Information Rate-Harvested Power Tradeoff in THz SWIPT Systems Employing Resonant Tunneling Diode-Based EH Circuits

In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design tha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 73; no. 2; pp. 1336 - 1352
Main Authors Shanin, Nikita, Clochiatti, Simone, Mayer, Kenneth M., Cottatellucci, Laura, Weimann, Nils G., Schober, Robert
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design that employs unipolar amplitude shift keying (ASK) modulation at the transmitter (TX) and a resonant-tunnelling diode (RTD)-based EH circuit at the receiver (RX) to extract both information and power from the received signal. Furthermore, we propose a novel model for the dependence of the instantaneous output power of the RTD-based RX on the instantaneous received power, which is based on a non-linear and non-monotonic piecewise function, whose parameters are adjusted to fit circuit simulation results. To determine the information rate-harvested power tradeoff of the considered THz SWIPT system, we derive the distribution of the transmit signal that maximizes the mutual information between the transmit and received signals subject to constraints on the required average harvested power at the RX and the peak signal amplitude at the TX. Since the computational complexity needed for maximization of the mutual information may be infeasible for real-time THz SWIPT systems, we derive low-complexity suboptimal input signal distributions that maximize an achievable information rate numerically and in closed form for high and low required average harvested powers, respectively. Furthermore, based on the obtained results, we propose a suboptimal closed-form distribution of the transmit signal which can also guarantee a desired harvested power at the RX. Our simulation results show that while the proposed EH model can capture the non-monotonicity of RTD-based EH circuits in the THz band, baseline linear and non-linear EH models, developed for Schottky-diode-based EH circuits, cannot. Furthermore, we demonstrate that a lower reverse current flow and a higher breakdown voltage of the employed RTD are preferable when the input signal power at the RX is low and high, respectively. We also show that all proposed input distributions yield practically identical SWIPT system performance. Moreover, we reveal that the information rate-harvested power tradeoff of THz SWIPT systems is determined by the peak amplitude of the TX signal and the maximum instantaneous harvested power for low and high received signal powers, respectively. Finally, we compare the proposed THz SWIPT system with two baseline schemes and confirm that the RX circuit parameters, mathematical EH models, and optimal transmit signal distributions have to be carefully designed to achieve high performance in THz SWIPT systems.
AbstractList In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes may not be efficient for THz energy harvesting (EH), we propose a novel THz SWIPT system design that employs unipolar amplitude shift keying (ASK) modulation at the transmitter (TX) and a resonant-tunnelling diode (RTD)-based EH circuit at the receiver (RX) to extract both information and power from the received signal. Furthermore, we propose a novel model for the dependence of the instantaneous output power of the RTD-based RX on the instantaneous received power, which is based on a non-linear and non-monotonic piecewise function, whose parameters are adjusted to fit circuit simulation results. To determine the information rate-harvested power tradeoff of the considered THz SWIPT system, we derive the distribution of the transmit signal that maximizes the mutual information between the transmit and received signals subject to constraints on the required average harvested power at the RX and the peak signal amplitude at the TX. Since the computational complexity needed for maximization of the mutual information may be infeasible for real-time THz SWIPT systems, we derive low-complexity suboptimal input signal distributions that maximize an achievable information rate numerically and in closed form for high and low required average harvested powers, respectively. Furthermore, based on the obtained results, we propose a suboptimal closed-form distribution of the transmit signal which can also guarantee a desired harvested power at the RX. Our simulation results show that while the proposed EH model can capture the non-monotonicity of RTD-based EH circuits in the THz band, baseline linear and non-linear EH models, developed for Schottky-diode-based EH circuits, cannot. Furthermore, we demonstrate that a lower reverse current flow and a higher breakdown voltage of the employed RTD are preferable when the input signal power at the RX is low and high, respectively. We also show that all proposed input distributions yield practically identical SWIPT system performance. Moreover, we reveal that the information rate-harvested power tradeoff of THz SWIPT systems is determined by the peak amplitude of the TX signal and the maximum instantaneous harvested power for low and high received signal powers, respectively. Finally, we compare the proposed THz SWIPT system with two baseline schemes and confirm that the RX circuit parameters, mathematical EH models, and optimal transmit signal distributions have to be carefully designed to achieve high performance in THz SWIPT systems.
Author Mayer, Kenneth M.
Cottatellucci, Laura
Weimann, Nils G.
Schober, Robert
Clochiatti, Simone
Shanin, Nikita
Author_xml – sequence: 1
  givenname: Nikita
  orcidid: 0000-0002-0892-9944
  surname: Shanin
  fullname: Shanin, Nikita
  email: nikita.shanin@fau.de
  organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
– sequence: 2
  givenname: Simone
  orcidid: 0000-0002-2911-6678
  surname: Clochiatti
  fullname: Clochiatti, Simone
  email: simone.clochiatti@uni-due.de
  organization: Department for High Frequency Electronic Devices, University of Duisburg-Essen, Duisburg, Germany
– sequence: 3
  givenname: Kenneth M.
  orcidid: 0000-0003-3292-6038
  surname: Mayer
  fullname: Mayer, Kenneth M.
  email: kenneth.m.mayer@fau.de
  organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
– sequence: 4
  givenname: Laura
  orcidid: 0000-0002-6641-8579
  surname: Cottatellucci
  fullname: Cottatellucci, Laura
  email: laura.cottatellucci@fau.de
  organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
– sequence: 5
  givenname: Nils G.
  orcidid: 0000-0001-6665-9949
  surname: Weimann
  fullname: Weimann, Nils G.
  email: nils.weimann@uni-due.de
  organization: Department for High Frequency Electronic Devices, University of Duisburg-Essen, Duisburg, Germany
– sequence: 6
  givenname: Robert
  orcidid: 0000-0002-6420-4884
  surname: Schober
  fullname: Schober, Robert
  email: robert.schober@fau.de
  organization: Institute for Digital Communications, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
BookMark eNpNkFFPwjAUhRuDiYD-AeNDE5-Hbdd226NOdCQQCCzxcSnbrRlhLbabBn-9Q3zw6SY355x7zzdCA2MNIHRLyYRSkjzk6XKxmDDC-CTknEUkvkBDKkQckFhEAzQkJCGBjKL4Co283xFCOAnDIfIzo61rVFtbg9eqhSBT7hN8CxVe2S9wOHeqAqs1rg3Os2-8eZutcrw59pLG42lz2Ntjbd7xGrw1yrQ474yB_Wn1XNsKgifl-7BphtPalV3d-mt0qdXew83fHKP8ZZqnWTBfvs7Sx3lQsoS2QZwIQXX_cwlMRlvFQyKkjBRLtkJAqTnVlZSqVFBVigIRiuuExZxSESvKwzG6P8cenP3o-krFznbO9BeLkMqYS0J51KvYWVU6670DXRxc3Sh3LCgpTmyLX7bFiW3xx7Y33Z1NNQD8M8iQM0rDH9Kid34
CODEN IECMBT
Cites_doi 10.1109/JSTSP.2023.3280343
10.1109/TTHZ.2021.3099057
10.1109/ICC45041.2023.10278773
10.1109/TAP.2017.2705022
10.1109/TCOMM.2019.2951109
10.52953/CHBB9821
10.1109/TCOMM.2017.2783628
10.1109/TIT.2009.2027522
10.1109/ACCESS.2022.3180173
10.1016/j.nancom.2019.100258
10.1109/ACCESS.2020.2984269
10.1109/ISIT.2010.5513714
10.1109/PIMRC50174.2021.9569623
10.1109/JETCAS.2011.2162161
10.1109/LED.2021.3049229
10.1109/JIOT.2021.3135712
10.1109/TWC.2013.031813.120224
10.1109/BCICTS50416.2021.9682475
10.1109/JIOT.2021.3103320
10.1109/JPROC.2021.3061701
10.1007/978-3-642-81241-5
10.1109/COMST.2022.3205505
10.1109/TCOMM.2020.3034359
10.1109/TCOMM.2022.3140467
10.1109/LWC.2022.3142098
10.1109/LCOMM.2015.2478460
10.1109/JSAC.2018.2872615
10.1109/JSYST.2022.3147889
10.1109/MMM.2020.3027935
10.1109/JSAC.2021.3071849
10.1109/JSSC.2019.2944855
10.1109/LWC.2017.2778146
10.1016/j.ab.2005.04.035
10.1109/TCOMM.2017.2664860
10.23919/EuMC54642.2022.9924370
10.1109/TCOMM.2021.3134690
10.1017/CBO9780511804441
10.1109/MCOM.2015.7060516
10.1021/acssensors.9b02487
10.1137/1.9781611970791
10.1109/ISIT.2008.4595260
10.1016/j.nancom.2017.08.003
10.1109/JPROC.2021.3100811
10.1109/TAP.2011.2122294
10.1109/TWC.2022.3140268
10.1109/ACCESS.2019.2892198
10.1002/047174882x
10.1109/JIOT.2020.3014933
10.1109/JSAC.2021.3071837
10.1109/ICC.2017.7997317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2024.3442708
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1352
ExternalDocumentID 10_1109_TCOMM_2024_3442708
10634211
Genre orig-research
GrantInformation_xml – fundername: SFB 1483 (Project-ID 442419336, EmpkinS)
  grantid: SCHO 831/17-1
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-89551f677ce267ba4305667a29b55ecf41fd66acaedda1e05a4f92841158a143
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Tue Jul 22 18:41:09 EDT 2025
Tue Jul 01 05:28:09 EDT 2025
Wed Aug 27 01:51:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-89551f677ce267ba4305667a29b55ecf41fd66acaedda1e05a4f92841158a143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3292-6038
0000-0002-0892-9944
0000-0001-6665-9949
0000-0002-6641-8579
0000-0002-2911-6678
0000-0002-6420-4884
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10634211
PQID 3168460147
PQPubID 85472
PageCount 17
ParticipantIDs proquest_journals_3168460147
ieee_primary_10634211
crossref_primary_10_1109_TCOMM_2024_3442708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
Burden (ref49) 1993
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Serrano (ref48) 2015
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
(ref34) 2017
Grant (ref45) 2013
Horowitz (ref29) 1989
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Nocedal (ref47) 2006
Shanin (ref1) 2023
References_xml – ident: ref26
  doi: 10.1109/JSTSP.2023.3280343
– ident: ref38
  doi: 10.1109/TTHZ.2021.3099057
– ident: ref52
  doi: 10.1109/ICC45041.2023.10278773
– ident: ref51
  doi: 10.1109/TAP.2017.2705022
– ident: ref25
  doi: 10.1109/TCOMM.2019.2951109
– year: 2023
  ident: ref1
  article-title: Resonant tunneling diode-based THz SWIPT for microscopic 6G IoT devices
  publication-title: arXiv:2305.03532
– ident: ref4
  doi: 10.52953/CHBB9821
– ident: ref19
  doi: 10.1109/TCOMM.2017.2783628
– ident: ref42
  doi: 10.1109/TIT.2009.2027522
– volume-title: The Art of Electronics
  year: 1989
  ident: ref29
– volume-title: Numerical Analysis
  year: 1993
  ident: ref49
– ident: ref55
  doi: 10.1109/ACCESS.2022.3180173
– ident: ref53
  doi: 10.1016/j.nancom.2019.100258
– year: 2015
  ident: ref48
  article-title: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone
– ident: ref6
  doi: 10.1109/ACCESS.2020.2984269
– ident: ref43
  doi: 10.1109/ISIT.2010.5513714
– ident: ref54
  doi: 10.1109/PIMRC50174.2021.9569623
– ident: ref8
  doi: 10.1109/JETCAS.2011.2162161
– ident: ref33
  doi: 10.1109/LED.2021.3049229
– volume-title: Electronic Design Automation (EDA) Software, Advanced Design System (ADS), Version 2017
  year: 2017
  ident: ref34
– ident: ref14
  doi: 10.1109/JIOT.2021.3135712
– ident: ref11
  doi: 10.1109/TWC.2013.031813.120224
– ident: ref39
  doi: 10.1109/BCICTS50416.2021.9682475
– ident: ref2
  doi: 10.1109/JIOT.2021.3103320
– ident: ref3
  doi: 10.1109/JPROC.2021.3061701
– ident: ref28
  doi: 10.1007/978-3-642-81241-5
– volume-title: CVX: MATLAB Software for Disciplined Convex Programming, Version 2.0 Beta (2013)
  year: 2013
  ident: ref45
– ident: ref30
  doi: 10.1109/COMST.2022.3205505
– ident: ref27
  doi: 10.1109/TCOMM.2020.3034359
– ident: ref23
  doi: 10.1109/TCOMM.2022.3140467
– ident: ref24
  doi: 10.1109/LWC.2022.3142098
– ident: ref18
  doi: 10.1109/LCOMM.2015.2478460
– ident: ref15
  doi: 10.1109/JSAC.2018.2872615
– ident: ref21
  doi: 10.1109/JSYST.2022.3147889
– ident: ref9
  doi: 10.1109/MMM.2020.3027935
– ident: ref35
  doi: 10.1109/JSAC.2021.3071849
– ident: ref56
  doi: 10.1109/JSSC.2019.2944855
– ident: ref17
  doi: 10.1109/LWC.2017.2778146
– ident: ref36
  doi: 10.1016/j.ab.2005.04.035
– ident: ref22
  doi: 10.1109/TCOMM.2017.2664860
– ident: ref32
  doi: 10.23919/EuMC54642.2022.9924370
– ident: ref40
  doi: 10.1109/TCOMM.2021.3134690
– ident: ref44
  doi: 10.1017/CBO9780511804441
– ident: ref5
  doi: 10.1109/MCOM.2015.7060516
– volume-title: Numerical Optimization
  year: 2006
  ident: ref47
– ident: ref41
  doi: 10.1021/acssensors.9b02487
– ident: ref46
  doi: 10.1137/1.9781611970791
– ident: ref10
  doi: 10.1109/ISIT.2008.4595260
– ident: ref12
  doi: 10.1016/j.nancom.2017.08.003
– ident: ref7
  doi: 10.1109/JPROC.2021.3100811
– ident: ref31
  doi: 10.1109/TAP.2011.2122294
– ident: ref13
  doi: 10.1109/TWC.2022.3140268
– ident: ref57
  doi: 10.1109/ACCESS.2019.2892198
– ident: ref50
  doi: 10.1002/047174882x
– ident: ref20
  doi: 10.1109/JIOT.2020.3014933
– ident: ref37
  doi: 10.1109/JSAC.2021.3071837
– ident: ref16
  doi: 10.1109/ICC.2017.7997317
SSID ssj0004033
Score 2.4635453
Snippet In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1336
SubjectTerms Amplitude shift keying
Amplitudes
Circuits
Closed form solutions
Complexity
Diodes
Electric power distribution
Energy harvesting
Exact solutions
Information systems
Integrated circuit modeling
Internet of Things
non-linear energy harvesting
Optimization
Parameters
Power transfer
Real time
Resonant tunneling
Resonant tunneling devices
resonant tunnelling devices
Schottky diodes
signal design
Simulation
Systems design
Terahertz communications
Terahertz frequencies
Tradeoffs
Tunnel diodes
Title Information Rate-Harvested Power Tradeoff in THz SWIPT Systems Employing Resonant Tunneling Diode-Based EH Circuits
URI https://ieeexplore.ieee.org/document/10634211
https://www.proquest.com/docview/3168460147
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwELWA03IAdgFRYFc-cEMuseM68REKqItUQBAEt8jxh1QhtahNLvx6ZpxUVKCV9hZFcWR5bM8be948Qk4U3u0Ik7CgRMZkFgKrUs5ZDlAZ4L7xSTzTHd-q0ZO8eRm8dGT1yIXx3sfkM9_Hx3iX72a2waMyWOEqlQKZvOsQubVkrU8SZJJ2JScxnz3LlwyZRJ8Vw7vxGGJBIfuplCJDLckVLxRlVb7txdHBXG-T22XX2ryS135TV337_qVq43_3fYdsdVCTnrdz4ydZ89NfZHOlAOEuWXRsJLQOfQDYyVArKB6B0nvUT6Pgy5yfhUAnU1qM3unj89_7gnZ1zmmrFwy_ongNgDk1tGgwcwZfXU5mzrMLcJOOXo3ocDK3zaRe7JHi-qoYjlgnw8Cs0LxmuQZUFWBIrRcqqwwWCVMqM0JXg4G3QfLglDLWeOcM98nAyKDB6wHWzA3AsX2yMZ1N_QGhnLuQW-1MJVMZ0rziRkNrz3klnTa2R06XVinf2mIbZQxSEl1GG5Zow7KzYY_s4TCvfNmOcI8cLy1ZdgtyUaI-l4TgU2aH_2h2RH4I1PaNGdnHZKOeN_43AI66-hMn2ge309EP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUQPdAeKLRUbIHWh94qb2PHceIjLKBA2S1qU5Vb5PhDWiHtVmxy4dcz42TFqlWl3qIojqwZ2_Nsz5tHyCeFdzvCJCwokTOZh8CalHNWAFQGuG98Es90pzNV_pTXd9ndQFaPXBjvfUw-82N8jHf5bmk7PCqDGa5SKZDJ-wICf8Z7utYzDTJJh6KTmNGeF2uOTKK_VJNv0ynsBoUcp1KKHNUkN-JQFFb5azWOIebyNZmtO9dnltyPu7YZ28c_6jb-d-_3yO4ANulpPzr2yZZfvCGvNkoQviWrgY-E_qHfAXgyVAuKh6D0FhXUKEQz55ch0PmCVuUj_fHr6raiQ6Vz2isGw68oXgRgVg2tOsydwVfn86Xz7AwCpaMXJZ3MH2w3b1cHpLq8qCYlG4QYmBWat6zQYOwAJrVeqLwxWCZMqdwI3WSZt0Hy4JQy1njnDPdJZmTQEPcAbRYGANk7sr1YLvwhoZy7UFjtTCNTGdKi4UZDa895I502dkQ-r71S_-7LbdRxm5LoOvqwRh_Wgw9H5ADNvPFlb-EROV57sh6m5KpGhS4J20-Zv_9Hs49kp6ymN_XN1ezrEXkpUOk35mcfk-32ofMnAD_a5kMcdE_KCdRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Rate-Harvested+Power+Tradeoff+in+THz+SWIPT+Systems+Employing+Resonant+Tunneling+Diode-Based+EH+Circuits&rft.jtitle=IEEE+transactions+on+communications&rft.au=Shanin%2C+Nikita&rft.au=Clochiatti%2C+Simone&rft.au=Mayer%2C+Kenneth+M.&rft.au=Cottatellucci%2C+Laura&rft.date=2025-02-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=73&rft.issue=2&rft.spage=1336&rft.epage=1352&rft_id=info:doi/10.1109%2FTCOMM.2024.3442708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2024_3442708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon