Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor fr...
Saved in:
Published in | Advanced composites and hybrid materials Vol. 5; no. 3; pp. 1976 - 1987 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor from MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose (PVA/CMC) DN hydrogel which is further reinforced by tannic acid (TA). In this PCTM (short for PVA/CMC/TA/MXene hydrogel), PVA serves as the flexible backbone, CMC mainly functions as the rigid subnetwork skeleton in the hydrogel, and naturally occurring TA further enhances the mechanical properties of the hydrogel via tight hydrogen bonds between TA and the polymer chains of PVA and CMC. MXene is utilized to build the conductive path, and its abundant hydrophilic functional groups help to achieve a uniform distribution in the hydrogel, which is beneficial for achieving high sensitivity and wide operation window. The unique multiple synergetic networks of PCTM impart promising mechanical strength (a fracture tensile strength of 1.8 MPa at a fracture strain of 740%) and high sensitivity with a wide detection window (a gauge factor of 2.9 at a strain range of 0–700%) as well as long-term durability over 3000 continuous cycles. Moreover, the sensor also exhibits accurate response to different types of human motions. As a proof of concept, a PCTM sensor is fabricated for visual detection of the pressure, suggesting its promising potentials for stretchable electronic sensors.
Graphical abstract |
---|---|
AbstractList | Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent mechanical strength, high sensitivity, and wide operation window still remains a challenge. This paper fabricates a high-performance strain sensor from MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose (PVA/CMC) DN hydrogel which is further reinforced by tannic acid (TA). In this PCTM (short for PVA/CMC/TA/MXene hydrogel), PVA serves as the flexible backbone, CMC mainly functions as the rigid subnetwork skeleton in the hydrogel, and naturally occurring TA further enhances the mechanical properties of the hydrogel via tight hydrogen bonds between TA and the polymer chains of PVA and CMC. MXene is utilized to build the conductive path, and its abundant hydrophilic functional groups help to achieve a uniform distribution in the hydrogel, which is beneficial for achieving high sensitivity and wide operation window. The unique multiple synergetic networks of PCTM impart promising mechanical strength (a fracture tensile strength of 1.8 MPa at a fracture strain of 740%) and high sensitivity with a wide detection window (a gauge factor of 2.9 at a strain range of 0–700%) as well as long-term durability over 3000 continuous cycles. Moreover, the sensor also exhibits accurate response to different types of human motions. As a proof of concept, a PCTM sensor is fabricated for visual detection of the pressure, suggesting its promising potentials for stretchable electronic sensors.
Graphical abstract |
Author | Huang, Mina Wei, Huige Nassan, Mohamed A. Faheim, Abeer A. Li, Ang El-Bahy, Zeinhom M. Li, Jiongru Kong, Deshuo Algadi, Hassan Cui, Dapeng Xu, Cuixia El-Bahy, Salah M. Li, Tuo |
Author_xml | – sequence: 1 givenname: Deshuo surname: Kong fullname: Kong, Deshuo organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology – sequence: 2 givenname: Zeinhom M. surname: El-Bahy fullname: El-Bahy, Zeinhom M. organization: Department of Chemistry, Faculty of Science, Al-Azhar University – sequence: 3 givenname: Hassan surname: Algadi fullname: Algadi, Hassan organization: Department of Electrical Engineering, Faculty of Engineering, Najran University – sequence: 4 givenname: Tuo surname: Li fullname: Li, Tuo organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology – sequence: 5 givenname: Salah M. surname: El-Bahy fullname: El-Bahy, Salah M. organization: Department of Chemistry, Turabah University College, Taif University – sequence: 6 givenname: Mohamed A. surname: Nassan fullname: Nassan, Mohamed A. organization: Department of Clinical Laboratory Sciences, Turabah University College, Taif University – sequence: 7 givenname: Jiongru surname: Li fullname: Li, Jiongru organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology – sequence: 8 givenname: Abeer A. surname: Faheim fullname: Faheim, Abeer A. organization: Department of Chemistry, Faculty of Science, Al-Azhar University – sequence: 9 givenname: Ang surname: Li fullname: Li, Ang organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology – sequence: 10 givenname: Cuixia surname: Xu fullname: Xu, Cuixia organization: Analytical Development Department, Aucta Pharmaceuticals Inc – sequence: 11 givenname: Mina surname: Huang fullname: Huang, Mina organization: College of Materials Science and Engineering, Taiyuan University of Science and Technology – sequence: 12 givenname: Dapeng surname: Cui fullname: Cui, Dapeng email: dapeng@tust.edu.cn organization: College of Light Industry Science and Engineering, Tianjin University of Science and Technology – sequence: 13 givenname: Huige orcidid: 0000-0003-3977-1147 surname: Wei fullname: Wei, Huige email: huigewei@tust.edu.cn organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology |
BookMark | eNp9kE1OwzAQRi1UJErpBVj5AqG2879EFVCkIjYgsYtcZ9K4OJ7KTltyGc5K0iIWLLoZj0d-38jvmowsWiDklrM7zlg685HgPAqYEAFjccgDfkHGIh6uPExGf73IrsjU-w1jjOc8EVyMyfdCr2vTUQ_W61bvgfrWSW2PA3SeHnRb96UEiltwstVoqZN2DbRy2Ayv0a7pywdYCBQ2W-xjoKRbNN1e285QaRTWaGYeS71rqJJuhV9dA23dGQXG7Ax6oCXuVgaohfaA7pPWXelwDeaGXFbSeJj-nhPy_vjwNl8Ey9en5_n9MlAi522QQRozwVSVARdlXCVpCDJJYi57AyKv4ohlwziTlcyUinKVp6s4j6ssTNOohHBCxClXOfTeQVVsnW6k6wrOikFycZJc9JKLo-SC91D2D1K6PRoaFJrzaHhCfb-nl-mKDe6c7b94jvoBOuaYrQ |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3333695 crossref_primary_10_1515_ntrev_2023_0119 crossref_primary_10_1016_j_cej_2023_143009 crossref_primary_10_1021_acsmacrolett_3c00149 crossref_primary_10_1016_j_ijbiomac_2024_135755 crossref_primary_10_1016_j_polymer_2023_126248 crossref_primary_10_1007_s42114_023_00638_z crossref_primary_10_1016_j_cej_2024_153173 crossref_primary_10_1016_j_ceramint_2023_08_274 crossref_primary_10_1007_s42114_023_00731_3 crossref_primary_10_1007_s42114_024_00987_3 crossref_primary_10_1016_j_colsurfa_2025_136367 crossref_primary_10_1016_j_compstruct_2023_116886 crossref_primary_10_1007_s42114_023_00770_w crossref_primary_10_1039_D2QM01346K crossref_primary_10_1016_j_carbpol_2023_120827 crossref_primary_10_1021_acsapm_2c01376 crossref_primary_10_1021_acsapm_3c00771 crossref_primary_10_1007_s10854_022_09714_4 crossref_primary_10_1016_j_ijbiomac_2023_125686 crossref_primary_10_1016_j_jece_2025_115335 crossref_primary_10_1007_s10904_023_02719_4 crossref_primary_10_1016_j_ijbiomac_2023_126018 crossref_primary_10_1002_admt_202400355 crossref_primary_10_1039_D2MA00620K crossref_primary_10_1016_j_jcis_2022_12_101 crossref_primary_10_1016_j_mser_2025_100925 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_1007_s12598_024_03157_y crossref_primary_10_1016_j_carbpol_2023_120678 crossref_primary_10_1021_acsami_4c09483 crossref_primary_10_1021_acsami_2c10290 crossref_primary_10_1007_s40820_023_01084_8 crossref_primary_10_1039_D3TA08065J crossref_primary_10_1007_s42114_023_00652_1 crossref_primary_10_1021_acsapm_2c02215 crossref_primary_10_3390_gels9020083 crossref_primary_10_1016_j_indcrop_2023_116672 crossref_primary_10_1021_acsami_4c02456 crossref_primary_10_1016_j_cej_2022_141198 crossref_primary_10_3390_nano14050447 crossref_primary_10_1515_gps_2023_0151 crossref_primary_10_1016_j_sna_2024_115843 crossref_primary_10_1016_j_carbpol_2024_122461 crossref_primary_10_1007_s40820_024_01398_1 crossref_primary_10_1016_j_ijbiomac_2024_129859 crossref_primary_10_1007_s10854_024_12602_8 crossref_primary_10_1016_j_porgcoat_2023_108175 crossref_primary_10_1021_acsapm_3c00987 crossref_primary_10_1021_acssensors_4c01428 crossref_primary_10_1016_j_coco_2024_102245 crossref_primary_10_1016_j_ijbiomac_2024_130291 crossref_primary_10_1016_j_matt_2023_02_011 crossref_primary_10_1007_s42114_023_00754_w crossref_primary_10_1021_acsami_3c12930 crossref_primary_10_1002_pol_20240209 crossref_primary_10_1021_acsaelm_3c00651 crossref_primary_10_1007_s42114_023_00711_7 crossref_primary_10_1016_j_cej_2025_159813 crossref_primary_10_1016_j_compstruct_2023_117231 crossref_primary_10_1016_j_envpol_2022_120826 crossref_primary_10_1007_s42114_024_01083_2 crossref_primary_10_1088_1361_6528_ac97f1 crossref_primary_10_3390_cryst15020130 crossref_primary_10_1016_j_synthmet_2024_117756 crossref_primary_10_1021_acsami_3c06015 crossref_primary_10_1039_D4TA04996A crossref_primary_10_1021_acsapm_5c00340 crossref_primary_10_1016_j_ijbiomac_2024_131243 crossref_primary_10_1016_j_carbpol_2024_122973 crossref_primary_10_1016_j_apmt_2023_101803 crossref_primary_10_1021_acsapm_4c00512 crossref_primary_10_1021_acsnano_3c00573 crossref_primary_10_1021_acsapm_4c03069 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1016_j_aej_2023_04_066 crossref_primary_10_1016_j_sna_2024_115981 crossref_primary_10_1002_admt_202201767 crossref_primary_10_1007_s42114_023_00821_2 crossref_primary_10_1016_j_jcis_2024_09_075 crossref_primary_10_3390_mi14051005 crossref_primary_10_1016_j_cis_2024_103271 crossref_primary_10_1016_j_cej_2023_143564 crossref_primary_10_1016_j_ijbiomac_2022_10_266 crossref_primary_10_1016_j_sna_2023_114421 crossref_primary_10_1039_D2TC03364J crossref_primary_10_1039_D3NJ01777J crossref_primary_10_1002_pat_6154 crossref_primary_10_1021_acsnano_4c08258 crossref_primary_10_1016_j_mtphys_2023_101178 crossref_primary_10_1007_s12274_023_5647_5 crossref_primary_10_1007_s42114_023_00658_9 crossref_primary_10_1016_j_eurpolymj_2023_112703 crossref_primary_10_1364_OPTCON_500786 crossref_primary_10_1002_aesr_202300231 crossref_primary_10_1007_s42114_024_01137_5 crossref_primary_10_1016_j_desal_2023_116910 crossref_primary_10_1002_admt_202202029 crossref_primary_10_1016_j_indcrop_2024_119996 crossref_primary_10_1021_acsami_4c00569 crossref_primary_10_1016_j_ijbiomac_2023_128757 crossref_primary_10_1016_j_molliq_2025_126938 crossref_primary_10_1002_advs_202301713 crossref_primary_10_1002_smll_202404119 crossref_primary_10_1016_j_partic_2023_02_020 crossref_primary_10_1007_s40820_024_01349_w crossref_primary_10_1016_j_carbpol_2024_122633 crossref_primary_10_1016_j_cej_2024_156596 crossref_primary_10_1016_j_ijbiomac_2024_134694 crossref_primary_10_1007_s42114_022_00596_y crossref_primary_10_1021_acsaelm_4c02125 crossref_primary_10_1016_j_giant_2023_100234 crossref_primary_10_1016_j_ijbiomac_2024_136115 crossref_primary_10_1007_s42114_023_00783_5 crossref_primary_10_1002_smm2_1160 crossref_primary_10_1016_j_matchemphys_2023_127808 crossref_primary_10_1021_acsaelm_4c00985 crossref_primary_10_1016_j_cej_2024_154731 crossref_primary_10_1039_D3TC01866K crossref_primary_10_1016_j_ijbiomac_2023_124008 crossref_primary_10_1007_s40843_024_3143_1 crossref_primary_10_1002_aoc_7160 crossref_primary_10_1039_D3MA00095H crossref_primary_10_3390_md22120546 crossref_primary_10_1016_j_coco_2024_102208 crossref_primary_10_1016_j_cej_2023_143388 crossref_primary_10_1007_s12274_023_5727_6 crossref_primary_10_1039_D3CP04319C crossref_primary_10_1039_D4TB01255K crossref_primary_10_1016_j_compositesa_2023_107756 crossref_primary_10_1016_j_cej_2023_143305 crossref_primary_10_1007_s10853_022_08113_8 crossref_primary_10_1021_acsami_4c12419 crossref_primary_10_1021_acs_biomac_3c00442 crossref_primary_10_1007_s10853_022_07956_5 crossref_primary_10_1007_s42765_023_00344_x crossref_primary_10_1039_D3TC01324C crossref_primary_10_1016_j_cej_2022_141205 crossref_primary_10_3389_fchem_2024_1376799 crossref_primary_10_1016_j_mtcomm_2024_109401 crossref_primary_10_1520_JTE20220442 crossref_primary_10_1016_j_nanoen_2024_109701 crossref_primary_10_1039_D3QI00819C crossref_primary_10_1016_j_sna_2024_115258 crossref_primary_10_12677_nat_2024_1412003 crossref_primary_10_1016_j_indcrop_2024_118326 crossref_primary_10_1016_j_compositesb_2023_110759 crossref_primary_10_1016_j_indcrop_2024_118573 crossref_primary_10_1039_D4TA00748D crossref_primary_10_1016_j_biomaterials_2024_123036 crossref_primary_10_1007_s42114_023_00684_7 crossref_primary_10_1002_macp_202200272 crossref_primary_10_3390_coatings13050843 crossref_primary_10_1039_D3TC03024E crossref_primary_10_1080_16583655_2023_2265631 crossref_primary_10_1007_s12221_023_00179_8 crossref_primary_10_1007_s42823_023_00540_0 crossref_primary_10_1016_j_nanoen_2024_110484 crossref_primary_10_1002_smll_202404011 crossref_primary_10_1021_acsaelm_4c00288 crossref_primary_10_1021_acs_biomac_4c00960 crossref_primary_10_1021_acsami_2c21566 crossref_primary_10_1007_s42114_023_00745_x crossref_primary_10_1021_acsami_4c02354 crossref_primary_10_1039_D4TC01470G crossref_primary_10_1007_s42114_023_00653_0 crossref_primary_10_1021_acsami_2c17904 crossref_primary_10_1007_s10967_024_09849_0 crossref_primary_10_1021_acsapm_2c01546 crossref_primary_10_1021_acsami_2c13704 crossref_primary_10_1016_j_jallcom_2024_175034 |
Cites_doi | 10.1016/j.ijbiomac.2020.05.181 10.1016/j.colsurfa.2021.128091 10.1038/nature04969 10.1016/j.jcis.2021.08.205 10.1007/s42114-021-00367-1 10.1021/acssensors.1c00699 10.1021/acsami.7b05963 10.1007/s42114-017-0009-y 10.1021/acsami.0c02640 10.1007/s42114-021-00246-9 10.1016/j.carbpol.2021.118207 10.1007/s42114-021-00292-3 10.1016/j.cej.2021.129736 10.1016/j.carbpol.2017.09.030 10.1002/adma.201807101 10.1016/j.compositesb.2019.107623 10.1016/j.jcis.2021.04.001 10.1002/adfm.202008006 10.1016/j.compositesb.2020.108356 10.1021/acsami.0c18405 10.1016/j.carbpol.2020.117443 10.1016/j.colsurfa.2021.127336 10.1002/adfm.202003430 10.1007/s42114-021-00289-y 10.1016/j.colsurfa.2020.125805 10.1021/acsnano.1c01751 10.1021/acs.nanolett.0c00372 10.1016/j.jmbbm.2021.104452 10.1039/D1TA05586K 10.1002/admi.201801018 10.1021/acsami.0c22938 10.1016/j.ijbiomac.2021.02.055 10.1007/s12274-020-2970-y 10.1007/s10853-020-04833-x 10.1021/acsami.0c03904 10.1016/j.sna.2021.113148 10.1007/s42114-021-00262-9 10.1016/j.scib.2021.04.041 10.1021/acsnano.7b06251 10.1016/j.snb.2019.05.082 10.1021/acsami.9b19721 10.1016/j.jiec.2019.10.003 10.1021/acs.biomac.9b01223 10.1016/j.cej.2020.124901 10.1007/s42114-022-00435-0 10.1016/j.nanoen.2021.106695 10.1007/s42114-021-00358-2 10.1021/acsami.6b04971 10.1021/acsnano.7b06909 10.1016/j.colsurfa.2022.128428 10.1007/s40820-021-00592-9 10.1016/j.colsurfb.2021.112088 10.1021/acs.jafc.8b02097 10.1007/s42114-021-00226-z 10.1007/s42114-021-00223-2 10.1007/s42114-021-00364-4 10.1039/C8RA06193A 10.1021/acsami.0c14503 10.1007/s42114-021-00307-z 10.1016/j.carbpol.2021.118697 10.1016/j.cej.2022.135587 10.1016/j.ijbiomac.2019.05.091 10.1016/j.cej.2021.130462 10.1016/j.cej.2020.126129 10.1016/j.cej.2020.127720 10.1016/j.cej.2021.131523 10.1021/acsami.0c05819 10.1021/acs.chemmater.0c02911 10.1016/j.ijbiomac.2020.11.032 10.1021/acsami.1c02615 10.1007/s10853-019-04101-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s42114-022-00531-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2522-0136 |
EndPage | 1987 |
ExternalDocumentID | 10_1007_s42114_022_00531_1 |
GrantInformation_xml | – fundername: Young Elite Scientists Sponsorship Program by Tianjin grantid: TJSQNTJ-2018-03 funderid: http://dx.doi.org/10.13039/501100019005 – fundername: National Natural Science Foundation of China grantid: 51703162 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Taif University Researchers Supporting Project number grantid: TURSP-2020/135 |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AAJSJ AASML AATNV AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACGFS ACHSB ACMLO ACOKC ACPIV ACULB ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA C6C CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 HG6 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABEEZ ABFSG ACSTC AEZWR AFDZB AFGXO AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-8e75020cf8e12d5f673ea6651a01329f5408d5f68afa8cc49c97b595f83774de3 |
IEDL.DBID | C6C |
ISSN | 2522-0128 |
IngestDate | Tue Jul 01 04:33:14 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Fri Feb 21 02:44:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Wide operation window High sensitivity Stretchable electronic sensors Double network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-8e75020cf8e12d5f673ea6651a01329f5408d5f68afa8cc49c97b595f83774de3 |
ORCID | 0000-0003-3977-1147 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1007_s42114_022_00531_1 crossref_citationtrail_10_1007_s42114_022_00531_1 springer_journals_10_1007_s42114_022_00531_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Advanced composites and hybrid materials |
PublicationTitleAbbrev | Adv Compos Hybrid Mater |
PublicationYear | 2022 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Yu, Yuk, Parada, Wu, Liu, Nabzdyk, Youcef-Toumi, Zang, Zhao (CR67) 2018; 31 Takahashi, Shimano, Okazaki, Kurokawa, Nakajima, Nonoyama, King, Gong (CR26) 2018; 5 Yang, Li, Zhang, Lai, Zeng (CR43) 2021; 425 CR39 Zhang, Lu, Lu, Zhang, Zhao, Ma, Ma, Wang (CR69) 2021; 332 Yan, Zhou, Fu (CR65) 2020; 201 Wei, Liu, Liu, Liu, Zheng, Pei, Tang (CR66) 2019; 135 Han, Lv, Ran, Dai, Li, Si (CR38) 2021; 176 Wei, Zhu, Luo, Huang, Li, Yu (CR35) 2020; 55 CR32 Ma, Xie, Yang, Yu, Sun, Zhang, Yang, Kimura, Hou, Guo, Du (CR14) 2021; 4 Zhao, Zhang, Yang, Du, Zhang (CR13) 2021; 9 Yin, Li, Xie, Wu, Zou, Huang, Wang (CR45) 2022; 642 Li, Chen, Chen, Huang, Tian, Wan, He, Zhang (CR46) 2017; 178 Zhang, Han, Xu, Zhang, Lu, Nie, Du, Zhu, Huang (CR1) 2020; 20 He, Yuan (CR9) 2021; 13 Gu, Gao, Zhou, Du, Naik, Guo (CR22) 2021; 4 Hu, Gao, Jiang, Zeng, Zeng, Zhu, Xu, Sun (CR34) 2021; 4 Ma, Yue, Zhang, Cheng, Zhao, Rao, Luo, Wang, Jiang, Liu, Liu, Gao (CR52) 2018; 12 Jing, Shi, Guoab, Guan, Fu, Cui (CR59) 2021; 611 Li, Jin, Han, Li, Wang, Lin, Zhu (CR2) 2021; 13 Li, Li, Chang, Wu, Liu, Wang, Yao, Yu (CR63) 2020; 13 Feng, Hou, Cui, Sun, Sadik, Wu, Zhou (CR64) 2021; 2 Zhang, Liu, Shi, Liu, Yue, Wang, Ma, Wen, Li, Long, Zou, Gao (CR51) 2016; 8 Li, Li, Fan, Qi, Qu, Tian (CR16) 2021; 13 Chen, Huang, Ma, Lei (CR17) 2017; 1 Cai, Shen, Ge, Zhang, Jin, Huang, Shao, Yang, Dong (CR33) 2018; 12 Wang, Qu, Wang, Yu (CR12) 2021; 208 Peng, Yan, Li, Lan, Shi, Ran (CR18) 2020; 55 Li, He, Li, Chao, Li, Wan, Zhang (CR47) 2021; 15 Hu, Zhong, Yang, Fu (CR37) 2020; 182 Wang, Li, Yu, Yan, Tang, Sun, Zeng, Lin (CR48) 2021; 255 Liu, Li, Qin, Mi, Li, Zheng, Liu, Li, Liu (CR3) 2021; 4 Abouzeid, Khiari, Salama, Diab, Beneventi, Dufresne (CR29) 2020; 160 Zheng, Yin, Zhao, Liu, Zhang, Shi, Zhang, Liu, Shen (CR53) 2021; 420 Li, Lu, Zhang, Ma (CR60) 2017; 9 Wei, Kong, Li, Xue, Wang, Cui, Huang, Wang, Hu, Wan, Yang (CR6) 2021; 6 Li, Li, Zhang, Cheng, Fei, Lu (CR11) 2021; 420 Chang, Chen, Chen, Zhu, Guo (CR7) 2021; 4 Li, Tu, Long, Zhang, Jiang, Chen, Wang, Min (CR49) 2021; 166 Liu, Chen, Zheng, Zhang, Zhao, Wang, Pan, Liu, Shen (CR56) 2021; 31 Li, Wang, Lin, Cheng, Han, Yuan, Jia (CR30) 2022; 635 Zhang, Yin, Zheng, Li, Liu, Liu, Shen (CR54) 2022; 438 Bian, Sun, Cui, Ren, Lin, Feng, Jia (CR61) 2018; 66 CR19 Li, Yang, Liu, Chen, Qian, Han, Han (CR71) 2021; 628 Jiao, Lu, Lu, Yue, Xu, Xiao, Li, Han (CR15) 2021; 597 Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (CR73) 2021; 267 Chen, Li, Ma, Minus, Benson, Lu, Wang, Ling, Zhu (CR62) 2019; 20 Ly, Park (CR40) 2020; 82 Ye, Zhang, Chen, Han, Jiang (CR57) 2020; 30 Hu, Wu, Yang, Zhou, Hui, Liu, Xu, Ding (CR58) 2022; 275 Bu, Shen, Yang, Yang, Zhao, Liu, Zheng, Liu, Shen (CR55) 2021; 66 More (CR27) 2021; 5 Chen, Liu, Li, Sun, Liu, Pang, Liu, Zhou (CR8) 2020; 12 Li, Zhou, Li, Jin, Liu, Lai, Wu, Chen, Ma (CR68) 2021; 607 Jiang, Hu, Xu, Chen, Chang, Zhu, Li, Guo (CR10) 2021; 4 Xiao, Qi, Qu, Shi, Cheng, Sun, Yuan, Huang, Pan, Guo (CR24) 2021; 4 Qu, Wang, Zhao, Huang, Wang, Shao, Wang, Dong (CR72) 2021; 425 Gao, Zhao, Zhang, An, Xu, Xun, Zhao, Ouyang, Zhang, Liao, Wang (CR41) 2022; 91 Shi, Han, Chang, Song, Hou, Chen (CR20) 2020; 12 Jing, Li, Mi, Liu, Feng, Tan, Turng (CR28) 2019; 295 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (CR31) 2006; 442 Kim, Yang, Lee, Park (CR5) 2020; 12 Wu, Zhao, Liu, Li, Chen, Chen, Wang, Guo (CR23) 2021; 4 Wang, Pan, Lin, Gao, Cao, Ni, Ma (CR44) 2020; 401 Sharma, Chhetry, Sharifuzzaman, Yoon, Park (CR42) 2020; 12 Sedlačík, Nonoyama, Guo, Kiyama, Nakajima, Takeda, Kurokawa, Gong (CR25) 2020; 32 Zhu, Lu, Guo, Chen, Wu, Lu (CR21) 2018; 8 Guo, An, Fan (CR50) 2021; 118 Wang, Liu, Schubert (CR4) 2021; 13 Jin, Jiang, Li, Fu, Bao, Wang, Hu (CR36) 2020; 394 He, You, Gong, Yang, Bai, Wang, Guo, Liu, Ye (CR70) 2020; 12 J Chen (531_CR17) 2017; 1 H Wang (531_CR48) 2021; 255 H Jing (531_CR59) 2021; 611 Y Jiao (531_CR15) 2021; 597 F He (531_CR70) 2020; 12 531_CR32 W Li (531_CR2) 2021; 13 Y Ye (531_CR57) 2020; 30 H Hu (531_CR37) 2020; 182 Y Peng (531_CR18) 2020; 55 Y Cai (531_CR33) 2018; 12 Q Yan (531_CR65) 2020; 201 S Sharma (531_CR42) 2020; 12 W Zhao (531_CR13) 2021; 9 DW Kim (531_CR5) 2020; 12 Y Ma (531_CR14) 2021; 4 M Hu (531_CR34) 2021; 4 X Qu (531_CR72) 2021; 425 N Jiang (531_CR10) 2021; 4 H Yin (531_CR45) 2022; 642 X Chang (531_CR7) 2021; 4 531_CR19 N Wu (531_CR23) 2021; 4 N Li (531_CR46) 2017; 178 RE Abouzeid (531_CR29) 2020; 160 Z He (531_CR9) 2021; 13 Y Guo (531_CR50) 2021; 118 Z Liu (531_CR3) 2021; 4 W Shi (531_CR20) 2020; 12 D Wei (531_CR35) 2020; 55 D Chen (531_CR8) 2020; 12 D Zhang (531_CR54) 2022; 438 S Stankovich (531_CR31) 2006; 442 R Takahashi (531_CR26) 2018; 5 W Li (531_CR60) 2017; 9 TN Ly (531_CR40) 2020; 82 J Hu (531_CR58) 2022; 275 H Liu (531_CR56) 2021; 31 F Gao (531_CR41) 2022; 91 X Qu (531_CR73) 2021; 267 L Xiao (531_CR24) 2021; 4 X Han (531_CR38) 2021; 176 Y Wang (531_CR12) 2021; 208 W Chen (531_CR62) 2019; 20 Y Li (531_CR11) 2021; 420 T Sedlačík (531_CR25) 2020; 32 Y Zheng (531_CR53) 2021; 420 X Li (531_CR30) 2022; 635 Q Wang (531_CR44) 2020; 401 M Li (531_CR49) 2021; 166 H Bian (531_CR61) 2018; 66 X Feng (531_CR64) 2021; 2 Z Yang (531_CR43) 2021; 425 H Zhang (531_CR51) 2016; 8 W Li (531_CR63) 2020; 13 Y Ma (531_CR52) 2018; 12 AP More (531_CR27) 2021; 5 Y Yu (531_CR67) 2018; 31 Z Li (531_CR16) 2021; 13 X Wang (531_CR4) 2021; 13 S Li (531_CR68) 2021; 607 H Gu (531_CR22) 2021; 4 X Jin (531_CR36) 2020; 394 H Zhang (531_CR1) 2020; 20 Y Bu (531_CR55) 2021; 66 531_CR39 X Jing (531_CR28) 2019; 295 X Li (531_CR47) 2021; 15 H Wei (531_CR6) 2021; 6 Y Li (531_CR71) 2021; 628 D Wei (531_CR66) 2019; 135 Y Zhu (531_CR21) 2018; 8 L Zhang (531_CR69) 2021; 332 |
References_xml | – volume: 118 year: 2021 ident: CR50 article-title: Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing publication-title: J Mech Behav Biomed Mater – volume: 12 start-page: 6442 issue: 5 year: 2020 end-page: 6450 ident: CR70 article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators publication-title: ACS Appl Mater Interfaces – volume: 4 start-page: 574 issue: 3 year: 2021 end-page: 583 ident: CR10 article-title: Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing publication-title: Adv Compos Hybrid Mater – volume: 208 year: 2021 ident: CR12 article-title: PVA/CMC/PEDOT:PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring publication-title: Colloids Surf B Biointerfaces – volume: 420 start-page: 127720 year: 2021 ident: CR53 article-title: Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin publication-title: Chem Eng J – volume: 135 start-page: 561 year: 2019 end-page: 568 ident: CR66 article-title: Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability publication-title: Int J Biol Macromol – volume: 275 start-page: 118697 year: 2022 ident: CR58 article-title: One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring publication-title: Carbohyd Polym – volume: 6 start-page: 2938 issue: 8 year: 2021 end-page: 2951 ident: CR6 article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors publication-title: ACS Sens – ident: CR39 – volume: 4 start-page: 514 issue: 3 year: 2021 end-page: 520 ident: CR34 article-title: High-performance strain sensors based on bilayer carbon black/PDMS hybrids publication-title: Adv Compos Hybrid Mater – volume: 401 start-page: 126129 year: 2020 ident: CR44 article-title: Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics publication-title: Chem Eng J – volume: 13 start-page: 64 issue: 1 year: 2021 ident: CR4 article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks publication-title: Nano-Micro Letters – volume: 635 start-page: 128091 year: 2022 ident: CR30 article-title: High-strength, biocompatible and multifunctional hydrogel sensor based on dual physically cross-linked network publication-title: Colloids Surf A – volume: 4 start-page: 707 issue: 3 year: 2021 end-page: 715 ident: CR23 article-title: MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials publication-title: Adv Compos Hybrid Mater – volume: 91 start-page: 106695 year: 2022 ident: CR41 article-title: A stretching-insensitive, self-powered and wearable pressure sensor publication-title: Nano Energy – volume: 13 start-page: 19211 issue: 16 year: 2021 end-page: 19220 ident: CR2 article-title: Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors publication-title: ACS Appl Mater Interfaces – volume: 31 start-page: 1807101 issue: 7 year: 2018 ident: CR67 article-title: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes publication-title: Adv Mater – volume: 9 start-page: 22082 issue: 38 year: 2021 end-page: 22094 ident: CR13 article-title: A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors publication-title: J Mater Chem A – volume: 30 start-page: 2003430 issue: 35 year: 2020 ident: CR57 article-title: Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors publication-title: Adv Func Mater – volume: 66 start-page: 8753 issue: 33 year: 2018 end-page: 8760 ident: CR61 article-title: Bienzyme magnetic nanobiocatalyst with Fe(3+)-tannic acid film for one-pot starch hydrolysis publication-title: J Agric Food Chem – volume: 20 start-page: 3449 issue: 5 year: 2020 end-page: 3458 ident: CR1 article-title: Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor publication-title: Nano Lett – ident: CR19 – volume: 5 start-page: 1 issue: 1 year: 2021 end-page: 20 ident: CR27 article-title: Flax fiber–based polymer composites: a review publication-title: Adv Compos Hybrid Mater – volume: 82 start-page: 122 year: 2020 end-page: 129 ident: CR40 article-title: Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles publication-title: J Ind Eng Chem – volume: 55 start-page: 1280 issue: 3 year: 2020 end-page: 1291 ident: CR18 article-title: Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor publication-title: J Mater Sci – volume: 13 start-page: 3048 issue: 11 year: 2020 end-page: 3056 ident: CR63 article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation publication-title: Nano Res – volume: 4 start-page: 435 issue: 3 year: 2021 end-page: 450 ident: CR7 article-title: Advances in transparent and stretchable strain sensors publication-title: Adv Compos Hybrid Mater – volume: 178 start-page: 159 year: 2017 end-page: 165 ident: CR46 article-title: Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength publication-title: Carbohydr Polym – volume: 13 start-page: 14778 issue: 12 year: 2021 end-page: 14785 ident: CR16 article-title: Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications publication-title: ACS Appl Mater Interfaces – volume: 425 start-page: 131523 year: 2021 ident: CR72 article-title: Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor publication-title: Chem Eng J – volume: 4 start-page: 459 issue: 3 year: 2021 end-page: 468 ident: CR22 article-title: Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption publication-title: Adv Compos Hybrid Mater – ident: CR32 – volume: 12 start-page: 45373 issue: 40 year: 2020 end-page: 45382 ident: CR20 article-title: Using stretchable PPy@PVA composites as a high-sensitivity strain sensor to monitor minute motion publication-title: ACS Appl Mater Interfaces – volume: 332 start-page: 113148 year: 2021 ident: CR69 article-title: Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor publication-title: Sens Actuators A – volume: 12 start-page: 22212 issue: 19 year: 2020 end-page: 22224 ident: CR42 article-title: Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition publication-title: ACS Appl Mater Interfaces – volume: 425 start-page: 130462 year: 2021 ident: CR43 article-title: Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor publication-title: Chem Eng J – volume: 255 start-page: 117443 year: 2021 ident: CR48 article-title: Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion publication-title: Carbohydr Polym – volume: 9 start-page: 20142 issue: 23 year: 2017 end-page: 20149 ident: CR60 article-title: Enhancing the properties of conductive polymer hydrogels by freeze–thaw cycles for high-performance flexible supercapacitors publication-title: ACS Appl Mater Interfaces – volume: 267 start-page: 118207 year: 2021 ident: CR73 article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors publication-title: Carbohyd Polym – volume: 201 start-page: 108356 year: 2020 ident: CR65 article-title: Study on mussel-inspired tough TA/PANI@CNCs nanocomposite hydrogels with superior self-healing and self-adhesive properties for strain sensors publication-title: Compos B Eng – volume: 32 start-page: 8576 issue: 19 year: 2020 end-page: 8586 ident: CR25 article-title: Preparation of tough double- and triple-network supermacroporous hydrogels through repeated cryogelation publication-title: Chem Mater – volume: 20 start-page: 4476 issue: 12 year: 2019 end-page: 4484 ident: CR62 article-title: Superstrong and tough hydrogel through physical cross-linking and molecular alignment publication-title: Biomacromol – volume: 295 start-page: 159 year: 2019 end-page: 167 ident: CR28 article-title: Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection publication-title: Sens Actuators B Chem – volume: 4 start-page: 906 issue: 4 year: 2021 end-page: 924 ident: CR14 article-title: Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors publication-title: Adv Compos Hybrid Mater – volume: 5 start-page: 1801018 issue: 23 year: 2018 ident: CR26 article-title: Tough particle-based double network hydrogels for functional solid surface coatings publication-title: Adv Mater Interfaces – volume: 12 start-page: 56 issue: 1 year: 2018 end-page: 62 ident: CR33 article-title: Stretchable Ti C T MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range publication-title: ACS Nano – volume: 8 start-page: 22374 issue: 34 year: 2016 end-page: 22381 ident: CR51 article-title: Piezoresistive sensor with high elasticity based on 3D hybrid network of Sponge@CNTs@Ag NPs publication-title: ACS Appl Mater Interfaces – volume: 12 start-page: 23207 issue: 20 year: 2020 end-page: 23216 ident: CR5 article-title: Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short-and long-term plasticity operation publication-title: ACS Appl Mater Interfaces – volume: 607 start-page: 431 year: 2021 end-page: 439 ident: CR68 article-title: Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors publication-title: J Colloid Interface Sci – volume: 66 start-page: 1849 issue: 18 year: 2021 end-page: 1857 ident: CR55 article-title: Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T MXene/paper for human-motion monitoring and E-skin publication-title: Sci Bull – volume: 4 start-page: 1215 issue: 4 year: 2021 end-page: 1225 ident: CR3 article-title: Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator publication-title: Advanced Composites and Hybrid Materials – volume: 628 start-page: 127336 year: 2021 ident: CR71 article-title: Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds publication-title: Colloids Surf A – volume: 182 start-page: 107623 year: 2020 ident: CR37 article-title: Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties publication-title: Compos B Eng – volume: 55 start-page: 11779 issue: 25 year: 2020 end-page: 11791 ident: CR35 article-title: Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors publication-title: J Mater Sci – volume: 12 start-page: 30896 issue: 27 year: 2020 end-page: 30904 ident: CR8 article-title: Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-Skin with Four-dimensional resolution and application for detecting motion direction and airflow rate publication-title: ACS Appl Mater Interfaces – volume: 438 start-page: 135587 year: 2022 ident: CR54 article-title: Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances publication-title: Chem Eng J – volume: 420 start-page: 129736 year: 2021 ident: CR11 article-title: An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity publication-title: Chem Eng J – volume: 13 start-page: 1474 issue: 1 year: 2021 end-page: 1485 ident: CR9 article-title: Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins publication-title: ACS Appl Mater Interfaces – volume: 160 start-page: 538 year: 2020 end-page: 547 ident: CR29 article-title: In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing publication-title: Int J Biol Macromol – volume: 8 start-page: 36999 issue: 65 year: 2018 end-page: 37007 ident: CR21 article-title: Biocompatible, stretchable and mineral PVA–Gelatin–nHAP hydrogel for highly sensitive pressure sensors publication-title: RSC Adv – volume: 4 start-page: 306 issue: 2 year: 2021 end-page: 316 ident: CR24 article-title: Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes publication-title: Adv Compos Hybrid Mater – volume: 176 start-page: 78 year: 2021 end-page: 86 ident: CR38 article-title: Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel publication-title: Int J Biol Macromol – volume: 611 start-page: 125805 year: 2021 ident: CR59 article-title: Hydrogels based on physically cross-linked network with high mechanical property and recasting ability publication-title: Colloids Surf, A – volume: 15 start-page: 7765 issue: 4 year: 2021 end-page: 7773 ident: CR47 article-title: Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors publication-title: ACS Nano – volume: 31 start-page: 2008006 issue: 13 year: 2021 ident: CR56 article-title: Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications publication-title: Adv Func Mater – volume: 597 start-page: 171 year: 2021 end-page: 181 ident: CR15 article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application publication-title: J Colloid Interface Sci – volume: 1 start-page: 94 issue: 1 year: 2017 end-page: 113 ident: CR17 article-title: Functional self-healing materials and their potential applications in biomedical engineering publication-title: Adv Compos Hybrid Mater – volume: 2 start-page: 57 year: 2021 end-page: 62 ident: CR64 article-title: Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels publication-title: Eng Regen – volume: 394 start-page: 124901 year: 2020 ident: CR36 article-title: Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity publication-title: Chem Eng J – volume: 442 start-page: 282 issue: 7100 year: 2006 end-page: 286 ident: CR31 article-title: Graphene-based composite materials publication-title: Nature – volume: 12 start-page: 3209 issue: 4 year: 2018 end-page: 3216 ident: CR52 article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor publication-title: ACS Nano – volume: 166 start-page: 1526 year: 2021 end-page: 1534 ident: CR49 article-title: Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor publication-title: Int J Biol Macromol – volume: 642 start-page: 128428 year: 2022 ident: CR45 article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties publication-title: Colloids Surf A – volume: 160 start-page: 538 year: 2020 ident: 531_CR29 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.05.181 – volume: 635 start-page: 128091 year: 2022 ident: 531_CR30 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2021.128091 – volume: 442 start-page: 282 issue: 7100 year: 2006 ident: 531_CR31 publication-title: Nature doi: 10.1038/nature04969 – volume: 607 start-page: 431 year: 2021 ident: 531_CR68 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.08.205 – ident: 531_CR32 doi: 10.1007/s42114-021-00367-1 – volume: 6 start-page: 2938 issue: 8 year: 2021 ident: 531_CR6 publication-title: ACS Sens doi: 10.1021/acssensors.1c00699 – volume: 9 start-page: 20142 issue: 23 year: 2017 ident: 531_CR60 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b05963 – ident: 531_CR39 – volume: 2 start-page: 57 year: 2021 ident: 531_CR64 publication-title: Eng Regen – volume: 1 start-page: 94 issue: 1 year: 2017 ident: 531_CR17 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-017-0009-y – volume: 12 start-page: 30896 issue: 27 year: 2020 ident: 531_CR8 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c02640 – volume: 5 start-page: 1 issue: 1 year: 2021 ident: 531_CR27 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00246-9 – volume: 267 start-page: 118207 year: 2021 ident: 531_CR73 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2021.118207 – volume: 4 start-page: 435 issue: 3 year: 2021 ident: 531_CR7 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00292-3 – volume: 420 start-page: 129736 year: 2021 ident: 531_CR11 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.129736 – volume: 178 start-page: 159 year: 2017 ident: 531_CR46 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2017.09.030 – volume: 31 start-page: 1807101 issue: 7 year: 2018 ident: 531_CR67 publication-title: Adv Mater doi: 10.1002/adma.201807101 – volume: 182 start-page: 107623 year: 2020 ident: 531_CR37 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2019.107623 – volume: 597 start-page: 171 year: 2021 ident: 531_CR15 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.04.001 – volume: 31 start-page: 2008006 issue: 13 year: 2021 ident: 531_CR56 publication-title: Adv Func Mater doi: 10.1002/adfm.202008006 – volume: 201 start-page: 108356 year: 2020 ident: 531_CR65 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2020.108356 – volume: 13 start-page: 1474 issue: 1 year: 2021 ident: 531_CR9 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c18405 – volume: 255 start-page: 117443 year: 2021 ident: 531_CR48 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.117443 – volume: 628 start-page: 127336 year: 2021 ident: 531_CR71 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2021.127336 – volume: 30 start-page: 2003430 issue: 35 year: 2020 ident: 531_CR57 publication-title: Adv Func Mater doi: 10.1002/adfm.202003430 – volume: 4 start-page: 459 issue: 3 year: 2021 ident: 531_CR22 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00289-y – volume: 611 start-page: 125805 year: 2021 ident: 531_CR59 publication-title: Colloids Surf, A doi: 10.1016/j.colsurfa.2020.125805 – volume: 15 start-page: 7765 issue: 4 year: 2021 ident: 531_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.1c01751 – volume: 20 start-page: 3449 issue: 5 year: 2020 ident: 531_CR1 publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c00372 – volume: 118 year: 2021 ident: 531_CR50 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2021.104452 – volume: 9 start-page: 22082 issue: 38 year: 2021 ident: 531_CR13 publication-title: J Mater Chem A doi: 10.1039/D1TA05586K – volume: 5 start-page: 1801018 issue: 23 year: 2018 ident: 531_CR26 publication-title: Adv Mater Interfaces doi: 10.1002/admi.201801018 – volume: 13 start-page: 19211 issue: 16 year: 2021 ident: 531_CR2 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c22938 – volume: 176 start-page: 78 year: 2021 ident: 531_CR38 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.02.055 – volume: 13 start-page: 3048 issue: 11 year: 2020 ident: 531_CR63 publication-title: Nano Res doi: 10.1007/s12274-020-2970-y – volume: 55 start-page: 11779 issue: 25 year: 2020 ident: 531_CR35 publication-title: J Mater Sci doi: 10.1007/s10853-020-04833-x – volume: 12 start-page: 23207 issue: 20 year: 2020 ident: 531_CR5 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03904 – volume: 332 start-page: 113148 year: 2021 ident: 531_CR69 publication-title: Sens Actuators A doi: 10.1016/j.sna.2021.113148 – volume: 4 start-page: 574 issue: 3 year: 2021 ident: 531_CR10 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00262-9 – volume: 66 start-page: 1849 issue: 18 year: 2021 ident: 531_CR55 publication-title: Sci Bull doi: 10.1016/j.scib.2021.04.041 – volume: 12 start-page: 56 issue: 1 year: 2018 ident: 531_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.7b06251 – volume: 295 start-page: 159 year: 2019 ident: 531_CR28 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2019.05.082 – volume: 12 start-page: 6442 issue: 5 year: 2020 ident: 531_CR70 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b19721 – volume: 82 start-page: 122 year: 2020 ident: 531_CR40 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.10.003 – volume: 20 start-page: 4476 issue: 12 year: 2019 ident: 531_CR62 publication-title: Biomacromol doi: 10.1021/acs.biomac.9b01223 – volume: 394 start-page: 124901 year: 2020 ident: 531_CR36 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124901 – ident: 531_CR19 doi: 10.1007/s42114-022-00435-0 – volume: 91 start-page: 106695 year: 2022 ident: 531_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106695 – volume: 4 start-page: 906 issue: 4 year: 2021 ident: 531_CR14 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00358-2 – volume: 8 start-page: 22374 issue: 34 year: 2016 ident: 531_CR51 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b04971 – volume: 12 start-page: 3209 issue: 4 year: 2018 ident: 531_CR52 publication-title: ACS Nano doi: 10.1021/acsnano.7b06909 – volume: 642 start-page: 128428 year: 2022 ident: 531_CR45 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2022.128428 – volume: 13 start-page: 64 issue: 1 year: 2021 ident: 531_CR4 publication-title: Nano-Micro Letters doi: 10.1007/s40820-021-00592-9 – volume: 208 year: 2021 ident: 531_CR12 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2021.112088 – volume: 66 start-page: 8753 issue: 33 year: 2018 ident: 531_CR61 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.8b02097 – volume: 4 start-page: 514 issue: 3 year: 2021 ident: 531_CR34 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00226-z – volume: 4 start-page: 306 issue: 2 year: 2021 ident: 531_CR24 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00223-2 – volume: 4 start-page: 1215 issue: 4 year: 2021 ident: 531_CR3 publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-021-00364-4 – volume: 8 start-page: 36999 issue: 65 year: 2018 ident: 531_CR21 publication-title: RSC Adv doi: 10.1039/C8RA06193A – volume: 12 start-page: 45373 issue: 40 year: 2020 ident: 531_CR20 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c14503 – volume: 4 start-page: 707 issue: 3 year: 2021 ident: 531_CR23 publication-title: Adv Compos Hybrid Mater doi: 10.1007/s42114-021-00307-z – volume: 275 start-page: 118697 year: 2022 ident: 531_CR58 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2021.118697 – volume: 438 start-page: 135587 year: 2022 ident: 531_CR54 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135587 – volume: 135 start-page: 561 year: 2019 ident: 531_CR66 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.05.091 – volume: 425 start-page: 130462 year: 2021 ident: 531_CR43 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.130462 – volume: 401 start-page: 126129 year: 2020 ident: 531_CR44 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126129 – volume: 420 start-page: 127720 year: 2021 ident: 531_CR53 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127720 – volume: 425 start-page: 131523 year: 2021 ident: 531_CR72 publication-title: Chem Eng J doi: 10.1016/j.cej.2021.131523 – volume: 12 start-page: 22212 issue: 19 year: 2020 ident: 531_CR42 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c05819 – volume: 32 start-page: 8576 issue: 19 year: 2020 ident: 531_CR25 publication-title: Chem Mater doi: 10.1021/acs.chemmater.0c02911 – volume: 166 start-page: 1526 year: 2021 ident: 531_CR49 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.11.032 – volume: 13 start-page: 14778 issue: 12 year: 2021 ident: 531_CR16 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c02615 – volume: 55 start-page: 1280 issue: 3 year: 2020 ident: 531_CR18 publication-title: J Mater Sci doi: 10.1007/s10853-019-04101-7 |
SSID | ssj0001916212 |
Score | 2.58107 |
Snippet | Double network (DN) conductive hydrogels have become a hotspot for wearable sensors. However, building DN hydrogel-based strain sensors with excellent... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1976 |
SubjectTerms | Ceramics Chemistry and Materials Science Composites Glass Materials Engineering Materials Science Natural Materials Original Research Polymer Sciences |
Title | Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel |
URI | https://link.springer.com/article/10.1007/s42114-022-00531-1 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iFy-iqDh_kYM3LWvaJE2PMhxDmCcHu5U0SeegNqPdxP4z_q3mtd1kIgMvPYTXHvK9vryX9733ELojEafETyMvhjaXVHEf7GDsiZBLRXngt9yc8QsfTejzlE27NjlQC_Mrf9-vqItQqAec80ZfPBfpHDASctDgAR_83Kc4P6dNbgYMhJ3d7Wpk_v7M9jm0nQRtzpbhMTrqnEL82KJ4gvZMcYq-gIKR17gCijkYJVw18xyaBVtWGK5Q3UMbbBemBRKXUCuAoWYEpG0xw-Ops2YeMMeBnmU0Xti8_pgXdY5lOx63X1k9X71jJcvUftYwU7rO4UJ_ldvKYG1XaW5w0fLF8VutSzsz-RmaDJ9eByOvm6bgqSAmS08Y5xwEvsqEIYFmGY9CIzlnREK6Jc6c6yZgWchMCqVorOIoZTHLXAgbUW3Cc7Rf2MJcIJxpCulTIaQ2LnxRIgwjRrROmVSZz1gPkfXeJqprNQ47lCebJskNHonDI2nwSEgP3W_eWbSNNnZKP6whS7qfrtohfvk_8St0GDSqAlSya7S_LFfmxvkey_S2Ubpv7tDRaw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWBBIEC88cAGUePEdpwRVVTlUSaQukWO7UClEFdJi8if4bfiSwIIhCqxZLAuGfxdzne-7-4QOiMRp8RPIy-GNpdUcR_sYOyJkEtFeeC33JzxPR890psJm3RtcqAW5lf-vl9RF6FQDzjnjb54LtJZpS5SBvregA--71Ocn9MmNwMGws7udjUyf3_m5zn0MwnanC3DTbTROYX4skVxC62YYhu9AwUjr3EFFHMwSrhq5jk0C7asMFyhuoc22M5MCyQuoVYAQ80ISNviCY8nzpp5wBwHepbReGbz-nVa1DmW7XjcfmX1dPGClSxT-1bDTOk6hwv9RW4rg7VdpLnBRcsXx8-1Lu2TyXfQ4_DqYTDyumkKngpiMveEcc5B4KtMGBJolvEoNJJzRiSkW-LMuW4CloXMpFCKxiqOUhazzIWwEdUm3EW9whZmD-FMU0ifCiG1ceGLEmEYMaJ1yqTKfMb2Efnc20R1rcZhh_Lkq0lyg0fi8EgaPBKyj86_3pm1jTaWSl98QpZ0P121RPzgf-KnaG30ML5L7q7vbw_RetCoDdDKjlBvXi7MsfND5ulJo4Af6l7UWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iIF5EUfFtDt60bB9Jmh5ldfG14kFhbyVNUhVqs7S7Yv-Mv9VM2l0VRPDSwzDtITOdzOObGYSOg5iRwM9iL4Exl0QyH-xg4vGICUlY6LfYnOEdu3wk1yM6-tbF79Dus5Jk29MAU5rKSW-s8t688Y3YuIV4gER3WuTZ-GfJRiquUNtn_a8siyW1Jc-QArO1xl3nzO-f-Xk7_SyNuhtnsIZWO1cRn7WyXUcLutxAHwDMKBpcA_AcTBWu3ZYHRzBVjSGxah9KYzPWrXhxBR0EGDpJgNuUT3g4sjbOAzw5gLa0wmNTNG8vZVNg0S7N7dVGvUxfsRRVZt4b2DTdFJDmnxam1liZaVZoXLYocvzcqMo86WITPQ4uHvqXXrdjwZNhEkw8rq3LEPoy5zoIFc1ZHGnBGA0EFGGS3Dp0HMhc5IJLSRKZxBlNaG4D25goHW2hxdKUehvhXBEoqnIulLZBjeRRFNNAqYwKmfuU7qBgdrap7AaQwwkV6Xx0spNHauWROnmkwQ46mb8zbsdv_Ml9OhNZ2v2K9R_su_9jP0LL9-eD9Pbq7mYPrYROawBrto8WJ9VUH1jnZJIdOv37BOWJ3J8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+strain+sensors+with+wide+operation+range+from+strong+MXene-composited+polyvinyl+alcohol%2Fsodium+carboxymethylcellulose+double+network+hydrogel&rft.jtitle=Advanced+composites+and+hybrid+materials&rft.au=Kong%2C+Deshuo&rft.au=El-Bahy%2C+Zeinhom+M.&rft.au=Algadi%2C+Hassan&rft.au=Li%2C+Tuo&rft.date=2022-09-01&rft.issn=2522-0128&rft.eissn=2522-0136&rft.volume=5&rft.issue=3&rft.spage=1976&rft.epage=1987&rft_id=info:doi/10.1007%2Fs42114-022-00531-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42114_022_00531_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-0128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-0128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-0128&client=summon |