Estimating the duration of professional tennis matches for varying formats

The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level...

Full description

Saved in:
Bibliographic Details
Published inJournal of quantitative analysis in sports Vol. 14; no. 1; pp. 13 - 23
Main Authors Kovalchik, Stephanie Ann, Ingram, Martin
Format Journal Article
LanguageEnglish
Published De Gruyter 28.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats.
AbstractList Abstract The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats.
The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats.
Author Kovalchik, Stephanie Ann
Ingram, Martin
Author_xml – sequence: 1
  givenname: Stephanie Ann
  surname: Kovalchik
  fullname: Kovalchik, Stephanie Ann
  email: s.a.kovalchik@gmail.com
  organization: Game Insight Group, Tennis Australia, Victoria, Australia
– sequence: 2
  givenname: Martin
  surname: Ingram
  fullname: Ingram, Martin
  organization: Silverpond, Victoria, Australia
BookMark eNp1kEtPwzAQhC1UJNrClbP_gMv6ldjihKryUiUucLbsxO5DJS52Auq_x1G5ctqZ1X4rzczQpIudR-iWwoJKKu_2XzYTBrQmAHV9gaZUSk1AUJigKaNakIordYVmOe8BBGdSTdHrKve7T9vvug3utx63QyomdjgGfEwx-JyLswfc-67bZVxOm63POMSEv206jVzRZZ2v0WWwh-xv_uYcfTyu3pfPZP329LJ8WJOGadoTVVWBt5V1VFvrFEgdVGiDclaB5hwCc8I1jolaSwDnoGIsaCe9daIpjs_R4vy3STHn5IM5phIhnQwFMzZhxibM2IQZmyjA_Rn4sYfep9Zv0nAqwuzjkEq2_A9IBaWc_wJLfGku
CitedBy_id crossref_primary_10_3233_JSA_200455
crossref_primary_10_1515_jqas_2023_0103
crossref_primary_10_5507_ag_2018_021
crossref_primary_10_1515_jqas_2020_0066
crossref_primary_10_1177_17479541231169033
crossref_primary_10_1155_2022_7447121
crossref_primary_10_1371_journal_pone_0266838
Cites_doi 10.1016/S0969-4765(16)30197-7
10.1093/acprof:oso/9780199355952.001.0001
10.1137/050640278
10.1111/j.1740-9713.2015.00852.x
10.1080/02640414.2016.1165858
10.1515/jqas-2013-0091
10.1080/02701367.1987.10605454
10.1080/10671188.1970.10615015
10.1080/00948705.2017.1380950
10.1515/hukin-2015-0173
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1515/jqas-2017-0077
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Recreation & Sports
EISSN 1559-0410
EndPage 23
ExternalDocumentID 10_1515_jqas_2017_0077
10_1515_jqas_2017_007714113
GroupedDBID -~S
0R~
1WD
5GY
9-L
AAAEU
AADQG
AAEMA
AAFPC
AAGVJ
AAJBH
AALGR
AAONY
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABPLS
ABRQL
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACTFP
ACXLN
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AEQDQ
AEQLX
AERZL
AEUFC
AEXIE
AFBAA
AFBQV
AFCXV
AFGNR
AFQUK
AFYRI
AHCWZ
AHVWV
AHXUK
AIERV
AIGSN
AIKXB
AJATJ
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CS3
DASCH
DBYYV
DU5
DXH
EBS
EJD
FSTRU
HZ~
IY9
K.~
LG7
MV1
NQBSW
O9-
P2P
QD8
RYL
SA.
T2Y
WTRAM
~Z8
AAAVF
AACIX
AAILP
AAYXX
ABJNI
ABVMU
ABWLS
ACPMA
AGBEV
AKXKS
CITATION
KDIRW
SLJYH
UK5
ID FETCH-LOGICAL-c291t-866f3d6ab19aab8059f8fdf8ba809330f2b4bcb2479500bb0622f9b5eab4cb063
ISSN 2194-6388
IngestDate Thu Sep 12 17:56:13 EDT 2024
Fri Nov 25 00:41:21 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-866f3d6ab19aab8059f8fdf8ba809330f2b4bcb2479500bb0622f9b5eab4cb063
PageCount 11
ParticipantIDs crossref_primary_10_1515_jqas_2017_0077
walterdegruyter_journals_10_1515_jqas_2017_007714113
PublicationCentury 2000
PublicationDate 2018-3-28
PublicationDateYYYYMMDD 2018-03-28
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-3-28
  day: 28
PublicationDecade 2010
PublicationTitle Journal of quantitative analysis in sports
PublicationYear 2018
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2021021320211300791_j_jqas-2017-0077_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
2021021320211300791_j_jqas-2017-0077_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
2021021320211300791_j_jqas-2017-0077_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
2021021320211300791_j_jqas-2017-0077_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
2021021320211300791_j_jqas-2017-0077_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
2021021320211300791_j_jqas-2017-0077_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
2021021320211300791_j_jqas-2017-0077_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
2021021320211300791_j_jqas-2017-0077_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
2021021320211300791_j_jqas-2017-0077_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
2021021320211300791_j_jqas-2017-0077_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
2021021320211300791_j_jqas-2017-0077_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
2021021320211300791_j_jqas-2017-0077_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
2021021320211300791_j_jqas-2017-0077_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
2021021320211300791_j_jqas-2017-0077_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
2021021320211300791_j_jqas-2017-0077_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
2021021320211300791_j_jqas-2017-0077_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
2021021320211300791_j_jqas-2017-0077_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
2021021320211300791_j_jqas-2017-0077_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
2021021320211300791_j_jqas-2017-0077_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
References_xml – ident: 2021021320211300791_j_jqas-2017-0077_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa
  doi: 10.1016/S0969-4765(16)30197-7
– ident: 2021021320211300791_j_jqas-2017-0077_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa
  doi: 10.1093/acprof:oso/9780199355952.001.0001
– ident: 2021021320211300791_j_jqas-2017-0077_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa
  doi: 10.1137/050640278
– ident: 2021021320211300791_j_jqas-2017-0077_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa
  doi: 10.1111/j.1740-9713.2015.00852.x
– ident: 2021021320211300791_j_jqas-2017-0077_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa
  doi: 10.1080/02640414.2016.1165858
– ident: 2021021320211300791_j_jqas-2017-0077_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa
  doi: 10.1515/jqas-2013-0091
– ident: 2021021320211300791_j_jqas-2017-0077_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa
  doi: 10.1080/02701367.1987.10605454
– ident: 2021021320211300791_j_jqas-2017-0077_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa
  doi: 10.1080/10671188.1970.10615015
– ident: 2021021320211300791_j_jqas-2017-0077_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa
  doi: 10.1080/00948705.2017.1380950
– ident: 2021021320211300791_j_jqas-2017-0077_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa
– ident: 2021021320211300791_j_jqas-2017-0077_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa
  doi: 10.1515/hukin-2015-0173
SSID ssj0043258
Score 2.160627
Snippet The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to...
Abstract The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like...
SourceID crossref
walterdegruyter
SourceType Aggregation Database
Publisher
StartPage 13
SubjectTerms elite sport
game intensity
Monte Carlo
tracking data
Title Estimating the duration of professional tennis matches for varying formats
URI http://www.degruyter.com/doi/10.1515/jqas-2017-0077
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqurAgnuItDwiGKlCnjknGggoVAxMgtshOYl5SWpoEVH49d46TlJcELGlrxVbj-3yP-LszIXtag1WNWeQIN4kcLrlyAsV8J2Ja8ERL3ExDtsWlGF7zi1vvttWazrCWilwdRm_f5pX8R6rQBnLFLNk_SLYeFBrgO8gXriBhuP5KxgNYn-hx2oynuJjUDuB4puRGJ0cKS9aBW_F4LMMsfJGTqSVRQnP2g4_6XMjUZKEhv0hW9Use0o4Jhpt9oBE8VXT_8FTzxjBxvdNPG-SlyAKzyUFVtW_7soGZ7DubvG0YI4DcSTGtiMNGTYHK4w6s4vKuxKpRD7dcLGG10rP8C55KpVkmo1rzW2Yff1HsnqmB8fgsM0AAGFYsQ9SYsGrb_pNlq_mGGOnACCH2D7F_iP0ZZ3jecdsFHQXKsd0_PxncVGac91xzuGv9eLbiJwxz9PFvfPBoFl4NyyFO7sp5mnFWrhbJgpUg7ZeQWSKtJF0my02IQPepOd4-WyEXDYgogIhWIKIjTWdBREsQUQsiCsChFkTUgmiVXJ8Nrk6Hjj1gw4ncgOWOL4TuxUIqFkipfPC0ta9j7Svpmxdd2lVcRcrlx4HX7SrVFa6rA-UlUvEIfvXWyFw6SpN1QiGs8HpcaOWDv-hDTAsfAjPzwR_2mOYb5KCapHBc1lEJv5fKBuGf5jC0Sy77oYeR4-b_um2R-Qbn22QunxTJDriZudq1gHgHox2Bmw
link.rule.ids 315,783,787,27936,27937
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+duration+of+professional+tennis+matches+for+varying+formats&rft.jtitle=Journal+of+quantitative+analysis+in+sports&rft.au=Kovalchik%2C+Stephanie+Ann&rft.au=Ingram%2C+Martin&rft.date=2018-03-28&rft.pub=De+Gruyter&rft.issn=2194-6388&rft.eissn=1559-0410&rft.volume=14&rft.issue=1&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1515%2Fjqas-2017-0077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jqas_2017_007714113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-6388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-6388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-6388&client=summon