Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition

Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 19; no. 7; pp. 8104 - 8115
Main Authors Peng, Yong, Liu, Honggang, Kong, Wanzeng, Nie, Feiping, Lu, Bao-Liang, Cichocki, Andrzej
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models sequentially learned the domain-invariant features and estimated the target domain label information. Such a two-stage strategy breaks the inner connections of both processes, inevitably causing the suboptimality. In this article, we propose a joint EEG feature transfer and semisupervised cross-subject emotion recognition model in which the shared subspace projection matrix and target label are jointly optimized toward the optimum. Extensive experiments are conducted on SEED-IV and SEED, and the results show that the emotion recognition performance is significantly enhanced by the joint learning mode and the spatial-frequency activation patterns of critical EEG frequency bands and brain regions in cross-subject emotion expression are quantitatively identified by analyzing the learned shared subspace.
AbstractList Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models sequentially learned the domain-invariant features and estimated the target domain label information. Such a two-stage strategy breaks the inner connections of both processes, inevitably causing the suboptimality. In this article, we propose a joint EEG feature transfer and semisupervised cross-subject emotion recognition model in which the shared subspace projection matrix and target label are jointly optimized toward the optimum. Extensive experiments are conducted on SEED-IV and SEED, and the results show that the emotion recognition performance is significantly enhanced by the joint learning mode and the spatial-frequency activation patterns of critical EEG frequency bands and brain regions in cross-subject emotion expression are quantitatively identified by analyzing the learned shared subspace.
Author Liu, Honggang
Peng, Yong
Kong, Wanzeng
Lu, Bao-Liang
Cichocki, Andrzej
Nie, Feiping
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0003-1208-972X
  surname: Peng
  fullname: Peng, Yong
  email: yongpeng@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Zhejiang, China
– sequence: 2
  givenname: Honggang
  surname: Liu
  fullname: Liu, Honggang
  email: liuhonggang@hdu.edu.cn
  organization: HDU-IMTO Joint Institute, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Wanzeng
  orcidid: 0000-0002-0113-6968
  surname: Kong
  fullname: Kong, Wanzeng
  email: kongwanzeng@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Zhejiang, China
– sequence: 4
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Bao-Liang
  orcidid: 0000-0001-8359-0058
  surname: Lu
  fullname: Lu, Bao-Liang
  email: bllu@sjtu.edu.cn
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
  email: a.cichocki@skolkovo.ru
  organization: Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
BookMark eNp9kM1LAzEQxYNUsK3eBS8Lnrfmo9lNjlLaWikUbD2H7GYiKW1Sk13B_95dWjx48DTv8H4zb94IDXzwgNA9wRNCsHzarVYTiimdMEpKQvEVGhI5JTnGHA86zTnJGcXsBo1S2mPMSszkEG1eg_NNNp8vswXopo2Q7aL2yULMtDfZFo4utSeIXy6ByWYxpJRv22oPdUcdQ-OCz96gDh_e9foWXVt9SHB3mWP0vpjvZi_5erNczZ7XeU0laXJRGeBVybCprKTUlIURZCpKywixmtcaoIJaioLZKQDVnFS8wJUwhamt4JqN0eN57ymGzxZSo_ahjb47qaigovtaFLhzFWdX3eeOYFXtGt3nbKJ2B0Ww6stTXXmqL09dyutA_Ac8RXfU8fs_5OGMOAD4tUtJRSkL9gOqaXxo
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107550
crossref_primary_10_1016_j_knosys_2024_112669
crossref_primary_10_1109_TII_2024_3441636
crossref_primary_10_1016_j_compbiomed_2024_108445
crossref_primary_10_1016_j_compbiomed_2024_108973
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1109_TAFFC_2024_3394436
crossref_primary_10_1016_j_bspc_2025_107511
crossref_primary_10_1109_TAFFC_2024_3357656
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1016_j_knosys_2025_113018
crossref_primary_10_1109_TCSS_2023_3314508
crossref_primary_10_1088_1741_2552_ad9956
crossref_primary_10_1007_s11517_024_03094_z
Cites_doi 10.1109/TNSRE.2020.2985996
10.1609/aaai.v30i1.10306
10.1109/TCDS.2019.2949306
10.1109/ACCESS.2020.3027429
10.1109/JBHI.2019.2934172
10.1016/j.neucom.2020.09.017
10.1109/NER.2013.6695876
10.24963/ijcai.2017/251
10.1109/TII.2020.3020694
10.1016/j.neucom.2021.05.064
10.1109/TCYB.2018.2797176
10.1016/j.jksuci.2021.03.009
10.1109/TCDS.2018.2826840
10.1109/MCI.2015.2501545
10.1088/1741-2552/aaf3f6
10.1016/j.ins.2021.04.058
10.1109/TNN.2010.2091281
10.1109/TNSRE.2020.2980299
10.1109/TCYB.2016.2633306
10.1007/978-3-030-01216-8_3
10.1109/ICCV.2013.274
10.1109/TAMD.2015.2431497
10.1109/TII.2019.2955447
10.1109/JPROC.2020.3004555
10.1109/TCDS.2021.3082803
10.1109/TCDS.2021.3137530
10.1109/TII.2019.2925624
10.1109/TCDS.2020.3007453
10.1109/TNNLS.2019.2944455
10.1109/TNSRE.2019.2945794
10.1016/j.patcog.2020.107626
10.1109/TCYB.2019.2904052
10.1145/361573.361582
10.1109/TAFFC.2018.2800046
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2022.3217120
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 8115
ExternalDocumentID 10_1109_TII_2022_3217120
9928796
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971173; U20B2074
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY21F030005
  funderid: 10.13039/501100004731
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M620470
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Fund for the Provincial Universities of Zhejiang
  grantid: GK209907299001-008
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-8bde5b730dbf922d76d81487f311fa5caeebec9863f4ee2a51b560b8d6dcf85a3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:14:26 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 03:00:21 EDT 2025
Wed Aug 27 02:50:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8bde5b730dbf922d76d81487f311fa5caeebec9863f4ee2a51b560b8d6dcf85a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1208-972X
0000-0001-8359-0058
0000-0002-0113-6968
0000-0002-0871-6519
PQID 2828005860
PQPubID 85507
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TII_2022_3217120
crossref_primary_10_1109_TII_2022_3217120
ieee_primary_9928796
proquest_journals_2828005860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
zheng (ref9) 0
demšar (ref33) 2006; 7
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
gretton (ref24) 0; 19
nie (ref36) 2010; 23
References_xml – volume: 23
  start-page: 1813
  year: 2010
  ident: ref36
  article-title: Efficient and robust feature selection via joint, 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/TNSRE.2020.2985996
– ident: ref11
  doi: 10.1609/aaai.v30i1.10306
– ident: ref19
  doi: 10.1109/TCDS.2019.2949306
– ident: ref13
  doi: 10.1109/ACCESS.2020.3027429
– ident: ref8
  doi: 10.1109/JBHI.2019.2934172
– ident: ref5
  doi: 10.1016/j.neucom.2020.09.017
– ident: ref28
  doi: 10.1109/NER.2013.6695876
– ident: ref37
  doi: 10.24963/ijcai.2017/251
– ident: ref2
  doi: 10.1109/TII.2020.3020694
– ident: ref16
  doi: 10.1016/j.neucom.2021.05.064
– ident: ref26
  doi: 10.1109/TCYB.2018.2797176
– ident: ref1
  doi: 10.1016/j.jksuci.2021.03.009
– ident: ref17
  doi: 10.1109/TCDS.2018.2826840
– volume: 19
  start-page: 513
  year: 0
  ident: ref24
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref6
  doi: 10.1109/MCI.2015.2501545
– ident: ref14
  doi: 10.1088/1741-2552/aaf3f6
– start-page: 2732
  year: 0
  ident: ref9
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: Proc Int J Conf Artif Intell
– volume: 7
  start-page: 1
  year: 2006
  ident: ref33
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1016/j.ins.2021.04.058
– ident: ref29
  doi: 10.1109/TNN.2010.2091281
– ident: ref12
  doi: 10.1109/TNSRE.2020.2980299
– ident: ref31
  doi: 10.1109/TCYB.2016.2633306
– ident: ref23
  doi: 10.1007/978-3-030-01216-8_3
– ident: ref21
  doi: 10.1109/ICCV.2013.274
– ident: ref27
  doi: 10.1109/TAMD.2015.2431497
– ident: ref3
  doi: 10.1109/TII.2019.2955447
– ident: ref7
  doi: 10.1109/JPROC.2020.3004555
– ident: ref35
  doi: 10.1109/TCDS.2021.3082803
– ident: ref32
  doi: 10.1109/TCDS.2021.3137530
– ident: ref4
  doi: 10.1109/TII.2019.2925624
– ident: ref20
  doi: 10.1109/TCDS.2020.3007453
– ident: ref22
  doi: 10.1109/TNNLS.2019.2944455
– ident: ref34
  doi: 10.1109/TNSRE.2019.2945794
– ident: ref18
  doi: 10.1016/j.patcog.2020.107626
– ident: ref15
  doi: 10.1109/TCYB.2019.2904052
– ident: ref25
  doi: 10.1145/361573.361582
– ident: ref30
  doi: 10.1109/TAFFC.2018.2800046
SSID ssj0037039
Score 2.485667
Snippet Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8104
SubjectTerms Analytical models
Brain modeling
Data models
Domains
Electroencephalogram (EEG)
Electroencephalography
Emotion recognition
Emotions
Frequencies
Informatics
joint optimization
Learning
semisupervised regression
Transfer learning
Title Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
URI https://ieeexplore.ieee.org/document/9928796
https://www.proquest.com/docview/2828005860
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90T_rgtzidkgdfBLO16do1jzKmU1BBN_Ct5OMConRja1_8603SdoiK-NaHBNK7y93vksv9AM6FDaIi5JIKjor2E8NpqnFAFTeBZo5y1XMd3j8k42n_7iV-WYPL1VsYRPTFZ9h1n_4uX89U6Y7KepxbfM-TdVi3iVv1VqvxupG1XO57o8YhjVgQNVeSAe9Nbm9tIshYN7L4O3TM3l9CkOdU-eGIfXS53ob7Zl1VUclbtyxkV318a9n434XvwFYNM8lVZRe7sIb5Hmx-aT64D493s9e8IKPRDXE4sFwg8YHL4IKIXJNnxwRXzp0vWaImQ_cv1PoZd3BDRhX7D3lq6o9m-QFMr0eT4ZjW9ApUMR4WNJUaY2l3uJaGM6YHiU5tcjQwURgaESuBTsE8TSLTR2QiDqWFRzLViVYmjUV0CK18luMREIvypAkkRr45jdLpAC0QDQWLhRTWtbeh10g8U3XvcUeB8Z75HCTgmdVR5nSU1Tpqw8Vqxrzqu_HH2H0n8tW4Wtpt6DRKzeqNucxchumoFJPg-PdZJ7DhGOWritwOtIpFiacWdxTyzBvcJwC61M8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcNjlwBttF9j1gQsSbmOnSeMjQmVbloIEReIW-TGWEKu0KsmFX7-2k1SIRYhbDrbkzIxnvrHH8wEcSxdEJROKSoGa9lMraGZwQLWwkeGecjVwHU6u09F9__IheViB0-VbGEQMxWfY9Z_hLt_MdOWPynpCOHwv0i-w5uJ-wurXWq3fjZ3titAdNWE05lHcXkpGojcdj10qyHk3dgiceW7vV0EosKr854pDfLnYhEm7srqs5KlblaqrX940bfzs0rdgowGa5Ky2jG1YwWIH1l-1H9yFm8vZY1GS4fA38UiwWiAJocvigsjCkDvPBVfNvTd5RkPO_b9Q52n80Q0Z1vw_5LatQJoVe3B_MZyej2hDsEA1F6ykmTKYKLfHjbKCczNITebSo4GNGbMy0RK9ikWWxraPyGXClANIKjOp0TZLZLwPq8WswO9AHM5TNlIYh_Y02mQDdFCUSZ5IJZ1z70CvlXium-7jngTjbx6ykEjkTke511He6KgDJ8sZ87rzxgdjd73Il-MaaXfgsFVq3mzN59znmJ5MMY1-vD_rF3wdTSdX-dX4-s8BfPP88nV97iGslosKjxwKKdXPYHz_AESA2Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+EEG+Feature+Transfer+and+Semisupervised+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Peng%2C+Yong&rft.au=Liu%2C+Honggang&rft.au=Kong%2C+Wanzeng&rft.au=Nie%2C+Feiping&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=19&rft.issue=7&rft.spage=8104&rft_id=info:doi/10.1109%2FTII.2022.3217120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon