Compressed Sensing and Parallel Acquisition

Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 63; no. 8; pp. 4860 - 4882
Main Authors Il Yong Chun, Adcock, Ben
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2017.2700440

Cover

Loading…
Abstract Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, we consider the combination of compressed sensing with parallel acquisition. We establish the theoretical improvements of such systems by providing nonuniform recovery guarantees for which, subject to appropriate conditions, the number of measurements required per sensor decreases linearly with the total number of sensors. Throughout, we consider two different sampling scenarios-distinct (i.e., independent sampling in each sensor) and identical (i.e., dependent sampling between sensors)-and a general mathematical framework that allows for a wide range of sensing matrices. We also consider not just the standard sparse signal model, but also the so-called sparse in levels signal model. As our results show, optimal recovery guarantees for both distinct and identical sampling are possible under much broader conditions on the so-called sensor profile matrices (which characterize environmental conditions between a source and the sensors) for the sparse in levels model than for the sparse model. To verify our recovery guarantees, we provide numerical results showing phase transitions for different multi-sensor environments.
AbstractList Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, we consider the combination of compressed sensing with parallel acquisition. We establish the theoretical improvements of such systems by providing nonuniform recovery guarantees for which, subject to appropriate conditions, the number of measurements required per sensor decreases linearly with the total number of sensors. Throughout, we consider two different sampling scenarios-distinct (i.e., independent sampling in each sensor) and identical (i.e., dependent sampling between sensors)-and a general mathematical framework that allows for a wide range of sensing matrices. We also consider not just the standard sparse signal model, but also the so-called sparse in levels signal model. As our results show, optimal recovery guarantees for both distinct and identical sampling are possible under much broader conditions on the so-called sensor profile matrices (which characterize environmental conditions between a source and the sensors) for the sparse in levels model than for the sparse model. To verify our recovery guarantees, we provide numerical results showing phase transitions for different multi-sensor environments.
Author Il Yong Chun
Adcock, Ben
Author_xml – sequence: 1
  surname: Il Yong Chun
  fullname: Il Yong Chun
  email: iychun@umich.edu
  organization: Dept. of Math., Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  givenname: Ben
  surname: Adcock
  fullname: Adcock, Ben
  email: ben_adcock@sfu.ca
  organization: Dept. of Math., Simon Fraser Univ., Burnaby, BC, Canada
BookMark eNp9kE1LAzEQhoNUsFXvgpcFj7J1svk-luJHoaBgPYeYnZWUbbZNtgf_vVtaPHjwNAy8z7zMMyGj2EUk5IbClFIwD6vFaloBVdNKAXAOZ2RMhVClkYKPyBiA6tJwri_IJOf1sHJBqzG5n3ebbcKcsS7eMeYQvwoX6-LNJde22BYzv9uHHPrQxSty3rg24_VpXpKPp8fV_KVcvj4v5rNl6StD-1I3gMpppz2AdEIzdEhVbZQR6B37VAo0oxx5DUxy9FJSbpzU2ECtPHPsktwd725Tt9tj7u2626c4VNqKKs4qo4QYUnBM-dTlnLCx2xQ2Ln1bCvagxA5K7EGJPSkZEPkH8aF3h9f65EL7H3h7BAMi_vYoQ1UlJfsBikBuaQ
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s00365_019_09467_0
crossref_primary_10_1038_s41377_020_0338_4
crossref_primary_10_1109_ACCESS_2019_2900446
crossref_primary_10_1109_TSP_2021_3080458
crossref_primary_10_1109_TPAMI_2020_3012955
crossref_primary_10_1117_1_JRS_14_016513
crossref_primary_10_1007_s11263_024_02209_1
crossref_primary_10_1109_TIP_2023_3318946
crossref_primary_10_1109_TTHZ_2019_2926618
crossref_primary_10_1007_s00365_024_09697_x
crossref_primary_10_1016_j_acha_2017_05_006
crossref_primary_10_3390_s24134348
crossref_primary_10_1016_j_jmaa_2020_124124
crossref_primary_10_1137_22M147236X
crossref_primary_10_1016_j_sigpro_2023_108980
crossref_primary_10_1109_TIP_2019_2937734
crossref_primary_10_1093_imaiai_iaaa007
crossref_primary_10_1137_23M156255X
crossref_primary_10_1109_TCSII_2020_3030616
crossref_primary_10_1109_TIP_2022_3195319
crossref_primary_10_1137_17M1155983
Cites_doi 10.1201/b14300-18
10.1109/TMI.2015.2474383
10.1109/TSIPN.2015.2442156
10.1007/s00365-007-9003-x
10.1109/TSP.2015.2412912
10.1109/ICMEW.2016.7574710
10.1109/MSP.2007.914732
10.1109/TIP.2008.2009378
10.1109/TIT.2011.2161794
10.1109/TSP.2006.881263
10.1109/MSP.2007.905883
10.1007/s10208-017-9350-3
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1117/12.909882
10.1109/TPAMI.2011.168
10.1017/ATSIP.2014.16
10.1002/mrm.24716
10.1016/j.acha.2014.02.001
10.1016/j.acha.2015.02.003
10.1109/5.843002
10.1109/TIT.2011.2143890
10.1186/1687-6180-2012-37
10.1016/j.sigpro.2005.05.029
10.1109/TSP.2011.2161982
10.1007/978-3-319-16042-9_5
10.1007/s10851-014-0532-1
10.1109/TSP.2005.849172
10.1007/978-0-8176-4948-7
10.1109/TIT.2005.862083
10.1007/978-1-84800-155-8_7
10.1073/pnas.1219540110
10.1109/TIT.2016.2524628
10.1017/fms.2016.32
10.1137/08072975X
10.1109/JSEN.2013.2248253
10.1109/TSP.2013.2271480
10.1137/130941560
10.1109/ITW.2016.7606838
10.1088/0266-5611/23/3/008
10.1109/TIP.2011.2165289
10.1109/TIT.2009.2034789
10.1109/ICIP.2015.7350820
10.1109/TCS.1977.1084284
10.1002/cpa.21504
10.1109/LSP.2016.2550101
10.1007/s10208-015-9276-6
10.2514/6.2012-2826
10.1016/j.acha.2011.05.001
10.1109/TMI.2011.2174158
10.1364/SRS.2009.STuA6
10.1088/0266-5611/31/11/115002
10.1137/130946642
10.1002/mrm.22964
10.1016/j.jat.2012.01.008
10.1109/TIT.2011.2104999
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2017.2700440
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4882
ExternalDocumentID 10_1109_TIT_2017_2700440
7917266
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 611675
  funderid: 10.13039/501100000038
– fundername: Alfred P. Sloan Research Foundation
  funderid: 10.13039/100000879
– fundername: National Science Foundation through DMS
  grantid: 1318894
  funderid: 10.13039/100000121
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-8f0e7a8a8c006a583eae17d9795eca3b7708314e4d0364ec66149a68ef0d7c3a3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 03:43:16 EDT 2025
Tue Jul 01 02:16:09 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Aug 26 16:43:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8f0e7a8a8c006a583eae17d9795eca3b7708314e4d0364ec66149a68ef0d7c3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4226-3760
PQID 2174329755
PQPubID 36024
PageCount 23
ParticipantIDs proquest_journals_2174329755
crossref_primary_10_1109_TIT_2017_2700440
ieee_primary_7917266
crossref_citationtrail_10_1109_TIT_2017_2700440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
(ref25) 2009
ref12
ref59
ref15
ref58
ref14
boyer (ref63) 2015
ref53
ref55
ref11
ref10
ref16
ref19
ref18
roman (ref54) 2014
ref51
ref50
georgiev (ref31) 2012; 8299
ref46
ref45
ref47
ref42
ref44
(ref68) 2012
ref43
ng (ref24) 2005; 2
thurow (ref27) 2013
aceska (ref34) 2016
ref8
ref7
dorsch (ref56) 2016
ref9
ref4
rauhut (ref52) 2009
ref3
ref6
ref40
ref35
ref37
ref36
ref74
ref30
ref32
ref2
ref39
foucart (ref48) 2013
chun (ref5) 2014
nien (ref33) 2014
baron (ref41) 2006; 52
ref71
ref70
ref73
ref72
rauhut (ref49) 2010; 9
oliver (ref23) 2011
ref67
grant (ref69) 2008
ref26
ref64
ref20
chun (ref38) 2016
chauffert (ref61) 2014
sanandaji (ref17) 2012
ref66
ref22
ref65
ref21
boyer (ref1) 2015
ref28
ref29
ref60
ref62
References_xml – year: 2014
  ident: ref54
  publication-title: On asymptotic structure in compressed sensing
– ident: ref22
  doi: 10.1201/b14300-18
– start-page: 105
  year: 2011
  ident: ref23
  article-title: A realistic distributed compressive sensing framework for multiple wireless sensor networks
  publication-title: Proc 4th Signal Process Adapt Sparse Struct Repr
– ident: ref3
  doi: 10.1109/TMI.2015.2474383
– ident: ref19
  doi: 10.1109/TSIPN.2015.2442156
– year: 2013
  ident: ref27
  article-title: Recent development of volumetric PIV with a plenoptic camera
  publication-title: Proc 10th Int Symp Particle Image Velocimetry
– ident: ref47
  doi: 10.1007/s00365-007-9003-x
– year: 2016
  ident: ref34
  publication-title: Local sparsity and recovery of fusion frames structured signals
– ident: ref40
  doi: 10.1109/TSP.2015.2412912
– year: 2015
  ident: ref1
  publication-title: Compressed sensing with structured sparsity and structured acquisition
– start-page: 1
  year: 2016
  ident: ref56
  article-title: Refined analysis of sparse MIMO radar
  publication-title: J Fourier Anal Appl
– ident: ref70
  doi: 10.1109/ICMEW.2016.7574710
– volume: 52
  start-page: 5406
  year: 2006
  ident: ref41
  article-title: Distributed compressed sensing
  publication-title: IEEE Trans Inf Theory
– ident: ref21
  doi: 10.1109/MSP.2007.914732
– ident: ref12
  doi: 10.1109/TIP.2008.2009378
– start-page: 2424
  year: 2014
  ident: ref5
  article-title: Efficient compressed sensing SENSE parallel MRI reconstruction with joint sparsity promotion and mutual incoherence enhancement
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc (EMBC)
– ident: ref35
  doi: 10.1109/TIT.2011.2161794
– year: 2015
  ident: ref63
  article-title: Block-constrained compressed sensing
– year: 2009
  ident: ref25
  article-title: Digital imaging system for synthesizing an image using data recorded with a plenoptic camera
– ident: ref43
  doi: 10.1109/TSP.2006.881263
– ident: ref11
  doi: 10.1109/MSP.2007.905883
– ident: ref64
  doi: 10.1007/s10208-017-9350-3
– ident: ref4
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– year: 2014
  ident: ref33
  article-title: Model-based X-ray CT image and light field reconstruction using variable splitting methods
– ident: ref32
  doi: 10.1117/12.909882
– ident: ref29
  doi: 10.1109/TPAMI.2011.168
– ident: ref14
  doi: 10.1017/ATSIP.2014.16
– ident: ref8
  doi: 10.1002/mrm.24716
– ident: ref39
  doi: 10.1016/j.acha.2014.02.001
– ident: ref72
  doi: 10.1016/j.acha.2015.02.003
– year: 2016
  ident: ref38
  publication-title: Uniform recovery from subgaussian multi-sensor measurements
– year: 2012
  ident: ref68
  publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 0
– ident: ref15
  doi: 10.1109/5.843002
– ident: ref45
  doi: 10.1109/TIT.2011.2143890
– ident: ref9
  doi: 10.1186/1687-6180-2012-37
– volume: 2
  start-page: 1
  year: 2005
  ident: ref24
  article-title: Light field photography with a hand-held plenoptic camera
  publication-title: Comput Sci Tech Rep
– year: 2012
  ident: ref17
  article-title: Compressive system identification (CSI): Theory and applications of exploiting sparsity in the analysis of high-dimensional dynamical systems
– ident: ref57
  doi: 10.1016/j.sigpro.2005.05.029
– ident: ref13
  doi: 10.1109/TSP.2011.2161982
– ident: ref55
  doi: 10.1007/978-3-319-16042-9_5
– ident: ref10
  doi: 10.1007/s10851-014-0532-1
– ident: ref42
  doi: 10.1109/TSP.2005.849172
– volume: 8299
  start-page: 829908-1
  year: 2012
  ident: ref31
  article-title: The multifocus plenoptic camera
  publication-title: Proc SPIE
– year: 2013
  ident: ref48
  publication-title: A Mathematical Introduction to Compressive Sensing
  doi: 10.1007/978-0-8176-4948-7
– ident: ref65
  doi: 10.1109/TIT.2005.862083
– start-page: 95
  year: 2008
  ident: ref69
  article-title: Graph implementations for nonsmooth convex programs
  publication-title: Recent Advances in Learning and Control
  doi: 10.1007/978-1-84800-155-8_7
– ident: ref67
  doi: 10.1073/pnas.1219540110
– ident: ref36
  doi: 10.1109/TIT.2016.2524628
– ident: ref2
  doi: 10.1017/fms.2016.32
– ident: ref51
  doi: 10.1137/08072975X
– ident: ref18
  doi: 10.1109/JSEN.2013.2248253
– ident: ref20
  doi: 10.1109/TSP.2013.2271480
– ident: ref60
  doi: 10.1137/130941560
– ident: ref66
  doi: 10.1109/ITW.2016.7606838
– ident: ref58
  doi: 10.1088/0266-5611/23/3/008
– ident: ref46
  doi: 10.1109/TIP.2011.2165289
– ident: ref44
  doi: 10.1109/TIT.2009.2034789
– year: 2009
  ident: ref52
  article-title: Circulant and Toeplitz matrices in compressed sensing
  publication-title: Proc 2nd Signal Process Adapt Sparse Struct Represent (SPARS)
– ident: ref26
  doi: 10.1109/ICIP.2015.7350820
– ident: ref16
  doi: 10.1109/TCS.1977.1084284
– ident: ref37
  doi: 10.1002/cpa.21504
– ident: ref59
  doi: 10.1109/LSP.2016.2550101
– ident: ref50
  doi: 10.1007/s10208-015-9276-6
– volume: 9
  start-page: 1
  year: 2010
  ident: ref49
  article-title: Compressive sensing and structured random matrices
  publication-title: Theoretical Foundations and Numerical Methods for Sparse Recovery
– ident: ref28
  doi: 10.2514/6.2012-2826
– ident: ref53
  doi: 10.1016/j.acha.2011.05.001
– ident: ref6
  doi: 10.1109/TMI.2011.2174158
– ident: ref30
  doi: 10.1364/SRS.2009.STuA6
– year: 2014
  ident: ref61
  publication-title: Gradient waveform design for variable density sampling in magnetic resonance imaging
– ident: ref73
  doi: 10.1088/0266-5611/31/11/115002
– ident: ref62
  doi: 10.1137/130946642
– ident: ref7
  doi: 10.1002/mrm.22964
– ident: ref71
  doi: 10.1016/j.jat.2012.01.008
– ident: ref74
  doi: 10.1109/TIT.2011.2104999
SSID ssj0014512
Score 2.4578598
Snippet Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4860
SubjectTerms Coils
Compressed sensing
Detection
incoherence
Magnetic resonance imaging
Mathematical analysis
Mathematical models
Matrix methods
nonuniform recovery
parallel acquisition
Phase transitions
Recovery
Sampling
Sensor systems
Sensors
Sparse matrices
sparsity in levels
Title Compressed Sensing and Parallel Acquisition
URI https://ieeexplore.ieee.org/document/7917266
https://www.proquest.com/docview/2174329755
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvRgtVWsVtmDF8Ftd7vJPo4ilioogi30tmSTWRFlq3X34q83k31QVMRbDkkI88hkMjPfAJw53EGWJtxGJghU23HshHFmqwlHod2NSCmD9nnvzxbsdsmXLbhoamEQ0SSf4YiGJpavVrKgr7JxoH0LbVDa0NZiVtZqNREDxt0SGdzVCqx9jjok6UTj-c2ccriCEQVZGX1zbJgg01Plx0VsrMu0C3f1ucqkkpdRkScj-fkNsvG_B9-FneqZaV2WcrEHLcx60K1bOFiVRvdgewOPsA_mdjBo4sp6pMz27MkSmbIexJparuj95HvxXGZ57cNiej2_mtlVNwVbTiI3t8PUwUCEIpRa0QQPPRToBioKIo5SeEkQUNMxhkxRaBIlGe5I-CGmjgqkJ7wD6GSrDA_B0kxEleqFrvJZQpFD6TFfaHEQritkOoBxTeBYVlDj1PHiNTYuhxPFmiUxsSSuWDKA82bFWwmz8cfcPlG4mVcRdwDDmodxpYcfsXG4qHiYH_2-6hi2aO8ypW8InXxd4Il-ZuTJqZGvL7pbzNs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gPqgPoqARRd2DLyYONtay7dEYCSgQEyHhbenamzGaoQgv_vX2uo0QNca3PbRdcx-9Xu_udwAXDneQJTG3kQkC1XYcO2ac2arNUWh3I1TKoH2OOr0Ju5vyaQmuVrUwiGiSz7BJnyaWr2ZySU9lLV_7FtqgbMCmtvuMZ9Vaq5gB426GDe5qFdZeRxGUdMLWuD-mLC6_SWFWRg8da0bIdFX5cRQb-9KtwLDYWZZW8tJcLuKm_PwG2vjfre_Bbn7RtK4zydiHEqZVqBRNHKxcp6uws4ZIWANzPhg8cWU9Um57-mSJVFkPYk5NV_R68n35nOV5HcCkezu-6dl5PwVbtkN3YQeJg74IRCC1qgkeeCjQ9VXohxyl8GLfp7ZjDJmi4CRKMt2h6ASYOMqXnvAOoZzOUjwCS7MRVaInuqrDYoodSo91hBYI4bpCJnVoFQSOZA42Tj0vXiPjdDhhpFkSEUuinCV1uFzNeMuANv4YWyMKr8blxK1Do-BhlGviR2RcLiof5se_zzqHrd54OIgG_dH9CWzTf7IEvwaUF_MlnupLxyI-M7L2BaFf0Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+and+Parallel+Acquisition&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chun%2C+Il+Yong&rft.au=Adcock%2C+Ben&rft.date=2017-08-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=8&rft.spage=4860&rft.epage=4882&rft_id=info:doi/10.1109%2FTIT.2017.2700440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2017_2700440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon