Estimating the duration of professional tennis matches for varying formats
The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level...
Saved in:
Published in | Journal of quantitative analysis in sports Vol. 14; no. 1; pp. 13 - 23 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
28.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats. |
---|---|
AbstractList | Abstract
The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats. The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to curb match lengths yet the impact of these formats on the professional game remains poorly understood. In this paper, we develop a shot-level Monte Carlo match simulation approach for estimating the duration, points played, and upset probability given a specific match format. Our model is built on validated models of the in-play and between-play time of matches using Hawk-eye tracking data and publicly available shot-level tennis statistics. When we applied our models to a variety of match formats with serve characteristics representative of current elite players, we found that Fast4 formats had an expected duration of 60 minutes, best of 3 averaged 90 minutes, and best of 5 averaged 120 minutes. Our results also showed that longer matches favor the better player and make match outcomes more predictable. Fast4 formats had a typical upset frequency of 20% compared to 13% for best of 3 matches and 10% for best of 5 matches. The modeling approach we have developed can be a useful resource for tennis governing bodies in assessing the impact of new match formats. |
Author | Kovalchik, Stephanie Ann Ingram, Martin |
Author_xml | – sequence: 1 givenname: Stephanie Ann surname: Kovalchik fullname: Kovalchik, Stephanie Ann email: s.a.kovalchik@gmail.com organization: Game Insight Group, Tennis Australia, Victoria, Australia – sequence: 2 givenname: Martin surname: Ingram fullname: Ingram, Martin organization: Silverpond, Victoria, Australia |
BookMark | eNp1kEtPwzAQhC1UJNrClbP_gMv6ldjihKryUiUucLbsxO5DJS52Auq_x1G5ctqZ1X4rzczQpIudR-iWwoJKKu_2XzYTBrQmAHV9gaZUSk1AUJigKaNakIordYVmOe8BBGdSTdHrKve7T9vvug3utx63QyomdjgGfEwx-JyLswfc-67bZVxOm63POMSEv206jVzRZZ2v0WWwh-xv_uYcfTyu3pfPZP329LJ8WJOGadoTVVWBt5V1VFvrFEgdVGiDclaB5hwCc8I1jolaSwDnoGIsaCe9daIpjs_R4vy3STHn5IM5phIhnQwFMzZhxibM2IQZmyjA_Rn4sYfep9Zv0nAqwuzjkEq2_A9IBaWc_wJLfGku |
CitedBy_id | crossref_primary_10_3233_JSA_200455 crossref_primary_10_1515_jqas_2023_0103 crossref_primary_10_5507_ag_2018_021 crossref_primary_10_1515_jqas_2020_0066 crossref_primary_10_1177_17479541231169033 crossref_primary_10_1155_2022_7447121 crossref_primary_10_1371_journal_pone_0266838 |
Cites_doi | 10.1016/S0969-4765(16)30197-7 10.1093/acprof:oso/9780199355952.001.0001 10.1137/050640278 10.1111/j.1740-9713.2015.00852.x 10.1080/02640414.2016.1165858 10.1515/jqas-2013-0091 10.1080/02701367.1987.10605454 10.1080/10671188.1970.10615015 10.1080/00948705.2017.1380950 10.1515/hukin-2015-0173 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/jqas-2017-0077 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Recreation & Sports |
EISSN | 1559-0410 |
EndPage | 23 |
ExternalDocumentID | 10_1515_jqas_2017_0077 10_1515_jqas_2017_007714113 |
GroupedDBID | -~S 0R~ 1WD 5GY 9-L AAAEU AADQG AAEMA AAFPC AAGVJ AAJBH AALGR AAONY AAPJK AAQCX AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABPLS ABRQL ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACTFP ACXLN ACZBO ADEQT ADGQD ADGYE ADJVZ ADOZN AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AEQDQ AEQLX AERZL AEUFC AEXIE AFBAA AFBQV AFCXV AFGNR AFQUK AFYRI AHCWZ AHVWV AHXUK AIERV AIGSN AIKXB AJATJ ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV CS3 DASCH DBYYV DU5 DXH EBS EJD FSTRU HZ~ IY9 K.~ LG7 MV1 NQBSW O9- P2P QD8 RYL SA. T2Y WTRAM ~Z8 AAAVF AACIX AAILP AAYXX ABJNI ABVMU ABWLS ACPMA AGBEV AKXKS CITATION KDIRW SLJYH UK5 |
ID | FETCH-LOGICAL-c291t-866f3d6ab19aab8059f8fdf8ba809330f2b4bcb2479500bb0622f9b5eab4cb063 |
ISSN | 2194-6388 |
IngestDate | Thu Sep 12 17:56:13 EDT 2024 Fri Nov 25 00:41:21 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-866f3d6ab19aab8059f8fdf8ba809330f2b4bcb2479500bb0622f9b5eab4cb063 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1515_jqas_2017_0077 walterdegruyter_journals_10_1515_jqas_2017_007714113 |
PublicationCentury | 2000 |
PublicationDate | 2018-3-28 |
PublicationDateYYYYMMDD | 2018-03-28 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-3-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Journal of quantitative analysis in sports |
PublicationYear | 2018 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2021021320211300791_j_jqas-2017-0077_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa 2021021320211300791_j_jqas-2017-0077_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa 2021021320211300791_j_jqas-2017-0077_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa 2021021320211300791_j_jqas-2017-0077_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa 2021021320211300791_j_jqas-2017-0077_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa 2021021320211300791_j_jqas-2017-0077_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa 2021021320211300791_j_jqas-2017-0077_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa 2021021320211300791_j_jqas-2017-0077_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa 2021021320211300791_j_jqas-2017-0077_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa 2021021320211300791_j_jqas-2017-0077_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa 2021021320211300791_j_jqas-2017-0077_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa 2021021320211300791_j_jqas-2017-0077_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa 2021021320211300791_j_jqas-2017-0077_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa 2021021320211300791_j_jqas-2017-0077_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa 2021021320211300791_j_jqas-2017-0077_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa 2021021320211300791_j_jqas-2017-0077_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa 2021021320211300791_j_jqas-2017-0077_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa 2021021320211300791_j_jqas-2017-0077_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa 2021021320211300791_j_jqas-2017-0077_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa |
References_xml | – ident: 2021021320211300791_j_jqas-2017-0077_ref_015_w2aab3b7c80b1b6b1ab2ac15Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_010_w2aab3b7c80b1b6b1ab2ac10Aa doi: 10.1016/S0969-4765(16)30197-7 – ident: 2021021320211300791_j_jqas-2017-0077_ref_017_w2aab3b7c80b1b6b1ab2ac17Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_006_w2aab3b7c80b1b6b1ab2ab6Aa doi: 10.1093/acprof:oso/9780199355952.001.0001 – ident: 2021021320211300791_j_jqas-2017-0077_ref_018_w2aab3b7c80b1b6b1ab2ac18Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_012_w2aab3b7c80b1b6b1ab2ac12Aa doi: 10.1137/050640278 – ident: 2021021320211300791_j_jqas-2017-0077_ref_019_w2aab3b7c80b1b6b1ab2ac19Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_007_w2aab3b7c80b1b6b1ab2ab7Aa doi: 10.1111/j.1740-9713.2015.00852.x – ident: 2021021320211300791_j_jqas-2017-0077_ref_008_w2aab3b7c80b1b6b1ab2ab8Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_003_w2aab3b7c80b1b6b1ab2ab3Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_013_w2aab3b7c80b1b6b1ab2ac13Aa doi: 10.1080/02640414.2016.1165858 – ident: 2021021320211300791_j_jqas-2017-0077_ref_009_w2aab3b7c80b1b6b1ab2ab9Aa doi: 10.1515/jqas-2013-0091 – ident: 2021021320211300791_j_jqas-2017-0077_ref_014_w2aab3b7c80b1b6b1ab2ac14Aa doi: 10.1080/02701367.1987.10605454 – ident: 2021021320211300791_j_jqas-2017-0077_ref_001_w2aab3b7c80b1b6b1ab2ab1Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_002_w2aab3b7c80b1b6b1ab2ab2Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_016_w2aab3b7c80b1b6b1ab2ac16Aa doi: 10.1080/10671188.1970.10615015 – ident: 2021021320211300791_j_jqas-2017-0077_ref_004_w2aab3b7c80b1b6b1ab2ab4Aa doi: 10.1080/00948705.2017.1380950 – ident: 2021021320211300791_j_jqas-2017-0077_ref_011_w2aab3b7c80b1b6b1ab2ac11Aa – ident: 2021021320211300791_j_jqas-2017-0077_ref_005_w2aab3b7c80b1b6b1ab2ab5Aa doi: 10.1515/hukin-2015-0173 |
SSID | ssj0043258 |
Score | 2.160627 |
Snippet | The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like Fast4, to... Abstract The duration of matches has been a common concern in professional tennis. Governing bodies have recently begun to introduce new match formats, like... |
SourceID | crossref walterdegruyter |
SourceType | Aggregation Database Publisher |
StartPage | 13 |
SubjectTerms | elite sport game intensity Monte Carlo tracking data |
Title | Estimating the duration of professional tennis matches for varying formats |
URI | http://www.degruyter.com/doi/10.1515/jqas-2017-0077 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqurAgnuItDwiGKlCnjknGggoVAxMgtshOYl5SWpoEVH49d46TlJcELGlrxVbj-3yP-LszIXtag1WNWeQIN4kcLrlyAsV8J2Ja8ERL3ExDtsWlGF7zi1vvttWazrCWilwdRm_f5pX8R6rQBnLFLNk_SLYeFBrgO8gXriBhuP5KxgNYn-hx2oynuJjUDuB4puRGJ0cKS9aBW_F4LMMsfJGTqSVRQnP2g4_6XMjUZKEhv0hW9Use0o4Jhpt9oBE8VXT_8FTzxjBxvdNPG-SlyAKzyUFVtW_7soGZ7DubvG0YI4DcSTGtiMNGTYHK4w6s4vKuxKpRD7dcLGG10rP8C55KpVkmo1rzW2Yff1HsnqmB8fgsM0AAGFYsQ9SYsGrb_pNlq_mGGOnACCH2D7F_iP0ZZ3jecdsFHQXKsd0_PxncVGac91xzuGv9eLbiJwxz9PFvfPBoFl4NyyFO7sp5mnFWrhbJgpUg7ZeQWSKtJF0my02IQPepOd4-WyEXDYgogIhWIKIjTWdBREsQUQsiCsChFkTUgmiVXJ8Nrk6Hjj1gw4ncgOWOL4TuxUIqFkipfPC0ta9j7Svpmxdd2lVcRcrlx4HX7SrVFa6rA-UlUvEIfvXWyFw6SpN1QiGs8HpcaOWDv-hDTAsfAjPzwR_2mOYb5KCapHBc1lEJv5fKBuGf5jC0Sy77oYeR4-b_um2R-Qbn22QunxTJDriZudq1gHgHox2Bmw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Walter de Gruyter |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+duration+of+professional+tennis+matches+for+varying+formats&rft.jtitle=Journal+of+quantitative+analysis+in+sports&rft.au=Kovalchik%2C+Stephanie+Ann&rft.au=Ingram%2C+Martin&rft.date=2018-03-28&rft.pub=De+Gruyter&rft.issn=2194-6388&rft.eissn=1559-0410&rft.volume=14&rft.issue=1&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1515%2Fjqas-2017-0077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jqas_2017_007714113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-6388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-6388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-6388&client=summon |