Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models s...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 19; no. 7; pp. 8104 - 8115 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models sequentially learned the domain-invariant features and estimated the target domain label information. Such a two-stage strategy breaks the inner connections of both processes, inevitably causing the suboptimality. In this article, we propose a joint EEG feature transfer and semisupervised cross-subject emotion recognition model in which the shared subspace projection matrix and target label are jointly optimized toward the optimum. Extensive experiments are conducted on SEED-IV and SEED, and the results show that the emotion recognition performance is significantly enhanced by the joint learning mode and the spatial-frequency activation patterns of critical EEG frequency bands and brain regions in cross-subject emotion expression are quantitatively identified by analyzing the learned shared subspace. |
---|---|
AbstractList | Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of different subjects, transfer learning showed promising performance in cross-subject EEG emotion recognition. However, most of the existing models sequentially learned the domain-invariant features and estimated the target domain label information. Such a two-stage strategy breaks the inner connections of both processes, inevitably causing the suboptimality. In this article, we propose a joint EEG feature transfer and semisupervised cross-subject emotion recognition model in which the shared subspace projection matrix and target label are jointly optimized toward the optimum. Extensive experiments are conducted on SEED-IV and SEED, and the results show that the emotion recognition performance is significantly enhanced by the joint learning mode and the spatial-frequency activation patterns of critical EEG frequency bands and brain regions in cross-subject emotion expression are quantitatively identified by analyzing the learned shared subspace. |
Author | Liu, Honggang Peng, Yong Kong, Wanzeng Lu, Bao-Liang Cichocki, Andrzej Nie, Feiping |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-1208-972X surname: Peng fullname: Peng, Yong email: yongpeng@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Zhejiang, China – sequence: 2 givenname: Honggang surname: Liu fullname: Liu, Honggang email: liuhonggang@hdu.edu.cn organization: HDU-IMTO Joint Institute, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Wanzeng orcidid: 0000-0002-0113-6968 surname: Kong fullname: Kong, Wanzeng email: kongwanzeng@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Zhejiang, China – sequence: 4 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping email: feipingnie@gmail.com organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Bao-Liang orcidid: 0000-0001-8359-0058 surname: Lu fullname: Lu, Bao-Liang email: bllu@sjtu.edu.cn organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej email: a.cichocki@skolkovo.ru organization: Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia |
BookMark | eNp9kM1LAzEQxYNUsK3eBS8Lnrfmo9lNjlLaWikUbD2H7GYiKW1Sk13B_95dWjx48DTv8H4zb94IDXzwgNA9wRNCsHzarVYTiimdMEpKQvEVGhI5JTnGHA86zTnJGcXsBo1S2mPMSszkEG1eg_NNNp8vswXopo2Q7aL2yULMtDfZFo4utSeIXy6ByWYxpJRv22oPdUcdQ-OCz96gDh_e9foWXVt9SHB3mWP0vpjvZi_5erNczZ7XeU0laXJRGeBVybCprKTUlIURZCpKywixmtcaoIJaioLZKQDVnFS8wJUwhamt4JqN0eN57ymGzxZSo_ahjb47qaigovtaFLhzFWdX3eeOYFXtGt3nbKJ2B0Ww6stTXXmqL09dyutA_Ac8RXfU8fs_5OGMOAD4tUtJRSkL9gOqaXxo |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107550 crossref_primary_10_1016_j_knosys_2024_112669 crossref_primary_10_1109_TII_2024_3441636 crossref_primary_10_1016_j_compbiomed_2024_108445 crossref_primary_10_1016_j_compbiomed_2024_108973 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1016_j_bspc_2025_107511 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1016_j_knosys_2025_113018 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1088_1741_2552_ad9956 crossref_primary_10_1007_s11517_024_03094_z |
Cites_doi | 10.1109/TNSRE.2020.2985996 10.1609/aaai.v30i1.10306 10.1109/TCDS.2019.2949306 10.1109/ACCESS.2020.3027429 10.1109/JBHI.2019.2934172 10.1016/j.neucom.2020.09.017 10.1109/NER.2013.6695876 10.24963/ijcai.2017/251 10.1109/TII.2020.3020694 10.1016/j.neucom.2021.05.064 10.1109/TCYB.2018.2797176 10.1016/j.jksuci.2021.03.009 10.1109/TCDS.2018.2826840 10.1109/MCI.2015.2501545 10.1088/1741-2552/aaf3f6 10.1016/j.ins.2021.04.058 10.1109/TNN.2010.2091281 10.1109/TNSRE.2020.2980299 10.1109/TCYB.2016.2633306 10.1007/978-3-030-01216-8_3 10.1109/ICCV.2013.274 10.1109/TAMD.2015.2431497 10.1109/TII.2019.2955447 10.1109/JPROC.2020.3004555 10.1109/TCDS.2021.3082803 10.1109/TCDS.2021.3137530 10.1109/TII.2019.2925624 10.1109/TCDS.2020.3007453 10.1109/TNNLS.2019.2944455 10.1109/TNSRE.2019.2945794 10.1016/j.patcog.2020.107626 10.1109/TCYB.2019.2904052 10.1145/361573.361582 10.1109/TAFFC.2018.2800046 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2022.3217120 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 8115 |
ExternalDocumentID | 10_1109_TII_2022_3217120 9928796 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61971173; U20B2074 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY21F030005 funderid: 10.13039/501100004731 – fundername: China Postdoctoral Science Foundation grantid: 2017M620470 funderid: 10.13039/501100002858 – fundername: Fundamental Research Fund for the Provincial Universities of Zhejiang grantid: GK209907299001-008 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-8bde5b730dbf922d76d81487f311fa5caeebec9863f4ee2a51b560b8d6dcf85a3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:14:26 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 03:00:21 EDT 2025 Wed Aug 27 02:50:20 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-8bde5b730dbf922d76d81487f311fa5caeebec9863f4ee2a51b560b8d6dcf85a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1208-972X 0000-0001-8359-0058 0000-0002-0113-6968 0000-0002-0871-6519 |
PQID | 2828005860 |
PQPubID | 85507 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TII_2022_3217120 crossref_primary_10_1109_TII_2022_3217120 ieee_primary_9928796 proquest_journals_2828005860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 zheng (ref9) 0 demšar (ref33) 2006; 7 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 gretton (ref24) 0; 19 nie (ref36) 2010; 23 |
References_xml | – volume: 23 start-page: 1813 year: 2010 ident: ref36 article-title: Efficient and robust feature selection via joint, 1-norms minimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1109/TNSRE.2020.2985996 – ident: ref11 doi: 10.1609/aaai.v30i1.10306 – ident: ref19 doi: 10.1109/TCDS.2019.2949306 – ident: ref13 doi: 10.1109/ACCESS.2020.3027429 – ident: ref8 doi: 10.1109/JBHI.2019.2934172 – ident: ref5 doi: 10.1016/j.neucom.2020.09.017 – ident: ref28 doi: 10.1109/NER.2013.6695876 – ident: ref37 doi: 10.24963/ijcai.2017/251 – ident: ref2 doi: 10.1109/TII.2020.3020694 – ident: ref16 doi: 10.1016/j.neucom.2021.05.064 – ident: ref26 doi: 10.1109/TCYB.2018.2797176 – ident: ref1 doi: 10.1016/j.jksuci.2021.03.009 – ident: ref17 doi: 10.1109/TCDS.2018.2826840 – volume: 19 start-page: 513 year: 0 ident: ref24 article-title: A kernel method for the two-sample-problem publication-title: Proc Int Conf Neural Inf Process – ident: ref6 doi: 10.1109/MCI.2015.2501545 – ident: ref14 doi: 10.1088/1741-2552/aaf3f6 – start-page: 2732 year: 0 ident: ref9 article-title: Personalizing EEG-based affective models with transfer learning publication-title: Proc Int J Conf Artif Intell – volume: 7 start-page: 1 year: 2006 ident: ref33 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref38 doi: 10.1016/j.ins.2021.04.058 – ident: ref29 doi: 10.1109/TNN.2010.2091281 – ident: ref12 doi: 10.1109/TNSRE.2020.2980299 – ident: ref31 doi: 10.1109/TCYB.2016.2633306 – ident: ref23 doi: 10.1007/978-3-030-01216-8_3 – ident: ref21 doi: 10.1109/ICCV.2013.274 – ident: ref27 doi: 10.1109/TAMD.2015.2431497 – ident: ref3 doi: 10.1109/TII.2019.2955447 – ident: ref7 doi: 10.1109/JPROC.2020.3004555 – ident: ref35 doi: 10.1109/TCDS.2021.3082803 – ident: ref32 doi: 10.1109/TCDS.2021.3137530 – ident: ref4 doi: 10.1109/TII.2019.2925624 – ident: ref20 doi: 10.1109/TCDS.2020.3007453 – ident: ref22 doi: 10.1109/TNNLS.2019.2944455 – ident: ref34 doi: 10.1109/TNSRE.2019.2945794 – ident: ref18 doi: 10.1016/j.patcog.2020.107626 – ident: ref15 doi: 10.1109/TCYB.2019.2904052 – ident: ref25 doi: 10.1145/361573.361582 – ident: ref30 doi: 10.1109/TAFFC.2018.2800046 |
SSID | ssj0037039 |
Score | 2.485667 |
Snippet | Due to the weak and nonstationary properties, electroencephalogram (EEG) data present significant individual differences. To align data distributions of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8104 |
SubjectTerms | Analytical models Brain modeling Data models Domains Electroencephalogram (EEG) Electroencephalography Emotion recognition Emotions Frequencies Informatics joint optimization Learning semisupervised regression Transfer learning |
Title | Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/9928796 https://www.proquest.com/docview/2828005860 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90T_rgtzidkgdfBLO16do1jzKmU1BBN_Ct5OMConRja1_8603SdoiK-NaHBNK7y93vksv9AM6FDaIi5JIKjor2E8NpqnFAFTeBZo5y1XMd3j8k42n_7iV-WYPL1VsYRPTFZ9h1n_4uX89U6Y7KepxbfM-TdVi3iVv1VqvxupG1XO57o8YhjVgQNVeSAe9Nbm9tIshYN7L4O3TM3l9CkOdU-eGIfXS53ob7Zl1VUclbtyxkV318a9n434XvwFYNM8lVZRe7sIb5Hmx-aT64D493s9e8IKPRDXE4sFwg8YHL4IKIXJNnxwRXzp0vWaImQ_cv1PoZd3BDRhX7D3lq6o9m-QFMr0eT4ZjW9ApUMR4WNJUaY2l3uJaGM6YHiU5tcjQwURgaESuBTsE8TSLTR2QiDqWFRzLViVYmjUV0CK18luMREIvypAkkRr45jdLpAC0QDQWLhRTWtbeh10g8U3XvcUeB8Z75HCTgmdVR5nSU1Tpqw8Vqxrzqu_HH2H0n8tW4Wtpt6DRKzeqNucxchumoFJPg-PdZJ7DhGOWritwOtIpFiacWdxTyzBvcJwC61M8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcNjlwBttF9j1gQsSbmOnSeMjQmVbloIEReIW-TGWEKu0KsmFX7-2k1SIRYhbDrbkzIxnvrHH8wEcSxdEJROKSoGa9lMraGZwQLWwkeGecjVwHU6u09F9__IheViB0-VbGEQMxWfY9Z_hLt_MdOWPynpCOHwv0i-w5uJ-wurXWq3fjZ3titAdNWE05lHcXkpGojcdj10qyHk3dgiceW7vV0EosKr854pDfLnYhEm7srqs5KlblaqrX940bfzs0rdgowGa5Ky2jG1YwWIH1l-1H9yFm8vZY1GS4fA38UiwWiAJocvigsjCkDvPBVfNvTd5RkPO_b9Q52n80Q0Z1vw_5LatQJoVe3B_MZyej2hDsEA1F6ykmTKYKLfHjbKCczNITebSo4GNGbMy0RK9ikWWxraPyGXClANIKjOp0TZLZLwPq8WswO9AHM5TNlIYh_Y02mQDdFCUSZ5IJZ1z70CvlXium-7jngTjbx6ykEjkTke511He6KgDJ8sZ87rzxgdjd73Il-MaaXfgsFVq3mzN59znmJ5MMY1-vD_rF3wdTSdX-dX4-s8BfPP88nV97iGslosKjxwKKdXPYHz_AESA2Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+EEG+Feature+Transfer+and+Semisupervised+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Peng%2C+Yong&rft.au=Liu%2C+Honggang&rft.au=Kong%2C+Wanzeng&rft.au=Nie%2C+Feiping&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=19&rft.issue=7&rft.spage=8104&rft_id=info:doi/10.1109%2FTII.2022.3217120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |