Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel

Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor fr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced composites and hybrid materials Vol. 5; no. 3; pp. 1976 - 1987
Main Authors Kong, Deshuo, El-Bahy, Zeinhom M., Algadi, Hassan, Li, Tuo, El-Bahy, Salah M., Nassan, Mohamed A., Li, Jiongru, Faheim, Abeer A., Li, Ang, Xu, Cuixia, Huang, Mina, Cui, Dapeng, Wei, Huige
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor from MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose (PVA/CMC) DN hydrogel which is further reinforced by tannic acid (TA). In this PCTM (short for PVA/CMC/TA/MXene hydrogel), PVA serves as the flexible backbone, CMC mainly functions as the rigid subnetwork skeleton in the hydrogel, and naturally occurring TA further enhances the mechanical properties of the hydrogel via tight hydrogen bonds between TA and the polymer chains of PVA and CMC. MXene is utilized to build the conductive path, and its abundant hydrophilic functional groups help to achieve a uniform distribution in the hydrogel, which is beneficial for achieving high sensitivity and wide operation window. The unique multiple synergetic networks of PCTM impart promising mechanical strength (a fracture tensile strength of 1.8 MPa at a fracture strain of 740%) and high sensitivity with a wide detection window (a gauge factor of 2.9 at a strain range of 0–700%) as well as long-term durability over 3000 continuous cycles. Moreover, the sensor also exhibits accurate response to different types of human motions. As a proof of concept, a PCTM sensor is fabricated for visual detection of the pressure, suggesting its promising potentials for stretchable electronic sensors. Graphical abstract
AbstractList Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor from MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose (PVA/CMC) DN hydrogel which is further reinforced by tannic acid (TA). In this PCTM (short for PVA/CMC/TA/MXene hydrogel), PVA serves as the flexible backbone, CMC mainly functions as the rigid subnetwork skeleton in the hydrogel, and naturally occurring TA further enhances the mechanical properties of the hydrogel via tight hydrogen bonds between TA and the polymer chains of PVA and CMC. MXene is utilized to build the conductive path, and its abundant hydrophilic functional groups help to achieve a uniform distribution in the hydrogel, which is beneficial for achieving high sensitivity and wide operation window. The unique multiple synergetic networks of PCTM impart promising mechanical strength (a fracture tensile strength of 1.8 MPa at a fracture strain of 740%) and high sensitivity with a wide detection window (a gauge factor of 2.9 at a strain range of 0–700%) as well as long-term durability over 3000 continuous cycles. Moreover, the sensor also exhibits accurate response to different types of human motions. As a proof of concept, a PCTM sensor is fabricated for visual detection of the pressure, suggesting its promising potentials for stretchable electronic sensors. Graphical abstract
Author Huang, Mina
Wei, Huige
Nassan, Mohamed A.
Faheim, Abeer A.
Li, Ang
El-Bahy, Zeinhom M.
Li, Jiongru
Kong, Deshuo
Algadi, Hassan
Cui, Dapeng
Xu, Cuixia
El-Bahy, Salah M.
Li, Tuo
Author_xml – sequence: 1
  givenname: Deshuo
  surname: Kong
  fullname: Kong, Deshuo
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology
– sequence: 2
  givenname: Zeinhom M.
  surname: El-Bahy
  fullname: El-Bahy, Zeinhom M.
  organization: Department of Chemistry, Faculty of Science, Al-Azhar University
– sequence: 3
  givenname: Hassan
  surname: Algadi
  fullname: Algadi, Hassan
  organization: Department of Electrical Engineering, Faculty of Engineering, Najran University
– sequence: 4
  givenname: Tuo
  surname: Li
  fullname: Li, Tuo
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology
– sequence: 5
  givenname: Salah M.
  surname: El-Bahy
  fullname: El-Bahy, Salah M.
  organization: Department of Chemistry, Turabah University College, Taif University
– sequence: 6
  givenname: Mohamed A.
  surname: Nassan
  fullname: Nassan, Mohamed A.
  organization: Department of Clinical Laboratory Sciences, Turabah University College, Taif University
– sequence: 7
  givenname: Jiongru
  surname: Li
  fullname: Li, Jiongru
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology
– sequence: 8
  givenname: Abeer A.
  surname: Faheim
  fullname: Faheim, Abeer A.
  organization: Department of Chemistry, Faculty of Science, Al-Azhar University
– sequence: 9
  givenname: Ang
  surname: Li
  fullname: Li, Ang
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology
– sequence: 10
  givenname: Cuixia
  surname: Xu
  fullname: Xu, Cuixia
  organization: Analytical Development Department, Aucta Pharmaceuticals Inc
– sequence: 11
  givenname: Mina
  surname: Huang
  fullname: Huang, Mina
  organization: College of Materials Science and Engineering, Taiyuan University of Science and Technology
– sequence: 12
  givenname: Dapeng
  surname: Cui
  fullname: Cui, Dapeng
  email: dapeng@tust.edu.cn
  organization: College of Light Industry Science and Engineering, Tianjin University of Science and Technology
– sequence: 13
  givenname: Huige
  orcidid: 0000-0003-3977-1147
  surname: Wei
  fullname: Wei, Huige
  email: huigewei@tust.edu.cn
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology
BookMark eNp9kE1OwzAQRi1UJErpBVj5AqG2879EFVCkIjYgsYtcZ9K4OJ7KTltyGc5K0iIWLLoZj0d-38jvmowsWiDklrM7zlg685HgPAqYEAFjccgDfkHGIh6uPExGf73IrsjU-w1jjOc8EVyMyfdCr2vTUQ_W61bvgfrWSW2PA3SeHnRb96UEiltwstVoqZN2DbRy2Ayv0a7pywdYCBQ2W-xjoKRbNN1e285QaRTWaGYeS71rqJJuhV9dA23dGQXG7Ax6oCXuVgaohfaA7pPWXelwDeaGXFbSeJj-nhPy_vjwNl8Ey9en5_n9MlAi522QQRozwVSVARdlXCVpCDJJYi57AyKv4ohlwziTlcyUinKVp6s4j6ssTNOohHBCxClXOfTeQVVsnW6k6wrOikFycZJc9JKLo-SC91D2D1K6PRoaFJrzaHhCfb-nl-mKDe6c7b94jvoBOuaYrQ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3333695
crossref_primary_10_1515_ntrev_2023_0119
crossref_primary_10_1016_j_cej_2023_143009
crossref_primary_10_1021_acsmacrolett_3c00149
crossref_primary_10_1016_j_ijbiomac_2024_135755
crossref_primary_10_1016_j_polymer_2023_126248
crossref_primary_10_1007_s42114_023_00638_z
crossref_primary_10_1016_j_cej_2024_153173
crossref_primary_10_1016_j_ceramint_2023_08_274
crossref_primary_10_1007_s42114_023_00731_3
crossref_primary_10_1007_s42114_024_00987_3
crossref_primary_10_1016_j_colsurfa_2025_136367
crossref_primary_10_1016_j_compstruct_2023_116886
crossref_primary_10_1007_s42114_023_00770_w
crossref_primary_10_1039_D2QM01346K
crossref_primary_10_1016_j_carbpol_2023_120827
crossref_primary_10_1021_acsapm_2c01376
crossref_primary_10_1021_acsapm_3c00771
crossref_primary_10_1007_s10854_022_09714_4
crossref_primary_10_1016_j_ijbiomac_2023_125686
crossref_primary_10_1016_j_jece_2025_115335
crossref_primary_10_1007_s10904_023_02719_4
crossref_primary_10_1016_j_ijbiomac_2023_126018
crossref_primary_10_1002_admt_202400355
crossref_primary_10_1039_D2MA00620K
crossref_primary_10_1016_j_jcis_2022_12_101
crossref_primary_10_1016_j_mser_2025_100925
crossref_primary_10_1016_j_jmat_2023_08_013
crossref_primary_10_1007_s12598_024_03157_y
crossref_primary_10_1016_j_carbpol_2023_120678
crossref_primary_10_1021_acsami_4c09483
crossref_primary_10_1021_acsami_2c10290
crossref_primary_10_1007_s40820_023_01084_8
crossref_primary_10_1039_D3TA08065J
crossref_primary_10_1007_s42114_023_00652_1
crossref_primary_10_1021_acsapm_2c02215
crossref_primary_10_3390_gels9020083
crossref_primary_10_1016_j_indcrop_2023_116672
crossref_primary_10_1021_acsami_4c02456
crossref_primary_10_1016_j_cej_2022_141198
crossref_primary_10_3390_nano14050447
crossref_primary_10_1515_gps_2023_0151
crossref_primary_10_1016_j_sna_2024_115843
crossref_primary_10_1016_j_carbpol_2024_122461
crossref_primary_10_1007_s40820_024_01398_1
crossref_primary_10_1016_j_ijbiomac_2024_129859
crossref_primary_10_1007_s10854_024_12602_8
crossref_primary_10_1016_j_porgcoat_2023_108175
crossref_primary_10_1021_acsapm_3c00987
crossref_primary_10_1021_acssensors_4c01428
crossref_primary_10_1016_j_coco_2024_102245
crossref_primary_10_1016_j_ijbiomac_2024_130291
crossref_primary_10_1016_j_matt_2023_02_011
crossref_primary_10_1007_s42114_023_00754_w
crossref_primary_10_1021_acsami_3c12930
crossref_primary_10_1002_pol_20240209
crossref_primary_10_1021_acsaelm_3c00651
crossref_primary_10_1007_s42114_023_00711_7
crossref_primary_10_1016_j_cej_2025_159813
crossref_primary_10_1016_j_compstruct_2023_117231
crossref_primary_10_1016_j_envpol_2022_120826
crossref_primary_10_1007_s42114_024_01083_2
crossref_primary_10_1088_1361_6528_ac97f1
crossref_primary_10_3390_cryst15020130
crossref_primary_10_1016_j_synthmet_2024_117756
crossref_primary_10_1021_acsami_3c06015
crossref_primary_10_1039_D4TA04996A
crossref_primary_10_1021_acsapm_5c00340
crossref_primary_10_1016_j_ijbiomac_2024_131243
crossref_primary_10_1016_j_carbpol_2024_122973
crossref_primary_10_1016_j_apmt_2023_101803
crossref_primary_10_1021_acsapm_4c00512
crossref_primary_10_1021_acsnano_3c00573
crossref_primary_10_1021_acsapm_4c03069
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1016_j_aej_2023_04_066
crossref_primary_10_1016_j_sna_2024_115981
crossref_primary_10_1002_admt_202201767
crossref_primary_10_1007_s42114_023_00821_2
crossref_primary_10_1016_j_jcis_2024_09_075
crossref_primary_10_3390_mi14051005
crossref_primary_10_1016_j_cis_2024_103271
crossref_primary_10_1016_j_cej_2023_143564
crossref_primary_10_1016_j_ijbiomac_2022_10_266
crossref_primary_10_1016_j_sna_2023_114421
crossref_primary_10_1039_D2TC03364J
crossref_primary_10_1039_D3NJ01777J
crossref_primary_10_1002_pat_6154
crossref_primary_10_1021_acsnano_4c08258
crossref_primary_10_1016_j_mtphys_2023_101178
crossref_primary_10_1007_s12274_023_5647_5
crossref_primary_10_1007_s42114_023_00658_9
crossref_primary_10_1016_j_eurpolymj_2023_112703
crossref_primary_10_1364_OPTCON_500786
crossref_primary_10_1002_aesr_202300231
crossref_primary_10_1007_s42114_024_01137_5
crossref_primary_10_1016_j_desal_2023_116910
crossref_primary_10_1002_admt_202202029
crossref_primary_10_1016_j_indcrop_2024_119996
crossref_primary_10_1021_acsami_4c00569
crossref_primary_10_1016_j_ijbiomac_2023_128757
crossref_primary_10_1016_j_molliq_2025_126938
crossref_primary_10_1002_advs_202301713
crossref_primary_10_1002_smll_202404119
crossref_primary_10_1016_j_partic_2023_02_020
crossref_primary_10_1007_s40820_024_01349_w
crossref_primary_10_1016_j_carbpol_2024_122633
crossref_primary_10_1016_j_cej_2024_156596
crossref_primary_10_1016_j_ijbiomac_2024_134694
crossref_primary_10_1007_s42114_022_00596_y
crossref_primary_10_1021_acsaelm_4c02125
crossref_primary_10_1016_j_giant_2023_100234
crossref_primary_10_1016_j_ijbiomac_2024_136115
crossref_primary_10_1007_s42114_023_00783_5
crossref_primary_10_1002_smm2_1160
crossref_primary_10_1016_j_matchemphys_2023_127808
crossref_primary_10_1021_acsaelm_4c00985
crossref_primary_10_1016_j_cej_2024_154731
crossref_primary_10_1039_D3TC01866K
crossref_primary_10_1016_j_ijbiomac_2023_124008
crossref_primary_10_1007_s40843_024_3143_1
crossref_primary_10_1002_aoc_7160
crossref_primary_10_1039_D3MA00095H
crossref_primary_10_3390_md22120546
crossref_primary_10_1016_j_coco_2024_102208
crossref_primary_10_1016_j_cej_2023_143388
crossref_primary_10_1007_s12274_023_5727_6
crossref_primary_10_1039_D3CP04319C
crossref_primary_10_1039_D4TB01255K
crossref_primary_10_1016_j_compositesa_2023_107756
crossref_primary_10_1016_j_cej_2023_143305
crossref_primary_10_1007_s10853_022_08113_8
crossref_primary_10_1021_acsami_4c12419
crossref_primary_10_1021_acs_biomac_3c00442
crossref_primary_10_1007_s10853_022_07956_5
crossref_primary_10_1007_s42765_023_00344_x
crossref_primary_10_1039_D3TC01324C
crossref_primary_10_1016_j_cej_2022_141205
crossref_primary_10_3389_fchem_2024_1376799
crossref_primary_10_1016_j_mtcomm_2024_109401
crossref_primary_10_1520_JTE20220442
crossref_primary_10_1016_j_nanoen_2024_109701
crossref_primary_10_1039_D3QI00819C
crossref_primary_10_1016_j_sna_2024_115258
crossref_primary_10_12677_nat_2024_1412003
crossref_primary_10_1016_j_indcrop_2024_118326
crossref_primary_10_1016_j_compositesb_2023_110759
crossref_primary_10_1016_j_indcrop_2024_118573
crossref_primary_10_1039_D4TA00748D
crossref_primary_10_1016_j_biomaterials_2024_123036
crossref_primary_10_1007_s42114_023_00684_7
crossref_primary_10_1002_macp_202200272
crossref_primary_10_3390_coatings13050843
crossref_primary_10_1039_D3TC03024E
crossref_primary_10_1080_16583655_2023_2265631
crossref_primary_10_1007_s12221_023_00179_8
crossref_primary_10_1007_s42823_023_00540_0
crossref_primary_10_1016_j_nanoen_2024_110484
crossref_primary_10_1002_smll_202404011
crossref_primary_10_1021_acsaelm_4c00288
crossref_primary_10_1021_acs_biomac_4c00960
crossref_primary_10_1021_acsami_2c21566
crossref_primary_10_1007_s42114_023_00745_x
crossref_primary_10_1021_acsami_4c02354
crossref_primary_10_1039_D4TC01470G
crossref_primary_10_1007_s42114_023_00653_0
crossref_primary_10_1021_acsami_2c17904
crossref_primary_10_1007_s10967_024_09849_0
crossref_primary_10_1021_acsapm_2c01546
crossref_primary_10_1021_acsami_2c13704
crossref_primary_10_1016_j_jallcom_2024_175034
Cites_doi 10.1016/j.ijbiomac.2020.05.181
10.1016/j.colsurfa.2021.128091
10.1038/nature04969
10.1016/j.jcis.2021.08.205
10.1007/s42114-021-00367-1
10.1021/acssensors.1c00699
10.1021/acsami.7b05963
10.1007/s42114-017-0009-y
10.1021/acsami.0c02640
10.1007/s42114-021-00246-9
10.1016/j.carbpol.2021.118207
10.1007/s42114-021-00292-3
10.1016/j.cej.2021.129736
10.1016/j.carbpol.2017.09.030
10.1002/adma.201807101
10.1016/j.compositesb.2019.107623
10.1016/j.jcis.2021.04.001
10.1002/adfm.202008006
10.1016/j.compositesb.2020.108356
10.1021/acsami.0c18405
10.1016/j.carbpol.2020.117443
10.1016/j.colsurfa.2021.127336
10.1002/adfm.202003430
10.1007/s42114-021-00289-y
10.1016/j.colsurfa.2020.125805
10.1021/acsnano.1c01751
10.1021/acs.nanolett.0c00372
10.1016/j.jmbbm.2021.104452
10.1039/D1TA05586K
10.1002/admi.201801018
10.1021/acsami.0c22938
10.1016/j.ijbiomac.2021.02.055
10.1007/s12274-020-2970-y
10.1007/s10853-020-04833-x
10.1021/acsami.0c03904
10.1016/j.sna.2021.113148
10.1007/s42114-021-00262-9
10.1016/j.scib.2021.04.041
10.1021/acsnano.7b06251
10.1016/j.snb.2019.05.082
10.1021/acsami.9b19721
10.1016/j.jiec.2019.10.003
10.1021/acs.biomac.9b01223
10.1016/j.cej.2020.124901
10.1007/s42114-022-00435-0
10.1016/j.nanoen.2021.106695
10.1007/s42114-021-00358-2
10.1021/acsami.6b04971
10.1021/acsnano.7b06909
10.1016/j.colsurfa.2022.128428
10.1007/s40820-021-00592-9
10.1016/j.colsurfb.2021.112088
10.1021/acs.jafc.8b02097
10.1007/s42114-021-00226-z
10.1007/s42114-021-00223-2
10.1007/s42114-021-00364-4
10.1039/C8RA06193A
10.1021/acsami.0c14503
10.1007/s42114-021-00307-z
10.1016/j.carbpol.2021.118697
10.1016/j.cej.2022.135587
10.1016/j.ijbiomac.2019.05.091
10.1016/j.cej.2021.130462
10.1016/j.cej.2020.126129
10.1016/j.cej.2020.127720
10.1016/j.cej.2021.131523
10.1021/acsami.0c05819
10.1021/acs.chemmater.0c02911
10.1016/j.ijbiomac.2020.11.032
10.1021/acsami.1c02615
10.1007/s10853-019-04101-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
DBID AAYXX
CITATION
DOI 10.1007/s42114-022-00531-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2522-0136
EndPage 1987
ExternalDocumentID 10_1007_s42114_022_00531_1
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by Tianjin
  grantid: TJSQNTJ-2018-03
  funderid: http://dx.doi.org/10.13039/501100019005
– fundername: National Natural Science Foundation of China
  grantid: 51703162
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Taif University Researchers Supporting Project number
  grantid: TURSP-2020/135
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AAJSJ
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACULB
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
HG6
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-8e75020cf8e12d5f673ea6651a01329f5408d5f68afa8cc49c97b595f83774de3
IEDL.DBID C6C
ISSN 2522-0128
IngestDate Tue Jul 01 04:33:14 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Fri Feb 21 02:44:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Wide operation window
High sensitivity
Stretchable electronic sensors
Double network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8e75020cf8e12d5f673ea6651a01329f5408d5f68afa8cc49c97b595f83774de3
ORCID 0000-0003-3977-1147
PageCount 12
ParticipantIDs crossref_primary_10_1007_s42114_022_00531_1
crossref_citationtrail_10_1007_s42114_022_00531_1
springer_journals_10_1007_s42114_022_00531_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Advanced composites and hybrid materials
PublicationTitleAbbrev Adv Compos Hybrid Mater
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Yu, Yuk, Parada, Wu, Liu, Nabzdyk, Youcef-Toumi, Zang, Zhao (CR67) 2018; 31
Takahashi, Shimano, Okazaki, Kurokawa, Nakajima, Nonoyama, King, Gong (CR26) 2018; 5
Yang, Li, Zhang, Lai, Zeng (CR43) 2021; 425
CR39
Zhang, Lu, Lu, Zhang, Zhao, Ma, Ma, Wang (CR69) 2021; 332
Yan, Zhou, Fu (CR65) 2020; 201
Wei, Liu, Liu, Liu, Zheng, Pei, Tang (CR66) 2019; 135
Han, Lv, Ran, Dai, Li, Si (CR38) 2021; 176
Wei, Zhu, Luo, Huang, Li, Yu (CR35) 2020; 55
CR32
Ma, Xie, Yang, Yu, Sun, Zhang, Yang, Kimura, Hou, Guo, Du (CR14) 2021; 4
Zhao, Zhang, Yang, Du, Zhang (CR13) 2021; 9
Yin, Li, Xie, Wu, Zou, Huang, Wang (CR45) 2022; 642
Li, Chen, Chen, Huang, Tian, Wan, He, Zhang (CR46) 2017; 178
Zhang, Han, Xu, Zhang, Lu, Nie, Du, Zhu, Huang (CR1) 2020; 20
He, Yuan (CR9) 2021; 13
Gu, Gao, Zhou, Du, Naik, Guo (CR22) 2021; 4
Hu, Gao, Jiang, Zeng, Zeng, Zhu, Xu, Sun (CR34) 2021; 4
Ma, Yue, Zhang, Cheng, Zhao, Rao, Luo, Wang, Jiang, Liu, Liu, Gao (CR52) 2018; 12
Jing, Shi, Guoab, Guan, Fu, Cui (CR59) 2021; 611
Li, Jin, Han, Li, Wang, Lin, Zhu (CR2) 2021; 13
Li, Li, Chang, Wu, Liu, Wang, Yao, Yu (CR63) 2020; 13
Feng, Hou, Cui, Sun, Sadik, Wu, Zhou (CR64) 2021; 2
Zhang, Liu, Shi, Liu, Yue, Wang, Ma, Wen, Li, Long, Zou, Gao (CR51) 2016; 8
Li, Li, Fan, Qi, Qu, Tian (CR16) 2021; 13
Chen, Huang, Ma, Lei (CR17) 2017; 1
Cai, Shen, Ge, Zhang, Jin, Huang, Shao, Yang, Dong (CR33) 2018; 12
Wang, Qu, Wang, Yu (CR12) 2021; 208
Peng, Yan, Li, Lan, Shi, Ran (CR18) 2020; 55
Li, He, Li, Chao, Li, Wan, Zhang (CR47) 2021; 15
Hu, Zhong, Yang, Fu (CR37) 2020; 182
Wang, Li, Yu, Yan, Tang, Sun, Zeng, Lin (CR48) 2021; 255
Liu, Li, Qin, Mi, Li, Zheng, Liu, Li, Liu (CR3) 2021; 4
Abouzeid, Khiari, Salama, Diab, Beneventi, Dufresne (CR29) 2020; 160
Zheng, Yin, Zhao, Liu, Zhang, Shi, Zhang, Liu, Shen (CR53) 2021; 420
Li, Lu, Zhang, Ma (CR60) 2017; 9
Wei, Kong, Li, Xue, Wang, Cui, Huang, Wang, Hu, Wan, Yang (CR6) 2021; 6
Li, Li, Zhang, Cheng, Fei, Lu (CR11) 2021; 420
Chang, Chen, Chen, Zhu, Guo (CR7) 2021; 4
Li, Tu, Long, Zhang, Jiang, Chen, Wang, Min (CR49) 2021; 166
Liu, Chen, Zheng, Zhang, Zhao, Wang, Pan, Liu, Shen (CR56) 2021; 31
Li, Wang, Lin, Cheng, Han, Yuan, Jia (CR30) 2022; 635
Zhang, Yin, Zheng, Li, Liu, Liu, Shen (CR54) 2022; 438
Bian, Sun, Cui, Ren, Lin, Feng, Jia (CR61) 2018; 66
CR19
Li, Yang, Liu, Chen, Qian, Han, Han (CR71) 2021; 628
Jiao, Lu, Lu, Yue, Xu, Xiao, Li, Han (CR15) 2021; 597
Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (CR73) 2021; 267
Chen, Li, Ma, Minus, Benson, Lu, Wang, Ling, Zhu (CR62) 2019; 20
Ly, Park (CR40) 2020; 82
Ye, Zhang, Chen, Han, Jiang (CR57) 2020; 30
Hu, Wu, Yang, Zhou, Hui, Liu, Xu, Ding (CR58) 2022; 275
Bu, Shen, Yang, Yang, Zhao, Liu, Zheng, Liu, Shen (CR55) 2021; 66
More (CR27) 2021; 5
Chen, Liu, Li, Sun, Liu, Pang, Liu, Zhou (CR8) 2020; 12
Li, Zhou, Li, Jin, Liu, Lai, Wu, Chen, Ma (CR68) 2021; 607
Jiang, Hu, Xu, Chen, Chang, Zhu, Li, Guo (CR10) 2021; 4
Xiao, Qi, Qu, Shi, Cheng, Sun, Yuan, Huang, Pan, Guo (CR24) 2021; 4
Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (CR72) 2021; 425
Gao, Zhao, Zhang, An, Xu, Xun, Zhao, Ouyang, Zhang, Liao, Wang (CR41) 2022; 91
Shi, Han, Chang, Song, Hou, Chen (CR20) 2020; 12
Jing, Li, Mi, Liu, Feng, Tan, Turng (CR28) 2019; 295
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (CR31) 2006; 442
Kim, Yang, Lee, Park (CR5) 2020; 12
Wu, Zhao, Liu, Li, Chen, Chen, Wang, Guo (CR23) 2021; 4
Wang, Pan, Lin, Gao, Cao, Ni, Ma (CR44) 2020; 401
Sharma, Chhetry, Sharifuzzaman, Yoon, Park (CR42) 2020; 12
Sedlačík, Nonoyama, Guo, Kiyama, Nakajima, Takeda, Kurokawa, Gong (CR25) 2020; 32
Zhu, Lu, Guo, Chen, Wu, Lu (CR21) 2018; 8
Guo, An, Fan (CR50) 2021; 118
Wang, Liu, Schubert (CR4) 2021; 13
Jin, Jiang, Li, Fu, Bao, Wang, Hu (CR36) 2020; 394
He, You, Gong, Yang, Bai, Wang, Guo, Liu, Ye (CR70) 2020; 12
J Chen (531_CR17) 2017; 1
H Wang (531_CR48) 2021; 255
H Jing (531_CR59) 2021; 611
Y Jiao (531_CR15) 2021; 597
F He (531_CR70) 2020; 12
531_CR32
W Li (531_CR2) 2021; 13
Y Ye (531_CR57) 2020; 30
H Hu (531_CR37) 2020; 182
Y Peng (531_CR18) 2020; 55
Y Cai (531_CR33) 2018; 12
Q Yan (531_CR65) 2020; 201
S Sharma (531_CR42) 2020; 12
W Zhao (531_CR13) 2021; 9
DW Kim (531_CR5) 2020; 12
Y Ma (531_CR14) 2021; 4
M Hu (531_CR34) 2021; 4
X Qu (531_CR72) 2021; 425
N Jiang (531_CR10) 2021; 4
H Yin (531_CR45) 2022; 642
X Chang (531_CR7) 2021; 4
531_CR19
N Wu (531_CR23) 2021; 4
N Li (531_CR46) 2017; 178
RE Abouzeid (531_CR29) 2020; 160
Z He (531_CR9) 2021; 13
Y Guo (531_CR50) 2021; 118
Z Liu (531_CR3) 2021; 4
W Shi (531_CR20) 2020; 12
D Wei (531_CR35) 2020; 55
D Chen (531_CR8) 2020; 12
D Zhang (531_CR54) 2022; 438
S Stankovich (531_CR31) 2006; 442
R Takahashi (531_CR26) 2018; 5
W Li (531_CR60) 2017; 9
TN Ly (531_CR40) 2020; 82
J Hu (531_CR58) 2022; 275
H Liu (531_CR56) 2021; 31
F Gao (531_CR41) 2022; 91
X Qu (531_CR73) 2021; 267
L Xiao (531_CR24) 2021; 4
X Han (531_CR38) 2021; 176
Y Wang (531_CR12) 2021; 208
W Chen (531_CR62) 2019; 20
Y Li (531_CR11) 2021; 420
T Sedlačík (531_CR25) 2020; 32
Y Zheng (531_CR53) 2021; 420
X Li (531_CR30) 2022; 635
Q Wang (531_CR44) 2020; 401
M Li (531_CR49) 2021; 166
H Bian (531_CR61) 2018; 66
X Feng (531_CR64) 2021; 2
Z Yang (531_CR43) 2021; 425
H Zhang (531_CR51) 2016; 8
W Li (531_CR63) 2020; 13
Y Ma (531_CR52) 2018; 12
AP More (531_CR27) 2021; 5
Y Yu (531_CR67) 2018; 31
Z Li (531_CR16) 2021; 13
X Wang (531_CR4) 2021; 13
S Li (531_CR68) 2021; 607
H Gu (531_CR22) 2021; 4
X Jin (531_CR36) 2020; 394
H Zhang (531_CR1) 2020; 20
Y Bu (531_CR55) 2021; 66
531_CR39
X Jing (531_CR28) 2019; 295
X Li (531_CR47) 2021; 15
H Wei (531_CR6) 2021; 6
Y Li (531_CR71) 2021; 628
D Wei (531_CR66) 2019; 135
Y Zhu (531_CR21) 2018; 8
L Zhang (531_CR69) 2021; 332
References_xml – volume: 118
  year: 2021
  ident: CR50
  article-title: Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing
  publication-title: J Mech Behav Biomed Mater
– volume: 12
  start-page: 6442
  issue: 5
  year: 2020
  end-page: 6450
  ident: CR70
  article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  start-page: 574
  issue: 3
  year: 2021
  end-page: 583
  ident: CR10
  article-title: Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing
  publication-title: Adv Compos Hybrid Mater
– volume: 208
  year: 2021
  ident: CR12
  article-title: PVA/CMC/PEDOT:PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring
  publication-title: Colloids Surf B Biointerfaces
– volume: 420
  start-page: 127720
  year: 2021
  ident: CR53
  article-title: Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin
  publication-title: Chem Eng J
– volume: 135
  start-page: 561
  year: 2019
  end-page: 568
  ident: CR66
  article-title: Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability
  publication-title: Int J Biol Macromol
– volume: 275
  start-page: 118697
  year: 2022
  ident: CR58
  article-title: One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring
  publication-title: Carbohyd Polym
– volume: 6
  start-page: 2938
  issue: 8
  year: 2021
  end-page: 2951
  ident: CR6
  article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors
  publication-title: ACS Sens
– ident: CR39
– volume: 4
  start-page: 514
  issue: 3
  year: 2021
  end-page: 520
  ident: CR34
  article-title: High-performance strain sensors based on bilayer carbon black/PDMS hybrids
  publication-title: Adv Compos Hybrid Mater
– volume: 401
  start-page: 126129
  year: 2020
  ident: CR44
  article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics
  publication-title: Chem Eng J
– volume: 13
  start-page: 64
  issue: 1
  year: 2021
  ident: CR4
  article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks
  publication-title: Nano-Micro Letters
– volume: 635
  start-page: 128091
  year: 2022
  ident: CR30
  article-title: High-strength, biocompatible and multifunctional hydrogel sensor based on dual physically cross-linked network
  publication-title: Colloids Surf A
– volume: 4
  start-page: 707
  issue: 3
  year: 2021
  end-page: 715
  ident: CR23
  article-title: MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials
  publication-title: Adv Compos Hybrid Mater
– volume: 91
  start-page: 106695
  year: 2022
  ident: CR41
  article-title: A stretching-insensitive, self-powered and wearable pressure sensor
  publication-title: Nano Energy
– volume: 13
  start-page: 19211
  issue: 16
  year: 2021
  end-page: 19220
  ident: CR2
  article-title: Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors
  publication-title: ACS Appl Mater Interfaces
– volume: 31
  start-page: 1807101
  issue: 7
  year: 2018
  ident: CR67
  article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes
  publication-title: Adv Mater
– volume: 9
  start-page: 22082
  issue: 38
  year: 2021
  end-page: 22094
  ident: CR13
  article-title: A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors
  publication-title: J Mater Chem A
– volume: 30
  start-page: 2003430
  issue: 35
  year: 2020
  ident: CR57
  article-title: Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors
  publication-title: Adv Func Mater
– volume: 66
  start-page: 8753
  issue: 33
  year: 2018
  end-page: 8760
  ident: CR61
  article-title: Bienzyme magnetic nanobiocatalyst with Fe(3+)-tannic acid film for one-pot starch hydrolysis
  publication-title: J Agric Food Chem
– volume: 20
  start-page: 3449
  issue: 5
  year: 2020
  end-page: 3458
  ident: CR1
  article-title: Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor
  publication-title: Nano Lett
– ident: CR19
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  end-page: 20
  ident: CR27
  article-title: Flax fiber–based polymer composites: a review
  publication-title: Adv Compos Hybrid Mater
– volume: 82
  start-page: 122
  year: 2020
  end-page: 129
  ident: CR40
  article-title: Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles
  publication-title: J Ind Eng Chem
– volume: 55
  start-page: 1280
  issue: 3
  year: 2020
  end-page: 1291
  ident: CR18
  article-title: Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor
  publication-title: J Mater Sci
– volume: 13
  start-page: 3048
  issue: 11
  year: 2020
  end-page: 3056
  ident: CR63
  article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation
  publication-title: Nano Res
– volume: 4
  start-page: 435
  issue: 3
  year: 2021
  end-page: 450
  ident: CR7
  article-title: Advances in transparent and stretchable strain sensors
  publication-title: Adv Compos Hybrid Mater
– volume: 178
  start-page: 159
  year: 2017
  end-page: 165
  ident: CR46
  article-title: Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength
  publication-title: Carbohydr Polym
– volume: 13
  start-page: 14778
  issue: 12
  year: 2021
  end-page: 14785
  ident: CR16
  article-title: Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications
  publication-title: ACS Appl Mater Interfaces
– volume: 425
  start-page: 131523
  year: 2021
  ident: CR72
  article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor
  publication-title: Chem Eng J
– volume: 4
  start-page: 459
  issue: 3
  year: 2021
  end-page: 468
  ident: CR22
  article-title: Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption
  publication-title: Adv Compos Hybrid Mater
– ident: CR32
– volume: 12
  start-page: 45373
  issue: 40
  year: 2020
  end-page: 45382
  ident: CR20
  article-title: Using stretchable PPy@PVA composites as a high-sensitivity strain sensor to monitor minute motion
  publication-title: ACS Appl Mater Interfaces
– volume: 332
  start-page: 113148
  year: 2021
  ident: CR69
  article-title: Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor
  publication-title: Sens Actuators A
– volume: 12
  start-page: 22212
  issue: 19
  year: 2020
  end-page: 22224
  ident: CR42
  article-title: Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition
  publication-title: ACS Appl Mater Interfaces
– volume: 425
  start-page: 130462
  year: 2021
  ident: CR43
  article-title: Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor
  publication-title: Chem Eng J
– volume: 255
  start-page: 117443
  year: 2021
  ident: CR48
  article-title: Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion
  publication-title: Carbohydr Polym
– volume: 9
  start-page: 20142
  issue: 23
  year: 2017
  end-page: 20149
  ident: CR60
  article-title: Enhancing the properties of conductive polymer hydrogels by freeze–thaw cycles for high-performance flexible supercapacitors
  publication-title: ACS Appl Mater Interfaces
– volume: 267
  start-page: 118207
  year: 2021
  ident: CR73
  article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors
  publication-title: Carbohyd Polym
– volume: 201
  start-page: 108356
  year: 2020
  ident: CR65
  article-title: Study on mussel-inspired tough TA/PANI@CNCs nanocomposite hydrogels with superior self-healing and self-adhesive properties for strain sensors
  publication-title: Compos B Eng
– volume: 32
  start-page: 8576
  issue: 19
  year: 2020
  end-page: 8586
  ident: CR25
  article-title: Preparation of tough double- and triple-network supermacroporous hydrogels through repeated cryogelation
  publication-title: Chem Mater
– volume: 20
  start-page: 4476
  issue: 12
  year: 2019
  end-page: 4484
  ident: CR62
  article-title: Superstrong and tough hydrogel through physical cross-linking and molecular alignment
  publication-title: Biomacromol
– volume: 295
  start-page: 159
  year: 2019
  end-page: 167
  ident: CR28
  article-title: Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection
  publication-title: Sens Actuators B Chem
– volume: 4
  start-page: 906
  issue: 4
  year: 2021
  end-page: 924
  ident: CR14
  article-title: Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors
  publication-title: Adv Compos Hybrid Mater
– volume: 5
  start-page: 1801018
  issue: 23
  year: 2018
  ident: CR26
  article-title: Tough particle-based double network hydrogels for functional solid surface coatings
  publication-title: Adv Mater Interfaces
– volume: 12
  start-page: 56
  issue: 1
  year: 2018
  end-page: 62
  ident: CR33
  article-title: Stretchable Ti C T MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range
  publication-title: ACS Nano
– volume: 8
  start-page: 22374
  issue: 34
  year: 2016
  end-page: 22381
  ident: CR51
  article-title: Piezoresistive sensor with high elasticity based on 3D hybrid network of Sponge@CNTs@Ag NPs
  publication-title: ACS Appl Mater Interfaces
– volume: 12
  start-page: 23207
  issue: 20
  year: 2020
  end-page: 23216
  ident: CR5
  article-title: Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short-and long-term plasticity operation
  publication-title: ACS Appl Mater Interfaces
– volume: 607
  start-page: 431
  year: 2021
  end-page: 439
  ident: CR68
  article-title: Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors
  publication-title: J Colloid Interface Sci
– volume: 66
  start-page: 1849
  issue: 18
  year: 2021
  end-page: 1857
  ident: CR55
  article-title: Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T MXene/paper for human-motion monitoring and E-skin
  publication-title: Sci Bull
– volume: 4
  start-page: 1215
  issue: 4
  year: 2021
  end-page: 1225
  ident: CR3
  article-title: Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator
  publication-title: Advanced Composites and Hybrid Materials
– volume: 628
  start-page: 127336
  year: 2021
  ident: CR71
  article-title: Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds
  publication-title: Colloids Surf A
– volume: 182
  start-page: 107623
  year: 2020
  ident: CR37
  article-title: Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties
  publication-title: Compos B Eng
– volume: 55
  start-page: 11779
  issue: 25
  year: 2020
  end-page: 11791
  ident: CR35
  article-title: Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors
  publication-title: J Mater Sci
– volume: 12
  start-page: 30896
  issue: 27
  year: 2020
  end-page: 30904
  ident: CR8
  article-title: Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-Skin with Four-dimensional resolution and application for detecting motion direction and airflow rate
  publication-title: ACS Appl Mater Interfaces
– volume: 438
  start-page: 135587
  year: 2022
  ident: CR54
  article-title: Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances
  publication-title: Chem Eng J
– volume: 420
  start-page: 129736
  year: 2021
  ident: CR11
  article-title: An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity
  publication-title: Chem Eng J
– volume: 13
  start-page: 1474
  issue: 1
  year: 2021
  end-page: 1485
  ident: CR9
  article-title: Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins
  publication-title: ACS Appl Mater Interfaces
– volume: 160
  start-page: 538
  year: 2020
  end-page: 547
  ident: CR29
  article-title: In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing
  publication-title: Int J Biol Macromol
– volume: 8
  start-page: 36999
  issue: 65
  year: 2018
  end-page: 37007
  ident: CR21
  article-title: Biocompatible, stretchable and mineral PVA–Gelatin–nHAP hydrogel for highly sensitive pressure sensors
  publication-title: RSC Adv
– volume: 4
  start-page: 306
  issue: 2
  year: 2021
  end-page: 316
  ident: CR24
  article-title: Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes
  publication-title: Adv Compos Hybrid Mater
– volume: 176
  start-page: 78
  year: 2021
  end-page: 86
  ident: CR38
  article-title: Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel
  publication-title: Int J Biol Macromol
– volume: 611
  start-page: 125805
  year: 2021
  ident: CR59
  article-title: Hydrogels based on physically cross-linked network with high mechanical property and recasting ability
  publication-title: Colloids Surf, A
– volume: 15
  start-page: 7765
  issue: 4
  year: 2021
  end-page: 7773
  ident: CR47
  article-title: Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors
  publication-title: ACS Nano
– volume: 31
  start-page: 2008006
  issue: 13
  year: 2021
  ident: CR56
  article-title: Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications
  publication-title: Adv Func Mater
– volume: 597
  start-page: 171
  year: 2021
  end-page: 181
  ident: CR15
  article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
  publication-title: J Colloid Interface Sci
– volume: 1
  start-page: 94
  issue: 1
  year: 2017
  end-page: 113
  ident: CR17
  article-title: Functional self-healing materials and their potential applications in biomedical engineering
  publication-title: Adv Compos Hybrid Mater
– volume: 2
  start-page: 57
  year: 2021
  end-page: 62
  ident: CR64
  article-title: Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels
  publication-title: Eng Regen
– volume: 394
  start-page: 124901
  year: 2020
  ident: CR36
  article-title: Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity
  publication-title: Chem Eng J
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  end-page: 286
  ident: CR31
  article-title: Graphene-based composite materials
  publication-title: Nature
– volume: 12
  start-page: 3209
  issue: 4
  year: 2018
  end-page: 3216
  ident: CR52
  article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor
  publication-title: ACS Nano
– volume: 166
  start-page: 1526
  year: 2021
  end-page: 1534
  ident: CR49
  article-title: Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor
  publication-title: Int J Biol Macromol
– volume: 642
  start-page: 128428
  year: 2022
  ident: CR45
  article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
  publication-title: Colloids Surf A
– volume: 160
  start-page: 538
  year: 2020
  ident: 531_CR29
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.05.181
– volume: 635
  start-page: 128091
  year: 2022
  ident: 531_CR30
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2021.128091
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  ident: 531_CR31
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 607
  start-page: 431
  year: 2021
  ident: 531_CR68
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.08.205
– ident: 531_CR32
  doi: 10.1007/s42114-021-00367-1
– volume: 6
  start-page: 2938
  issue: 8
  year: 2021
  ident: 531_CR6
  publication-title: ACS Sens
  doi: 10.1021/acssensors.1c00699
– volume: 9
  start-page: 20142
  issue: 23
  year: 2017
  ident: 531_CR60
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b05963
– ident: 531_CR39
– volume: 2
  start-page: 57
  year: 2021
  ident: 531_CR64
  publication-title: Eng Regen
– volume: 1
  start-page: 94
  issue: 1
  year: 2017
  ident: 531_CR17
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-017-0009-y
– volume: 12
  start-page: 30896
  issue: 27
  year: 2020
  ident: 531_CR8
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c02640
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  ident: 531_CR27
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00246-9
– volume: 267
  start-page: 118207
  year: 2021
  ident: 531_CR73
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2021.118207
– volume: 4
  start-page: 435
  issue: 3
  year: 2021
  ident: 531_CR7
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00292-3
– volume: 420
  start-page: 129736
  year: 2021
  ident: 531_CR11
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129736
– volume: 178
  start-page: 159
  year: 2017
  ident: 531_CR46
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2017.09.030
– volume: 31
  start-page: 1807101
  issue: 7
  year: 2018
  ident: 531_CR67
  publication-title: Adv Mater
  doi: 10.1002/adma.201807101
– volume: 182
  start-page: 107623
  year: 2020
  ident: 531_CR37
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2019.107623
– volume: 597
  start-page: 171
  year: 2021
  ident: 531_CR15
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.04.001
– volume: 31
  start-page: 2008006
  issue: 13
  year: 2021
  ident: 531_CR56
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202008006
– volume: 201
  start-page: 108356
  year: 2020
  ident: 531_CR65
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2020.108356
– volume: 13
  start-page: 1474
  issue: 1
  year: 2021
  ident: 531_CR9
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c18405
– volume: 255
  start-page: 117443
  year: 2021
  ident: 531_CR48
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.117443
– volume: 628
  start-page: 127336
  year: 2021
  ident: 531_CR71
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2021.127336
– volume: 30
  start-page: 2003430
  issue: 35
  year: 2020
  ident: 531_CR57
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202003430
– volume: 4
  start-page: 459
  issue: 3
  year: 2021
  ident: 531_CR22
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00289-y
– volume: 611
  start-page: 125805
  year: 2021
  ident: 531_CR59
  publication-title: Colloids Surf, A
  doi: 10.1016/j.colsurfa.2020.125805
– volume: 15
  start-page: 7765
  issue: 4
  year: 2021
  ident: 531_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01751
– volume: 20
  start-page: 3449
  issue: 5
  year: 2020
  ident: 531_CR1
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c00372
– volume: 118
  year: 2021
  ident: 531_CR50
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2021.104452
– volume: 9
  start-page: 22082
  issue: 38
  year: 2021
  ident: 531_CR13
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA05586K
– volume: 5
  start-page: 1801018
  issue: 23
  year: 2018
  ident: 531_CR26
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.201801018
– volume: 13
  start-page: 19211
  issue: 16
  year: 2021
  ident: 531_CR2
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c22938
– volume: 176
  start-page: 78
  year: 2021
  ident: 531_CR38
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.02.055
– volume: 13
  start-page: 3048
  issue: 11
  year: 2020
  ident: 531_CR63
  publication-title: Nano Res
  doi: 10.1007/s12274-020-2970-y
– volume: 55
  start-page: 11779
  issue: 25
  year: 2020
  ident: 531_CR35
  publication-title: J Mater Sci
  doi: 10.1007/s10853-020-04833-x
– volume: 12
  start-page: 23207
  issue: 20
  year: 2020
  ident: 531_CR5
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03904
– volume: 332
  start-page: 113148
  year: 2021
  ident: 531_CR69
  publication-title: Sens Actuators A
  doi: 10.1016/j.sna.2021.113148
– volume: 4
  start-page: 574
  issue: 3
  year: 2021
  ident: 531_CR10
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00262-9
– volume: 66
  start-page: 1849
  issue: 18
  year: 2021
  ident: 531_CR55
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2021.04.041
– volume: 12
  start-page: 56
  issue: 1
  year: 2018
  ident: 531_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06251
– volume: 295
  start-page: 159
  year: 2019
  ident: 531_CR28
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2019.05.082
– volume: 12
  start-page: 6442
  issue: 5
  year: 2020
  ident: 531_CR70
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b19721
– volume: 82
  start-page: 122
  year: 2020
  ident: 531_CR40
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2019.10.003
– volume: 20
  start-page: 4476
  issue: 12
  year: 2019
  ident: 531_CR62
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.9b01223
– volume: 394
  start-page: 124901
  year: 2020
  ident: 531_CR36
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124901
– ident: 531_CR19
  doi: 10.1007/s42114-022-00435-0
– volume: 91
  start-page: 106695
  year: 2022
  ident: 531_CR41
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106695
– volume: 4
  start-page: 906
  issue: 4
  year: 2021
  ident: 531_CR14
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00358-2
– volume: 8
  start-page: 22374
  issue: 34
  year: 2016
  ident: 531_CR51
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b04971
– volume: 12
  start-page: 3209
  issue: 4
  year: 2018
  ident: 531_CR52
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06909
– volume: 642
  start-page: 128428
  year: 2022
  ident: 531_CR45
  publication-title: Colloids Surf A
  doi: 10.1016/j.colsurfa.2022.128428
– volume: 13
  start-page: 64
  issue: 1
  year: 2021
  ident: 531_CR4
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-021-00592-9
– volume: 208
  year: 2021
  ident: 531_CR12
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2021.112088
– volume: 66
  start-page: 8753
  issue: 33
  year: 2018
  ident: 531_CR61
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.8b02097
– volume: 4
  start-page: 514
  issue: 3
  year: 2021
  ident: 531_CR34
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00226-z
– volume: 4
  start-page: 306
  issue: 2
  year: 2021
  ident: 531_CR24
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00223-2
– volume: 4
  start-page: 1215
  issue: 4
  year: 2021
  ident: 531_CR3
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-021-00364-4
– volume: 8
  start-page: 36999
  issue: 65
  year: 2018
  ident: 531_CR21
  publication-title: RSC Adv
  doi: 10.1039/C8RA06193A
– volume: 12
  start-page: 45373
  issue: 40
  year: 2020
  ident: 531_CR20
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c14503
– volume: 4
  start-page: 707
  issue: 3
  year: 2021
  ident: 531_CR23
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-021-00307-z
– volume: 275
  start-page: 118697
  year: 2022
  ident: 531_CR58
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2021.118697
– volume: 438
  start-page: 135587
  year: 2022
  ident: 531_CR54
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.135587
– volume: 135
  start-page: 561
  year: 2019
  ident: 531_CR66
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.05.091
– volume: 425
  start-page: 130462
  year: 2021
  ident: 531_CR43
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.130462
– volume: 401
  start-page: 126129
  year: 2020
  ident: 531_CR44
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126129
– volume: 420
  start-page: 127720
  year: 2021
  ident: 531_CR53
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127720
– volume: 425
  start-page: 131523
  year: 2021
  ident: 531_CR72
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.131523
– volume: 12
  start-page: 22212
  issue: 19
  year: 2020
  ident: 531_CR42
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c05819
– volume: 32
  start-page: 8576
  issue: 19
  year: 2020
  ident: 531_CR25
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.0c02911
– volume: 166
  start-page: 1526
  year: 2021
  ident: 531_CR49
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.11.032
– volume: 13
  start-page: 14778
  issue: 12
  year: 2021
  ident: 531_CR16
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c02615
– volume: 55
  start-page: 1280
  issue: 3
  year: 2020
  ident: 531_CR18
  publication-title: J Mater Sci
  doi: 10.1007/s10853-019-04101-7
SSID ssj0001916212
Score 2.58107
Snippet Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1976
SubjectTerms Ceramics
Chemistry and Materials Science
Composites
Glass
Materials Engineering
Materials Science
Natural Materials
Original Research
Polymer Sciences
Title Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
URI https://link.springer.com/article/10.1007/s42114-022-00531-1
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iFy-iqDh_kYM3LWvaJE2PMhxDmCcHu5U0SeegNqPdxP4z_q3mtd1kIgMvPYTXHvK9vryX9733ELojEafETyMvhjaXVHEf7GDsiZBLRXngt9yc8QsfTejzlE27NjlQC_Mrf9-vqItQqAec80ZfPBfpHDASctDgAR_83Kc4P6dNbgYMhJ3d7Wpk_v7M9jm0nQRtzpbhMTrqnEL82KJ4gvZMcYq-gIKR17gCijkYJVw18xyaBVtWGK5Q3UMbbBemBRKXUCuAoWYEpG0xw-Ops2YeMMeBnmU0Xti8_pgXdY5lOx63X1k9X71jJcvUftYwU7rO4UJ_ldvKYG1XaW5w0fLF8VutSzsz-RmaDJ9eByOvm6bgqSAmS08Y5xwEvsqEIYFmGY9CIzlnREK6Jc6c6yZgWchMCqVorOIoZTHLXAgbUW3Cc7Rf2MJcIJxpCulTIaQ2LnxRIgwjRrROmVSZz1gPkfXeJqprNQ47lCebJskNHonDI2nwSEgP3W_eWbSNNnZKP6whS7qfrtohfvk_8St0GDSqAlSya7S_LFfmxvkey_S2Ubpv7tDRaw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWBBIEC88cAGUePEdpwRVVTlUSaQukWO7UClEFdJi8if4bfiSwIIhCqxZLAuGfxdzne-7-4QOiMRp8RPIy-GNpdUcR_sYOyJkEtFeeC33JzxPR890psJm3RtcqAW5lf-vl9RF6FQDzjnjb54LtJZpS5SBvregA--71Ocn9MmNwMGws7udjUyf3_m5zn0MwnanC3DTbTROYX4skVxC62YYhu9AwUjr3EFFHMwSrhq5jk0C7asMFyhuoc22M5MCyQuoVYAQ80ISNviCY8nzpp5wBwHepbReGbz-nVa1DmW7XjcfmX1dPGClSxT-1bDTOk6hwv9RW4rg7VdpLnBRcsXx8-1Lu2TyXfQ4_DqYTDyumkKngpiMveEcc5B4KtMGBJolvEoNJJzRiSkW-LMuW4CloXMpFCKxiqOUhazzIWwEdUm3EW9whZmD-FMU0ifCiG1ceGLEmEYMaJ1yqTKfMb2Efnc20R1rcZhh_Lkq0lyg0fi8EgaPBKyj86_3pm1jTaWSl98QpZ0P121RPzgf-KnaG30ML5L7q7vbw_RetCoDdDKjlBvXi7MsfND5ulJo4Af6l7UWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIF5EUfFtDt60bB9Jmh5ldfG14kFhbyVNUhVqs7S7Yv-Mv9VM2l0VRPDSwzDtITOdzOObGYSOg5iRwM9iL4Exl0QyH-xg4vGICUlY6LfYnOEdu3wk1yM6-tbF79Dus5Jk29MAU5rKSW-s8t688Y3YuIV4gER3WuTZ-GfJRiquUNtn_a8siyW1Jc-QArO1xl3nzO-f-Xk7_SyNuhtnsIZWO1cRn7WyXUcLutxAHwDMKBpcA_AcTBWu3ZYHRzBVjSGxah9KYzPWrXhxBR0EGDpJgNuUT3g4sjbOAzw5gLa0wmNTNG8vZVNg0S7N7dVGvUxfsRRVZt4b2DTdFJDmnxam1liZaVZoXLYocvzcqMo86WITPQ4uHvqXXrdjwZNhEkw8rq3LEPoy5zoIFc1ZHGnBGA0EFGGS3Dp0HMhc5IJLSRKZxBlNaG4D25goHW2hxdKUehvhXBEoqnIulLZBjeRRFNNAqYwKmfuU7qBgdrap7AaQwwkV6Xx0spNHauWROnmkwQ46mb8zbsdv_Ml9OhNZ2v2K9R_su_9jP0LL9-eD9Pbq7mYPrYROawBrto8WJ9VUH1jnZJIdOv37BOWJ3J8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+strain+sensors+with+wide+operation+range+from+strong+MXene-composited+polyvinyl+alcohol%2Fsodium+carboxymethylcellulose+double+network+hydrogel&rft.jtitle=Advanced+composites+and+hybrid+materials&rft.au=Kong%2C+Deshuo&rft.au=El-Bahy%2C+Zeinhom+M.&rft.au=Algadi%2C+Hassan&rft.au=Li%2C+Tuo&rft.date=2022-09-01&rft.issn=2522-0128&rft.eissn=2522-0136&rft.volume=5&rft.issue=3&rft.spage=1976&rft.epage=1987&rft_id=info:doi/10.1007%2Fs42114-022-00531-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42114_022_00531_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-0128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-0128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-0128&client=summon