016_j_jss_2022_111379 crossref_primary_10_1038_s41598_022_07355_5 crossref_primary_10_1002_stvr_1869 crossref_primary_10_1145_3643895 crossref_primary_10_1109_JAS_2022_105860 crossref_primary_10_1007_s11390_021_1663_7 crossref_primary_10_1109_ACCESS_2020_2973043 crossref_primary_10_1007_s11390_021_1600_9 crossref_primary_10_1109_TDSC_2024_3361008 crossref_primary_10_1109_TSE_2022_3156637 crossref_primary_10_1145_3526088 crossref_primary_10_1109_TCAD_2021_3076970 crossref_primary_10_1109_TSE_2022_3195640 crossref_primary_10_1007_s42979_024_03234_0 crossref_primary_10_3390_electronics12194033 crossref_primary_10_1109_TITS_2021_3098353 crossref_primary_10_1016_j_jnca_2024_103835 crossref_primary_10_1109_JIOT_2022_3183952 crossref_primary_10_1016_j_jss_2024_111963 crossref_primary_10_1145_3586027 crossref_primary_10_1016_j_sysarc_2022_102483 crossref_primary_10_1109_TCAD_2020_3013046 crossref_primary_10_1109_TSE_2023_3305052 crossref_primary_10_3390_app10165449 crossref_primary_10_1109_ACCESS_2021_3097807 crossref_primary_10_1155_2021_6698311 crossref_primary_10_1002_stvr_1897 crossref_primary_10_1007_s10664_023_10340_9 crossref_primary_10_1016_j_est_2020_101459 crossref_primary_10_1109_ACCESS_2022_3202005 crossref_primary_10_1109_TNSE_2020_2997359 crossref_primary_10_1109_TSE_2021_3117966 crossref_primary_10_3390_math9030205 |
Cites_doi | 10.1145/2090147.2094081 10.1145/1950365.1950396 10.1109/ICSE.2009.5070546 10.1126/science.220.4598.671 10.1109/ACSAC.2007.27 10.1145/2508859.2516736 10.1109/SP.2015.50 10.14722/ndss.2016.23368 10.1109/SP.2010.37 10.1145/2338965.2336773 10.1145/3133956.3134020 10.1145/2491411.2491430 10.1145/2908080.2908095 10.1109/TSE.2015.2487274 10.1145/96267.96279 10.1145/2976749.2978428 10.1145/2970276.2970316 10.1016/S0169-7552(98)00110-X |
ContentType | Journal Article |
Copyright | Copyright IEEE Computer Society 2019 |
Copyright_xml | – notice: Copyright IEEE Computer Society 2019 |
DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
DOI | 10.1109/TSE.2017.2785841 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1939-3520 |
EndPage | 506 |
ExternalDocumentID | 10_1109_TSE_2017_2785841 8233151 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation grantid: NRF2014NCR-NCR001-21 funderid: 10.13039/100011512 |
GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ AAYXX ALIPV CITATION RIG JQ2 K9. |
ID | FETCH-LOGICAL-c291t-8fe8f1eb8445090ca00abc27a6a49a0062cad26b0b04b750ca1f0ca03b1cb1493 |
IEDL.DBID | RIE |
ISSN | 0098-5589 |
IngestDate | Mon Jun 30 11:03:42 EDT 2025 Tue Jul 01 01:53:16 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Wed Aug 27 05:51:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-8fe8f1eb8445090ca00abc27a6a49a0062cad26b0b04b750ca1f0ca03b1cb1493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4470-1824 0000-0002-9871-3695 |
PQID | 2226160352 |
PQPubID | 21418 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1109_TSE_2017_2785841 ieee_primary_8233151 proquest_journals_2226160352 crossref_primary_10_1109_TSE_2017_2785841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on software engineering |
PublicationTitleAbbrev | TSE |
PublicationYear | 2019 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref37 ref15 ref36 bellard (ref17) 2005 ref31 ref30 ref33 chen (ref35) 2016 (ref5) 2017 ref32 rebert (ref28) 2014 ref1 kirkpatrick (ref21) 1983; 220 ref16 norris (ref19) 1998 (ref2) 2015 cadar (ref7) 2008 (ref18) 2017 (ref11) 2017 (ref9) 2017 (ref13) 2017 pak (ref34) 2012 rizzi (ref22) 2016 (ref26) 0 ref20 (ref25) 2017 godefroid (ref14) 2012; 10 (ref23) 2017 (ref10) 2017 (ref6) 2014 ref27 ref29 ref8 ref4 ref3 (ref12) 2017 serebryany (ref24) 2012 |
References_xml | – year: 2014 ident: ref6 article-title: Pulling jpegs out of thin air – volume: 10 start-page: 20:20 year: 2012 ident: ref14 article-title: Sage: Whitebox fuzzing for security testing publication-title: Queue doi: 10.1145/2090147.2094081 – year: 2015 ident: ref2 article-title: Symbolic execution in vulnerability research. – year: 2017 ident: ref10 article-title: SPIKE Fuzzer Platform. – ident: ref15 doi: 10.1145/1950365.1950396 – ident: ref16 doi: 10.1109/ICSE.2009.5070546 – volume: 220 start-page: 671 year: 1983 ident: ref21 article-title: Optimization by simulated annealing publication-title: Sci doi: 10.1126/science.220.4598.671 – year: 2017 ident: ref25 article-title: OpenSSL: Secure communication library. – year: 2017 ident: ref11 article-title: Suley Fuzzer. – ident: ref36 doi: 10.1109/ACSAC.2007.27 – year: 2017 ident: ref18 article-title: Afl binary instrumentation. – start-page: 861 year: 2014 ident: ref28 article-title: Optimizing seed selection for fuzzing publication-title: Proc 23rd USENIX Secur Symp – year: 2017 ident: ref9 article-title: Peach Fuzzer Platform. – ident: ref27 doi: 10.1145/2508859.2516736 – year: 2017 ident: ref23 article-title: GNU Coreutils. – ident: ref29 doi: 10.1109/SP.2015.50 – start-page: 209 year: 2008 ident: ref7 article-title: Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs publication-title: Proc 8th USENIX Conf Operating Syst Des Implementation – ident: ref3 doi: 10.14722/ndss.2016.23368 – year: 2017 ident: ref5 article-title: Afl vulnerability trophy case – ident: ref32 doi: 10.1109/SP.2010.37 – year: 1998 ident: ref19 publication-title: Markov Chains (Cambridge Series in Statistical and Probabilistic Mathematics) – ident: ref30 doi: 10.1145/2338965.2336773 – start-page: 41 year: 2005 ident: ref17 article-title: Qemu, a fast and portable dynamic translator publication-title: Proc Annu Conf USENIX Annu Tech Conf – ident: ref37 doi: 10.1145/3133956.3134020 – ident: ref31 doi: 10.1145/2491411.2491430 – start-page: 28 year: 2012 ident: ref24 article-title: Addresssanitizer: A fast address sanity checker publication-title: Proc USENIX Conf Annu Tech Conf 2012 – start-page: 132 year: 2016 ident: ref22 article-title: On the techniques we create, the tools we build, and their misalignments: A study of klee publication-title: Proc 38th Int Conf Softw Eng – start-page: 2017 year: 0 ident: ref26 article-title: LibXML2: XML parser library for C. – start-page: 85 year: 2016 ident: ref35 article-title: Coverage-directed differential testing of JVM implementations publication-title: Proc ACM SIGPLAN Conf Programming Lang Des Implementation doi: 10.1145/2908080.2908095 – year: 2017 ident: ref13 article-title: Zzuf: multi-purpose fuzzer. – ident: ref4 doi: 10.1109/TSE.2015.2487274 – ident: ref8 doi: 10.1145/96267.96279 – year: 2012 ident: ref34 article-title: Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic execution – ident: ref1 doi: 10.1145/2976749.2978428 – ident: ref33 doi: 10.1145/2970276.2970316 – year: 2017 ident: ref12 article-title: American fuzzy lop (afl) fuzzer. – ident: ref20 doi: 10.1016/S0169-7552(98)00110-X |
SSID | ssj0005775 ssib053395008 |
Score | 2.6816404 |
Snippet | Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 489 |
SubjectTerms | automated testing Computer crashes Crashes Exposure fuzzing Markov analysis Markov chains Markov processes path exploration Program verification (computers) Schedules Search problems Seeds symbolic execution Systematics Vulnerability detection |
Title | Coverage-Based Greybox Fuzzing as Markov Chain |
URI | https://ieeexplore.ieee.org/document/8233151 https://www.proquest.com/docview/2226160352 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxYKFEShIA8sSCS1HcdxRqhaKqSy0ErdIr8iEChBtEGovx47jyIeQmwZzpZ1Z_u-i-_uA-AcUy1ThS1yYynzaBoZjytNPKoJ0ZoxEXNX7zy9Y5M5vV2Eixa43NTCGGPK5DPju8_yLV_nqnC_ygacBAF29dJbNnCrarU-0zmiKGz6Y4Yhj5snSRQPZvcjl8MV-STi1t_iLy6o5FT5cRGX3mXcAdNmXVVSyZNfrKSv1t9aNv534btgp4aZ8KraF3ugZbJ90GkoHGB9orvAH7oUTnuneNfWnWl4Yy0r83c4LtZr69SgWEJXzZO_weGDeMwOwHw8mg0nXk2h4CkS45XHU8NTbCSn1CIDpARCQioSCSZoLFwBpRKaMIkkotKCByVw6qQCiZW0wVNwCNpZnpkjAHEaaOV4rrRClBrOjeDaKI2xsiCRhz0waLSaqLq_uKO5eE7KOAPFibVD4uyQ1HbogYvNiJeqt8Yfsl2n1o1crdEe6DeGS-rDt0ws5GGOPTskx7-POgHbdu64ylvsg_bqtTCnFlus5Fm5qT4Au43JVw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMMBCgYIoFMjAgkTS2HESZ4SqpUDbhVbqFvkVgUAtoglC_fXYeRTxEGLLcJYtn-3vc_zdHcAZIpInAmnmFiSBTZJQ2VRIbBOJsZRBwCJq4p2Ho6A_IbdTf1qDi1UsjFIqF58px3zmb_lyLjLzq6xNsechEy-9rnHfR0W01qegIwz9KkOm79OoepR0o_b4vmtUXKGDQ6oRF30Bobyqyo-jOMeXXh2G1cgKWcmTk6XcEctvSRv_O_Rt2CqJpnVZrIwdqKnZLtSrIg5Wuacb4HSMiFOfKvaVBjRpXWvf8vm71cuWSw1rFltYJp5n_mZ1HtjjbA8mve6407fLIgq2wBFKbZoomiDFKSGaG7iCuS7jAocsYCRiJoRSMIkD7nKXcE0fBEOJsfI4Elxfn7x9WJvNZ-oALJR4UphKV1K4hChKFaNSCYmQ0DSR-k1oV7MaizLDuCl08RznNw03irUfYuOHuPRDE85XLV6K7Bp_2DbMtK7syhltQqtyXFxuv0WsSU9g6mf7-PD3Vqew0R8PB_HgZnR3BJu6n6hQMbZgLX3N1LFmGik_yRfYB2vBzKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coverage-Based+Greybox+Fuzzing+as+Markov+Chain&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Bohme%2C+Marcel&rft.au=Pham%2C+Van-Thuan&rft.au=Roychoudhury%2C+Abhik&rft.date=2019-05-01&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=45&rft.issue=5&rft.spage=489&rft.epage=506&rft_id=info:doi/10.1109%2FTSE.2017.2785841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSE_2017_2785841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |