Information Rate-Harvested Power Tradeoff in THz SWIPT Systems Employing Resonant Tunneling Diode-Based EH Circuits
In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design tha...
Saved in:
Published in | IEEE transactions on communications Vol. 73; no. 2; pp. 1336 - 1352 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design that employs unipolar amplitude shift keying (ASK) modulation at the transmitter (TX) and a resonant-tunnelling diode (RTD)-based EH circuit at the receiver (RX) to extract both information and power from the received signal. Furthermore, we propose a novel model for the dependence of the instantaneous output power of the RTD-based RX on the instantaneous received power, which is based on a non-linear and non-monotonic piecewise function, whose parameters are adjusted to fit circuit simulation results. To determine the information rate-harvested power tradeoff of the considered THz SWIPT system, we derive the distribution of the transmit signal that maximizes the mutual information between the transmit and received signals subject to constraints on the required average harvested power at the RX and the peak signal amplitude at the TX. Since the computational complexity needed for maximization of the mutual information may be infeasible for real-time THz SWIPT systems, we derive low-complexity suboptimal input signal distributions that maximize an achievable information rate numerically and in closed form for high and low required average harvested powers, respectively. Furthermore, based on the obtained results, we propose a suboptimal closed-form distribution of the transmit signal which can also guarantee a desired harvested power at the RX. Our simulation results show that while the proposed EH model can capture the non-monotonicity of RTD-based EH circuits in the THz band, baseline linear and non-linear EH models, developed for Schottky-diode-based EH circuits, cannot. Furthermore, we demonstrate that a lower reverse current flow and a higher breakdown voltage of the employed RTD are preferable when the input signal power at the RX is low and high, respectively. We also show that all proposed input distributions yield practically identical SWIPT system performance. Moreover, we reveal that the information rate-harvested power tradeoff of THz SWIPT systems is determined by the peak amplitude of the TX signal and the maximum instantaneous harvested power for low and high received signal powers, respectively. Finally, we compare the proposed THz SWIPT system with two baseline schemes and confirm that the RX circuit parameters, mathematical EH models, and optimal transmit signal distributions have to be carefully designed to achieve high performance in THz SWIPT systems. |
---|---|
AbstractList | In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design that employs unipolar amplitude shift keying (ASK) modulation at the transmitter (TX) and a resonant-tunnelling diode (RTD)-based EH circuit at the receiver (RX) to extract both information and power from the received signal. Furthermore, we propose a novel model for the dependence of the instantaneous output power of the RTD-based RX on the instantaneous received power, which is based on a non-linear and non-monotonic piecewise function, whose parameters are adjusted to fit circuit simulation results. To determine the information rate-harvested power tradeoff of the considered THz SWIPT system, we derive the distribution of the transmit signal that maximizes the mutual information between the transmit and received signals subject to constraints on the required average harvested power at the RX and the peak signal amplitude at the TX. Since the computational complexity needed for maximization of the mutual information may be infeasible for real-time THz SWIPT systems, we derive low-complexity suboptimal input signal distributions that maximize an achievable information rate numerically and in closed form for high and low required average harvested powers, respectively. Furthermore, based on the obtained results, we propose a suboptimal closed-form distribution of the transmit signal which can also guarantee a desired harvested power at the RX. Our simulation results show that while the proposed EH model can capture the non-monotonicity of RTD-based EH circuits in the THz band, baseline linear and non-linear EH models, developed for Schottky-diode-based EH circuits, cannot. Furthermore, we demonstrate that a lower reverse current flow and a higher breakdown voltage of the employed RTD are preferable when the input signal power at the RX is low and high, respectively. We also show that all proposed input distributions yield practically identical SWIPT system performance. Moreover, we reveal that the information rate-harvested power tradeoff of THz SWIPT systems is determined by the peak amplitude of the TX signal and the maximum instantaneous harvested power for low and high received signal powers, respectively. Finally, we compare the proposed THz SWIPT system with two baseline schemes and confirm that the RX circuit parameters, mathematical EH models, and optimal transmit signal distributions have to be carefully designed to achieve high performance in THz SWIPT systems. |
Author | Mayer, Kenneth M. Cottatellucci, Laura Weimann, Nils G. Schober, Robert Clochiatti, Simone Shanin, Nikita |
Author_xml | – sequence: 1 givenname: Nikita orcidid: 0000-0002-0892-9944 surname: Shanin fullname: Shanin, Nikita email: nikita.shanin@fau.de organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany – sequence: 2 givenname: Simone orcidid: 0000-0002-2911-6678 surname: Clochiatti fullname: Clochiatti, Simone email: simone.clochiatti@uni-due.de organization: Department for High Frequency Electronic Devices, University of Duisburg-Essen, Duisburg, Germany – sequence: 3 givenname: Kenneth M. orcidid: 0000-0003-3292-6038 surname: Mayer fullname: Mayer, Kenneth M. email: kenneth.m.mayer@fau.de organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany – sequence: 4 givenname: Laura orcidid: 0000-0002-6641-8579 surname: Cottatellucci fullname: Cottatellucci, Laura email: laura.cottatellucci@fau.de organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany – sequence: 5 givenname: Nils G. orcidid: 0000-0001-6665-9949 surname: Weimann fullname: Weimann, Nils G. email: nils.weimann@uni-due.de organization: Department for High Frequency Electronic Devices, University of Duisburg-Essen, Duisburg, Germany – sequence: 6 givenname: Robert orcidid: 0000-0002-6420-4884 surname: Schober fullname: Schober, Robert email: robert.schober@fau.de organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany |
BookMark | eNpNkFFPwjAUhRuDiYD-AeNDE5-Hbdd226NOdCQQCCzxcSnbrRlhLbabBn-9Q3zw6SY355x7zzdCA2MNIHRLyYRSkjzk6XKxmDDC-CTknEUkvkBDKkQckFhEAzQkJCGBjKL4Co283xFCOAnDIfIzo61rVFtbg9eqhSBT7hN8CxVe2S9wOHeqAqs1rg3Os2-8eZutcrw59pLG42lz2Ntjbd7xGrw1yrQ474yB_Wn1XNsKgifl-7BphtPalV3d-mt0qdXew83fHKP8ZZqnWTBfvs7Sx3lQsoS2QZwIQXX_cwlMRlvFQyKkjBRLtkJAqTnVlZSqVFBVigIRiuuExZxSESvKwzG6P8cenP3o-krFznbO9BeLkMqYS0J51KvYWVU6670DXRxc3Sh3LCgpTmyLX7bFiW3xx7Y33Z1NNQD8M8iQM0rDH9Kid34 |
CODEN | IECMBT |
Cites_doi | 10.1109/JSTSP.2023.3280343 10.1109/TTHZ.2021.3099057 10.1109/ICC45041.2023.10278773 10.1109/TAP.2017.2705022 10.1109/TCOMM.2019.2951109 10.52953/CHBB9821 10.1109/TCOMM.2017.2783628 10.1109/TIT.2009.2027522 10.1109/ACCESS.2022.3180173 10.1016/j.nancom.2019.100258 10.1109/ACCESS.2020.2984269 10.1109/ISIT.2010.5513714 10.1109/PIMRC50174.2021.9569623 10.1109/JETCAS.2011.2162161 10.1109/LED.2021.3049229 10.1109/JIOT.2021.3135712 10.1109/TWC.2013.031813.120224 10.1109/BCICTS50416.2021.9682475 10.1109/JIOT.2021.3103320 10.1109/JPROC.2021.3061701 10.1007/978-3-642-81241-5 10.1109/COMST.2022.3205505 10.1109/TCOMM.2020.3034359 10.1109/TCOMM.2022.3140467 10.1109/LWC.2022.3142098 10.1109/LCOMM.2015.2478460 10.1109/JSAC.2018.2872615 10.1109/JSYST.2022.3147889 10.1109/MMM.2020.3027935 10.1109/JSAC.2021.3071849 10.1109/JSSC.2019.2944855 10.1109/LWC.2017.2778146 10.1016/j.ab.2005.04.035 10.1109/TCOMM.2017.2664860 10.23919/EuMC54642.2022.9924370 10.1109/TCOMM.2021.3134690 10.1017/CBO9780511804441 10.1109/MCOM.2015.7060516 10.1021/acssensors.9b02487 10.1137/1.9781611970791 10.1109/ISIT.2008.4595260 10.1016/j.nancom.2017.08.003 10.1109/JPROC.2021.3100811 10.1109/TAP.2011.2122294 10.1109/TWC.2022.3140268 10.1109/ACCESS.2019.2892198 10.1002/047174882x 10.1109/JIOT.2020.3014933 10.1109/JSAC.2021.3071837 10.1109/ICC.2017.7997317 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2024.3442708 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 1352 |
ExternalDocumentID | 10_1109_TCOMM_2024_3442708 10634211 |
Genre | orig-research |
GrantInformation_xml | – fundername: SFB 1483 (Project-ID 442419336, EmpkinS) grantid: SCHO 831/17-1 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-89551f677ce267ba4305667a29b55ecf41fd66acaedda1e05a4f92841158a143 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Tue Jul 22 18:41:09 EDT 2025 Tue Jul 01 05:28:09 EDT 2025 Wed Aug 27 01:51:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-89551f677ce267ba4305667a29b55ecf41fd66acaedda1e05a4f92841158a143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3292-6038 0000-0002-0892-9944 0000-0001-6665-9949 0000-0002-6641-8579 0000-0002-2911-6678 0000-0002-6420-4884 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10634211 |
PQID | 3168460147 |
PQPubID | 85472 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3168460147 ieee_primary_10634211 crossref_primary_10_1109_TCOMM_2024_3442708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 Burden (ref49) 1993 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Serrano (ref48) 2015 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 (ref34) 2017 Grant (ref45) 2013 Horowitz (ref29) 1989 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Nocedal (ref47) 2006 Shanin (ref1) 2023 |
References_xml | – ident: ref26 doi: 10.1109/JSTSP.2023.3280343 – ident: ref38 doi: 10.1109/TTHZ.2021.3099057 – ident: ref52 doi: 10.1109/ICC45041.2023.10278773 – ident: ref51 doi: 10.1109/TAP.2017.2705022 – ident: ref25 doi: 10.1109/TCOMM.2019.2951109 – year: 2023 ident: ref1 article-title: Resonant tunneling diode-based THz SWIPT for microscopic 6G IoT devices publication-title: arXiv:2305.03532 – ident: ref4 doi: 10.52953/CHBB9821 – ident: ref19 doi: 10.1109/TCOMM.2017.2783628 – ident: ref42 doi: 10.1109/TIT.2009.2027522 – volume-title: The Art of Electronics year: 1989 ident: ref29 – volume-title: Numerical Analysis year: 1993 ident: ref49 – ident: ref55 doi: 10.1109/ACCESS.2022.3180173 – ident: ref53 doi: 10.1016/j.nancom.2019.100258 – year: 2015 ident: ref48 article-title: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone – ident: ref6 doi: 10.1109/ACCESS.2020.2984269 – ident: ref43 doi: 10.1109/ISIT.2010.5513714 – ident: ref54 doi: 10.1109/PIMRC50174.2021.9569623 – ident: ref8 doi: 10.1109/JETCAS.2011.2162161 – ident: ref33 doi: 10.1109/LED.2021.3049229 – volume-title: Electronic Design Automation (EDA) Software, Advanced Design System (ADS), Version 2017 year: 2017 ident: ref34 – ident: ref14 doi: 10.1109/JIOT.2021.3135712 – ident: ref11 doi: 10.1109/TWC.2013.031813.120224 – ident: ref39 doi: 10.1109/BCICTS50416.2021.9682475 – ident: ref2 doi: 10.1109/JIOT.2021.3103320 – ident: ref3 doi: 10.1109/JPROC.2021.3061701 – ident: ref28 doi: 10.1007/978-3-642-81241-5 – volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.0 Beta (2013) year: 2013 ident: ref45 – ident: ref30 doi: 10.1109/COMST.2022.3205505 – ident: ref27 doi: 10.1109/TCOMM.2020.3034359 – ident: ref23 doi: 10.1109/TCOMM.2022.3140467 – ident: ref24 doi: 10.1109/LWC.2022.3142098 – ident: ref18 doi: 10.1109/LCOMM.2015.2478460 – ident: ref15 doi: 10.1109/JSAC.2018.2872615 – ident: ref21 doi: 10.1109/JSYST.2022.3147889 – ident: ref9 doi: 10.1109/MMM.2020.3027935 – ident: ref35 doi: 10.1109/JSAC.2021.3071849 – ident: ref56 doi: 10.1109/JSSC.2019.2944855 – ident: ref17 doi: 10.1109/LWC.2017.2778146 – ident: ref36 doi: 10.1016/j.ab.2005.04.035 – ident: ref22 doi: 10.1109/TCOMM.2017.2664860 – ident: ref32 doi: 10.23919/EuMC54642.2022.9924370 – ident: ref40 doi: 10.1109/TCOMM.2021.3134690 – ident: ref44 doi: 10.1017/CBO9780511804441 – ident: ref5 doi: 10.1109/MCOM.2015.7060516 – volume-title: Numerical Optimization year: 2006 ident: ref47 – ident: ref41 doi: 10.1021/acssensors.9b02487 – ident: ref46 doi: 10.1137/1.9781611970791 – ident: ref10 doi: 10.1109/ISIT.2008.4595260 – ident: ref12 doi: 10.1016/j.nancom.2017.08.003 – ident: ref7 doi: 10.1109/JPROC.2021.3100811 – ident: ref31 doi: 10.1109/TAP.2011.2122294 – ident: ref13 doi: 10.1109/TWC.2022.3140268 – ident: ref57 doi: 10.1109/ACCESS.2019.2892198 – ident: ref50 doi: 10.1002/047174882x – ident: ref20 doi: 10.1109/JIOT.2020.3014933 – ident: ref37 doi: 10.1109/JSAC.2021.3071837 – ident: ref16 doi: 10.1109/ICC.2017.7997317 |
SSID | ssj0004033 |
Score | 2.4635453 |
Snippet | In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1336 |
SubjectTerms | Amplitude shift keying Amplitudes Circuits Closed form solutions Complexity Diodes Electric power distribution Energy harvesting Exact solutions Information systems Integrated circuit modeling Internet of Things non-linear energy harvesting Optimization Parameters Power transfer Real time Resonant tunneling Resonant tunneling devices resonant tunnelling devices Schottky diodes signal design Simulation Systems design Terahertz communications Terahertz frequencies Tradeoffs Tunnel diodes |
Title | Information Rate-Harvested Power Tradeoff in THz SWIPT Systems Employing Resonant Tunneling Diode-Based EH Circuits |
URI | https://ieeexplore.ieee.org/document/10634211 https://www.proquest.com/docview/3168460147 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwELWA03IAdgFRYFc-cEMuseM68REKqItUQBAEt8jxh1QhtahNLvx6ZpxUVKCV9hZFcWR5bM8be948Qk4U3u0Ik7CgRMZkFgKrUs5ZDlAZ4L7xSTzTHd-q0ZO8eRm8dGT1yIXx3sfkM9_Hx3iX72a2waMyWOEqlQKZvOsQubVkrU8SZJJ2JScxnz3LlwyZRJ8Vw7vxGGJBIfuplCJDLckVLxRlVb7txdHBXG-T22XX2ryS135TV337_qVq43_3fYdsdVCTnrdz4ydZ89NfZHOlAOEuWXRsJLQOfQDYyVArKB6B0nvUT6Pgy5yfhUAnU1qM3unj89_7gnZ1zmmrFwy_ongNgDk1tGgwcwZfXU5mzrMLcJOOXo3ocDK3zaRe7JHi-qoYjlgnw8Cs0LxmuQZUFWBIrRcqqwwWCVMqM0JXg4G3QfLglDLWeOcM98nAyKDB6wHWzA3AsX2yMZ1N_QGhnLuQW-1MJVMZ0rziRkNrz3klnTa2R06XVinf2mIbZQxSEl1GG5Zow7KzYY_s4TCvfNmOcI8cLy1ZdgtyUaI-l4TgU2aH_2h2RH4I1PaNGdnHZKOeN_43AI66-hMn2ge309EP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUQPdAeKLRUbIHWh94qb2PHceIjLKBA2S1qU5Vb5PhDWiHtVmxy4dcz42TFqlWl3qIojqwZ2_Nsz5tHyCeFdzvCJCwokTOZh8CalHNWAFQGuG98Es90pzNV_pTXd9ndQFaPXBjvfUw-82N8jHf5bmk7PCqDGa5SKZDJ-wICf8Z7utYzDTJJh6KTmNGeF2uOTKK_VJNv0ynsBoUcp1KKHNUkN-JQFFb5azWOIebyNZmtO9dnltyPu7YZ28c_6jb-d-_3yO4ANulpPzr2yZZfvCGvNkoQviWrgY-E_qHfAXgyVAuKh6D0FhXUKEQz55ch0PmCVuUj_fHr6raiQ6Vz2isGw68oXgRgVg2tOsydwVfn86Xz7AwCpaMXJZ3MH2w3b1cHpLq8qCYlG4QYmBWat6zQYOwAJrVeqLwxWCZMqdwI3WSZt0Hy4JQy1njnDPdJZmTQEPcAbRYGANk7sr1YLvwhoZy7UFjtTCNTGdKi4UZDa895I502dkQ-r71S_-7LbdRxm5LoOvqwRh_Wgw9H5ADNvPFlb-EROV57sh6m5KpGhS4J20-Zv_9Hs49kp6ymN_XN1ezrEXkpUOk35mcfk-32ofMnAD_a5kMcdE_KCdRY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Rate-Harvested+Power+Tradeoff+in+THz+SWIPT+Systems+Employing+Resonant+Tunneling+Diode-Based+EH+Circuits&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shanin%2C+Nikita&rft.au=Clochiatti%2C+Simone&rft.au=Mayer%2C+Kenneth+M.&rft.au=Cottatellucci%2C+Laura&rft.date=2025-02-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=2&rft.spage=1336&rft.epage=1352&rft_id=info:doi/10.1109%2FTCOMM.2024.3442708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2024_3442708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |