Compressed Sensing and Parallel Acquisition
Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, w...
Saved in:
Published in | IEEE transactions on information theory Vol. 63; no. 8; pp. 4860 - 4882 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2017.2700440 |
Cover
Loading…
Abstract | Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, we consider the combination of compressed sensing with parallel acquisition. We establish the theoretical improvements of such systems by providing nonuniform recovery guarantees for which, subject to appropriate conditions, the number of measurements required per sensor decreases linearly with the total number of sensors. Throughout, we consider two different sampling scenarios-distinct (i.e., independent sampling in each sensor) and identical (i.e., dependent sampling between sensors)-and a general mathematical framework that allows for a wide range of sensing matrices. We also consider not just the standard sparse signal model, but also the so-called sparse in levels signal model. As our results show, optimal recovery guarantees for both distinct and identical sampling are possible under much broader conditions on the so-called sensor profile matrices (which characterize environmental conditions between a source and the sensors) for the sparse in levels model than for the sparse model. To verify our recovery guarantees, we provide numerical results showing phase transitions for different multi-sensor environments. |
---|---|
AbstractList | Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this paper, we consider the combination of compressed sensing with parallel acquisition. We establish the theoretical improvements of such systems by providing nonuniform recovery guarantees for which, subject to appropriate conditions, the number of measurements required per sensor decreases linearly with the total number of sensors. Throughout, we consider two different sampling scenarios-distinct (i.e., independent sampling in each sensor) and identical (i.e., dependent sampling between sensors)-and a general mathematical framework that allows for a wide range of sensing matrices. We also consider not just the standard sparse signal model, but also the so-called sparse in levels signal model. As our results show, optimal recovery guarantees for both distinct and identical sampling are possible under much broader conditions on the so-called sensor profile matrices (which characterize environmental conditions between a source and the sensors) for the sparse in levels model than for the sparse model. To verify our recovery guarantees, we provide numerical results showing phase transitions for different multi-sensor environments. |
Author | Il Yong Chun Adcock, Ben |
Author_xml | – sequence: 1 surname: Il Yong Chun fullname: Il Yong Chun email: iychun@umich.edu organization: Dept. of Math., Purdue Univ., West Lafayette, IN, USA – sequence: 2 givenname: Ben surname: Adcock fullname: Adcock, Ben email: ben_adcock@sfu.ca organization: Dept. of Math., Simon Fraser Univ., Burnaby, BC, Canada |
BookMark | eNp9kE1LAzEQhoNUsFXvgpcFj7J1svk-luJHoaBgPYeYnZWUbbZNtgf_vVtaPHjwNAy8z7zMMyGj2EUk5IbClFIwD6vFaloBVdNKAXAOZ2RMhVClkYKPyBiA6tJwri_IJOf1sHJBqzG5n3ebbcKcsS7eMeYQvwoX6-LNJde22BYzv9uHHPrQxSty3rg24_VpXpKPp8fV_KVcvj4v5rNl6StD-1I3gMpppz2AdEIzdEhVbZQR6B37VAo0oxx5DUxy9FJSbpzU2ECtPHPsktwd725Tt9tj7u2626c4VNqKKs4qo4QYUnBM-dTlnLCx2xQ2Ln1bCvagxA5K7EGJPSkZEPkH8aF3h9f65EL7H3h7BAMi_vYoQ1UlJfsBikBuaQ |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1007_s00365_019_09467_0 crossref_primary_10_1038_s41377_020_0338_4 crossref_primary_10_1109_ACCESS_2019_2900446 crossref_primary_10_1109_TSP_2021_3080458 crossref_primary_10_1109_TPAMI_2020_3012955 crossref_primary_10_1117_1_JRS_14_016513 crossref_primary_10_1007_s11263_024_02209_1 crossref_primary_10_1109_TIP_2023_3318946 crossref_primary_10_1109_TTHZ_2019_2926618 crossref_primary_10_1007_s00365_024_09697_x crossref_primary_10_1016_j_acha_2017_05_006 crossref_primary_10_3390_s24134348 crossref_primary_10_1016_j_jmaa_2020_124124 crossref_primary_10_1137_22M147236X crossref_primary_10_1016_j_sigpro_2023_108980 crossref_primary_10_1109_TIP_2019_2937734 crossref_primary_10_1093_imaiai_iaaa007 crossref_primary_10_1137_23M156255X crossref_primary_10_1109_TCSII_2020_3030616 crossref_primary_10_1109_TIP_2022_3195319 crossref_primary_10_1137_17M1155983 |
Cites_doi | 10.1201/b14300-18 10.1109/TMI.2015.2474383 10.1109/TSIPN.2015.2442156 10.1007/s00365-007-9003-x 10.1109/TSP.2015.2412912 10.1109/ICMEW.2016.7574710 10.1109/MSP.2007.914732 10.1109/TIP.2008.2009378 10.1109/TIT.2011.2161794 10.1109/TSP.2006.881263 10.1109/MSP.2007.905883 10.1007/s10208-017-9350-3 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1117/12.909882 10.1109/TPAMI.2011.168 10.1017/ATSIP.2014.16 10.1002/mrm.24716 10.1016/j.acha.2014.02.001 10.1016/j.acha.2015.02.003 10.1109/5.843002 10.1109/TIT.2011.2143890 10.1186/1687-6180-2012-37 10.1016/j.sigpro.2005.05.029 10.1109/TSP.2011.2161982 10.1007/978-3-319-16042-9_5 10.1007/s10851-014-0532-1 10.1109/TSP.2005.849172 10.1007/978-0-8176-4948-7 10.1109/TIT.2005.862083 10.1007/978-1-84800-155-8_7 10.1073/pnas.1219540110 10.1109/TIT.2016.2524628 10.1017/fms.2016.32 10.1137/08072975X 10.1109/JSEN.2013.2248253 10.1109/TSP.2013.2271480 10.1137/130941560 10.1109/ITW.2016.7606838 10.1088/0266-5611/23/3/008 10.1109/TIP.2011.2165289 10.1109/TIT.2009.2034789 10.1109/ICIP.2015.7350820 10.1109/TCS.1977.1084284 10.1002/cpa.21504 10.1109/LSP.2016.2550101 10.1007/s10208-015-9276-6 10.2514/6.2012-2826 10.1016/j.acha.2011.05.001 10.1109/TMI.2011.2174158 10.1364/SRS.2009.STuA6 10.1088/0266-5611/31/11/115002 10.1137/130946642 10.1002/mrm.22964 10.1016/j.jat.2012.01.008 10.1109/TIT.2011.2104999 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2017.2700440 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 4882 |
ExternalDocumentID | 10_1109_TIT_2017_2700440 7917266 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 611675 funderid: 10.13039/501100000038 – fundername: Alfred P. Sloan Research Foundation funderid: 10.13039/100000879 – fundername: National Science Foundation through DMS grantid: 1318894 funderid: 10.13039/100000121 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-8f0e7a8a8c006a583eae17d9795eca3b7708314e4d0364ec66149a68ef0d7c3a3 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 03:43:16 EDT 2025 Tue Jul 01 02:16:09 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Aug 26 16:43:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-8f0e7a8a8c006a583eae17d9795eca3b7708314e4d0364ec66149a68ef0d7c3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4226-3760 |
PQID | 2174329755 |
PQPubID | 36024 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2174329755 crossref_primary_10_1109_TIT_2017_2700440 ieee_primary_7917266 crossref_citationtrail_10_1109_TIT_2017_2700440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 (ref25) 2009 ref12 ref59 ref15 ref58 ref14 boyer (ref63) 2015 ref53 ref55 ref11 ref10 ref16 ref19 ref18 roman (ref54) 2014 ref51 ref50 georgiev (ref31) 2012; 8299 ref46 ref45 ref47 ref42 ref44 (ref68) 2012 ref43 ng (ref24) 2005; 2 thurow (ref27) 2013 aceska (ref34) 2016 ref8 ref7 dorsch (ref56) 2016 ref9 ref4 rauhut (ref52) 2009 ref3 ref6 ref40 ref35 ref37 ref36 ref74 ref30 ref32 ref2 ref39 foucart (ref48) 2013 chun (ref5) 2014 nien (ref33) 2014 baron (ref41) 2006; 52 ref71 ref70 ref73 ref72 rauhut (ref49) 2010; 9 oliver (ref23) 2011 ref67 grant (ref69) 2008 ref26 ref64 ref20 chun (ref38) 2016 chauffert (ref61) 2014 sanandaji (ref17) 2012 ref66 ref22 ref65 ref21 boyer (ref1) 2015 ref28 ref29 ref60 ref62 |
References_xml | – year: 2014 ident: ref54 publication-title: On asymptotic structure in compressed sensing – ident: ref22 doi: 10.1201/b14300-18 – start-page: 105 year: 2011 ident: ref23 article-title: A realistic distributed compressive sensing framework for multiple wireless sensor networks publication-title: Proc 4th Signal Process Adapt Sparse Struct Repr – ident: ref3 doi: 10.1109/TMI.2015.2474383 – ident: ref19 doi: 10.1109/TSIPN.2015.2442156 – year: 2013 ident: ref27 article-title: Recent development of volumetric PIV with a plenoptic camera publication-title: Proc 10th Int Symp Particle Image Velocimetry – ident: ref47 doi: 10.1007/s00365-007-9003-x – year: 2016 ident: ref34 publication-title: Local sparsity and recovery of fusion frames structured signals – ident: ref40 doi: 10.1109/TSP.2015.2412912 – year: 2015 ident: ref1 publication-title: Compressed sensing with structured sparsity and structured acquisition – start-page: 1 year: 2016 ident: ref56 article-title: Refined analysis of sparse MIMO radar publication-title: J Fourier Anal Appl – ident: ref70 doi: 10.1109/ICMEW.2016.7574710 – volume: 52 start-page: 5406 year: 2006 ident: ref41 article-title: Distributed compressed sensing publication-title: IEEE Trans Inf Theory – ident: ref21 doi: 10.1109/MSP.2007.914732 – ident: ref12 doi: 10.1109/TIP.2008.2009378 – start-page: 2424 year: 2014 ident: ref5 article-title: Efficient compressed sensing SENSE parallel MRI reconstruction with joint sparsity promotion and mutual incoherence enhancement publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc (EMBC) – ident: ref35 doi: 10.1109/TIT.2011.2161794 – year: 2015 ident: ref63 article-title: Block-constrained compressed sensing – year: 2009 ident: ref25 article-title: Digital imaging system for synthesizing an image using data recorded with a plenoptic camera – ident: ref43 doi: 10.1109/TSP.2006.881263 – ident: ref11 doi: 10.1109/MSP.2007.905883 – ident: ref64 doi: 10.1007/s10208-017-9350-3 – ident: ref4 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – year: 2014 ident: ref33 article-title: Model-based X-ray CT image and light field reconstruction using variable splitting methods – ident: ref32 doi: 10.1117/12.909882 – ident: ref29 doi: 10.1109/TPAMI.2011.168 – ident: ref14 doi: 10.1017/ATSIP.2014.16 – ident: ref8 doi: 10.1002/mrm.24716 – ident: ref39 doi: 10.1016/j.acha.2014.02.001 – ident: ref72 doi: 10.1016/j.acha.2015.02.003 – year: 2016 ident: ref38 publication-title: Uniform recovery from subgaussian multi-sensor measurements – year: 2012 ident: ref68 publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 0 – ident: ref15 doi: 10.1109/5.843002 – ident: ref45 doi: 10.1109/TIT.2011.2143890 – ident: ref9 doi: 10.1186/1687-6180-2012-37 – volume: 2 start-page: 1 year: 2005 ident: ref24 article-title: Light field photography with a hand-held plenoptic camera publication-title: Comput Sci Tech Rep – year: 2012 ident: ref17 article-title: Compressive system identification (CSI): Theory and applications of exploiting sparsity in the analysis of high-dimensional dynamical systems – ident: ref57 doi: 10.1016/j.sigpro.2005.05.029 – ident: ref13 doi: 10.1109/TSP.2011.2161982 – ident: ref55 doi: 10.1007/978-3-319-16042-9_5 – ident: ref10 doi: 10.1007/s10851-014-0532-1 – ident: ref42 doi: 10.1109/TSP.2005.849172 – volume: 8299 start-page: 829908-1 year: 2012 ident: ref31 article-title: The multifocus plenoptic camera publication-title: Proc SPIE – year: 2013 ident: ref48 publication-title: A Mathematical Introduction to Compressive Sensing doi: 10.1007/978-0-8176-4948-7 – ident: ref65 doi: 10.1109/TIT.2005.862083 – start-page: 95 year: 2008 ident: ref69 article-title: Graph implementations for nonsmooth convex programs publication-title: Recent Advances in Learning and Control doi: 10.1007/978-1-84800-155-8_7 – ident: ref67 doi: 10.1073/pnas.1219540110 – ident: ref36 doi: 10.1109/TIT.2016.2524628 – ident: ref2 doi: 10.1017/fms.2016.32 – ident: ref51 doi: 10.1137/08072975X – ident: ref18 doi: 10.1109/JSEN.2013.2248253 – ident: ref20 doi: 10.1109/TSP.2013.2271480 – ident: ref60 doi: 10.1137/130941560 – ident: ref66 doi: 10.1109/ITW.2016.7606838 – ident: ref58 doi: 10.1088/0266-5611/23/3/008 – ident: ref46 doi: 10.1109/TIP.2011.2165289 – ident: ref44 doi: 10.1109/TIT.2009.2034789 – year: 2009 ident: ref52 article-title: Circulant and Toeplitz matrices in compressed sensing publication-title: Proc 2nd Signal Process Adapt Sparse Struct Represent (SPARS) – ident: ref26 doi: 10.1109/ICIP.2015.7350820 – ident: ref16 doi: 10.1109/TCS.1977.1084284 – ident: ref37 doi: 10.1002/cpa.21504 – ident: ref59 doi: 10.1109/LSP.2016.2550101 – ident: ref50 doi: 10.1007/s10208-015-9276-6 – volume: 9 start-page: 1 year: 2010 ident: ref49 article-title: Compressive sensing and structured random matrices publication-title: Theoretical Foundations and Numerical Methods for Sparse Recovery – ident: ref28 doi: 10.2514/6.2012-2826 – ident: ref53 doi: 10.1016/j.acha.2011.05.001 – ident: ref6 doi: 10.1109/TMI.2011.2174158 – ident: ref30 doi: 10.1364/SRS.2009.STuA6 – year: 2014 ident: ref61 publication-title: Gradient waveform design for variable density sampling in magnetic resonance imaging – ident: ref73 doi: 10.1088/0266-5611/31/11/115002 – ident: ref62 doi: 10.1137/130946642 – ident: ref7 doi: 10.1002/mrm.22964 – ident: ref71 doi: 10.1016/j.jat.2012.01.008 – ident: ref74 doi: 10.1109/TIT.2011.2104999 |
SSID | ssj0014512 |
Score | 2.4578598 |
Snippet | Parallel acquisition systems arise in various applications to moderate problems caused by insufficient measurements in single-sensor systems. These systems... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4860 |
SubjectTerms | Coils Compressed sensing Detection incoherence Magnetic resonance imaging Mathematical analysis Mathematical models Matrix methods nonuniform recovery parallel acquisition Phase transitions Recovery Sampling Sensor systems Sensors Sparse matrices sparsity in levels |
Title | Compressed Sensing and Parallel Acquisition |
URI | https://ieeexplore.ieee.org/document/7917266 https://www.proquest.com/docview/2174329755 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvRgtVWsVtmDF8Ftd7vJPo4ilioogi30tmSTWRFlq3X34q83k31QVMRbDkkI88hkMjPfAJw53EGWJtxGJghU23HshHFmqwlHod2NSCmD9nnvzxbsdsmXLbhoamEQ0SSf4YiGJpavVrKgr7JxoH0LbVDa0NZiVtZqNREDxt0SGdzVCqx9jjok6UTj-c2ccriCEQVZGX1zbJgg01Plx0VsrMu0C3f1ucqkkpdRkScj-fkNsvG_B9-FneqZaV2WcrEHLcx60K1bOFiVRvdgewOPsA_mdjBo4sp6pMz27MkSmbIexJparuj95HvxXGZ57cNiej2_mtlVNwVbTiI3t8PUwUCEIpRa0QQPPRToBioKIo5SeEkQUNMxhkxRaBIlGe5I-CGmjgqkJ7wD6GSrDA_B0kxEleqFrvJZQpFD6TFfaHEQritkOoBxTeBYVlDj1PHiNTYuhxPFmiUxsSSuWDKA82bFWwmz8cfcPlG4mVcRdwDDmodxpYcfsXG4qHiYH_2-6hi2aO8ypW8InXxd4Il-ZuTJqZGvL7pbzNs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEL8gPqgPoqARRd2DLyYONtay7dEYCSgQEyHhbenamzGaoQgv_vX2uo0QNca3PbRdcx-9Xu_udwAXDneQJTG3kQkC1XYcO2ac2arNUWh3I1TKoH2OOr0Ju5vyaQmuVrUwiGiSz7BJnyaWr2ZySU9lLV_7FtqgbMCmtvuMZ9Vaq5gB426GDe5qFdZeRxGUdMLWuD-mLC6_SWFWRg8da0bIdFX5cRQb-9KtwLDYWZZW8tJcLuKm_PwG2vjfre_Bbn7RtK4zydiHEqZVqBRNHKxcp6uws4ZIWANzPhg8cWU9Um57-mSJVFkPYk5NV_R68n35nOV5HcCkezu-6dl5PwVbtkN3YQeJg74IRCC1qgkeeCjQ9VXohxyl8GLfp7ZjDJmi4CRKMt2h6ASYOMqXnvAOoZzOUjwCS7MRVaInuqrDYoodSo91hBYI4bpCJnVoFQSOZA42Tj0vXiPjdDhhpFkSEUuinCV1uFzNeMuANv4YWyMKr8blxK1Do-BhlGviR2RcLiof5se_zzqHrd54OIgG_dH9CWzTf7IEvwaUF_MlnupLxyI-M7L2BaFf0Cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressed+Sensing+and+Parallel+Acquisition&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chun%2C+Il+Yong&rft.au=Adcock%2C+Ben&rft.date=2017-08-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=63&rft.issue=8&rft.spage=4860&rft.epage=4882&rft_id=info:doi/10.1109%2FTIT.2017.2700440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2017_2700440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |