Tunable Electromagnetically Induced Transparency-Like in Graphene metasurfaces and its Application as a Refractive Index Sensor

We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 39; no. 5; pp. 1544 - 1549
Main Authors Jia, Zhongpeng, Huang, Li, Su, Jiangbin, Tang, Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2020.3035041

Cover

Loading…
Abstract We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications.
AbstractList We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications.
We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications.
Author Jia, Zhongpeng
Huang, Li
Su, Jiangbin
Tang, Bin
Author_xml – sequence: 1
  givenname: Zhongpeng
  surname: Jia
  fullname: Jia, Zhongpeng
  email: 981017005@qq.com
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
– sequence: 2
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  email: 420665063@qq.com
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
– sequence: 3
  givenname: Jiangbin
  surname: Su
  fullname: Su, Jiangbin
  email: jbsu@cczu.edu.cn
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0001-6871-1966
  surname: Tang
  fullname: Tang, Bin
  email: btang@cczu.edu.cn
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
BookMark eNp9kE1LJDEQhoMoOH7cBS8Bzz2bSvojfRTxaxkQdDw3NemKxu1Jt0l62Tn517dnR_bgwVNB8TxvUe8R2_e9J8bOQMwBRP3j52I5l0KKuRKqEDnssRkUhc6kBLXPZqJSKtOVzA_ZUYxvQkCe62rGPpajx1VH_Lojk0K_xhdPyRnsug2_9-1oqOXLgD4OGMibTbZwv4g7z28DDq_kia8pYRyDRUORo2-5S5FfDkM3pSTXe47Tmj-SDWiS-03bWPrDn8jHPpywA4tdpNPPecyeb66XV3fZ4uH2_upykRlZQ8p00dqVhGIlbV3UQha4MlbkWlVQWiDQhQUUFZiWoAatW5krFFBSRVJS1apjdrHLHUL_PlJMzVs_Bj-dbGReS11OcDlR5Y4yoY8xkG2MS_-eSAFd14BotmU3U9nNtuzms-xJFF_EIbg1hs13yvlOcUT0H69lXkqh1V-xYY0o
CODEN JLTEDG
CitedBy_id crossref_primary_10_3390_mi14061231
crossref_primary_10_1016_j_isci_2024_111301
crossref_primary_10_1364_OME_449748
crossref_primary_10_3390_s23208401
crossref_primary_10_1088_1674_1056_ac05a7
crossref_primary_10_3390_nano12213853
crossref_primary_10_1016_j_optlastec_2023_109431
crossref_primary_10_1088_2040_8986_ac3dda
crossref_primary_10_1016_j_jlumin_2022_119332
crossref_primary_10_3390_electronics12122655
crossref_primary_10_1016_j_optcom_2023_129989
crossref_primary_10_1039_D4DT02032D
crossref_primary_10_1016_j_ijleo_2022_170086
crossref_primary_10_1016_j_physleta_2024_129401
crossref_primary_10_1016_j_diamond_2023_110535
crossref_primary_10_1016_j_optlastec_2023_110186
crossref_primary_10_3390_cryst13030437
crossref_primary_10_3390_mi14050985
crossref_primary_10_3390_coatings13061123
crossref_primary_10_3390_photonics10060698
crossref_primary_10_3390_coatings13071261
crossref_primary_10_1016_j_ijleo_2023_171172
crossref_primary_10_1016_j_ijleo_2022_169907
crossref_primary_10_1039_D3CP02529B
crossref_primary_10_1016_j_optcom_2024_130694
crossref_primary_10_1016_j_optcom_2025_131684
crossref_primary_10_1016_j_optcom_2024_130859
crossref_primary_10_1016_j_physe_2023_115842
crossref_primary_10_1016_j_solener_2023_111796
crossref_primary_10_1142_S0217984923502482
crossref_primary_10_1016_j_ijthermalsci_2023_108457
crossref_primary_10_1039_D3CP01615C
crossref_primary_10_1016_j_diamond_2024_110800
crossref_primary_10_1039_D3DT00531C
crossref_primary_10_3390_mi14091684
crossref_primary_10_1016_j_optcom_2023_129697
crossref_primary_10_1016_j_cjph_2024_10_037
crossref_primary_10_1016_j_diamond_2023_110481
crossref_primary_10_1016_j_optmat_2021_111535
crossref_primary_10_1140_epjd_s10053_023_00657_x
crossref_primary_10_1016_j_materresbull_2023_112635
crossref_primary_10_1063_5_0207068
crossref_primary_10_1007_s11664_023_10898_6
crossref_primary_10_1016_j_physleta_2025_130300
crossref_primary_10_1002_mop_33398
crossref_primary_10_1364_JOSAB_531111
crossref_primary_10_1364_OE_473668
crossref_primary_10_3390_photonics10010067
crossref_primary_10_1016_j_diamond_2023_110713
crossref_primary_10_1016_j_surfin_2024_104248
crossref_primary_10_3390_mi14081597
crossref_primary_10_7498_aps_71_20211312
crossref_primary_10_1016_j_diamond_2025_112230
crossref_primary_10_1063_5_0227353
crossref_primary_10_1016_j_optcom_2023_129910
crossref_primary_10_1007_s11468_023_01801_4
crossref_primary_10_1039_D3CP03709F
crossref_primary_10_1016_j_optcom_2024_131449
crossref_primary_10_1088_2040_8986_ac7b97
crossref_primary_10_1016_j_materresbull_2023_112572
crossref_primary_10_1016_j_diamond_2023_110686
crossref_primary_10_1088_1361_6463_ac1a9f
crossref_primary_10_1088_1361_6528_ac7d60
crossref_primary_10_3390_mi14050953
crossref_primary_10_1039_D1CP05594A
crossref_primary_10_1016_j_applthermaleng_2023_121074
crossref_primary_10_1109_JSTQE_2024_3359185
crossref_primary_10_3390_photonics10090978
crossref_primary_10_3390_cryst11080985
Cites_doi 10.1364/OE.382485
10.1364/OE.389247
10.1021/nl201771h
10.1109/LPT.2015.2421302
10.1364/OL.41.005470
10.1364/OE.24.029216
10.1364/PRJ.7.000994
10.1016/j.optcom.2020.126164
10.1007/s00339-018-1844-6
10.1038/ncomms2153
10.1063/1.4891234
10.1002/adom.201600581
10.1038/nphoton.2010.186
10.1088/1367-2630/ab83d5
10.1109/LPT.2018.2808607
10.1063/1.4831776
10.1039/C8NR03564D
10.1038/ncomms6753
10.1016/j.optmat.2020.109972
10.1103/PhysRevLett.101.047401
10.1515/nanoph-2016-0168
10.1039/C5NR07114C
10.1364/OL.36.004530
10.1119/1.1412644
10.1109/JLT.2017.2768037
10.1007/s00339-020-3374-2
10.1088/1367-2630/ab9e8a
10.1103/PhysRevB.97.155403
10.1109/JLT.2018.2804336
10.1364/JOSAA.393248
10.1002/lpor.201100021
10.1109/JSTQE.2020.3021589
10.1038/srep09726
10.1002/adom.201500676
10.1109/JSTQE.2017.2657681
10.1364/OE.27.013884
10.1103/PhysRevLett.99.147401
10.35848/1882-0786/ab9f63
10.7567/APEX.11.082002
10.1364/OE.19.000628
10.1364/OE.19.021652
10.1088/2053-1583/aa70ff
10.1021/nl200197j
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2020.3035041
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 1549
ExternalDocumentID 10_1109_JLT_2020_3035041
9246208
Genre orig-research
GrantInformation_xml – fundername: Shanghai Jiao Tong University
  grantid: 2018GZKF03008
  funderid: 10.13039/501100004921
– fundername: State Key Laboratory of Advanced Optical Communication Systems and Networks
  funderid: 10.13039/501100011416
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201446
  funderid: 10.13039/501100004608
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-85dfb215b2f959025abcf0483716f1e185f1a071cde19188d243a016e7e22e7d3
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:08:04 EDT 2025
Tue Jul 01 01:01:57 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Wed Aug 27 02:48:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-85dfb215b2f959025abcf0483716f1e185f1a071cde19188d243a016e7e22e7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6871-1966
PQID 2492860166
PQPubID 85485
PageCount 6
ParticipantIDs proquest_journals_2492860166
crossref_primary_10_1109_JLT_2020_3035041
crossref_citationtrail_10_1109_JLT_2020_3035041
ieee_primary_9246208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
xing-ri (ref45) 2011; 19
ref1
ref39
ref17
ref38
ref16
ref19
ref18
liu (ref2) 2012; 100
ref46
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
yao (ref30) 2016; 34
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref29
  doi: 10.1364/OE.382485
– ident: ref1
  doi: 10.1364/OE.389247
– ident: ref43
  doi: 10.1021/nl201771h
– ident: ref11
  doi: 10.1109/LPT.2015.2421302
– ident: ref26
  doi: 10.1364/OL.41.005470
– ident: ref41
  doi: 10.1364/OE.24.029216
– ident: ref13
  doi: 10.1364/PRJ.7.000994
– ident: ref40
  doi: 10.1016/j.optcom.2020.126164
– ident: ref46
  doi: 10.1007/s00339-018-1844-6
– ident: ref22
  doi: 10.1038/ncomms2153
– ident: ref37
  doi: 10.1063/1.4891234
– ident: ref39
  doi: 10.1002/adom.201600581
– ident: ref25
  doi: 10.1038/nphoton.2010.186
– ident: ref34
  doi: 10.1088/1367-2630/ab83d5
– ident: ref27
  doi: 10.1109/LPT.2018.2808607
– ident: ref44
  doi: 10.1063/1.4831776
– ident: ref14
  doi: 10.1039/C8NR03564D
– ident: ref21
  doi: 10.1038/ncomms6753
– ident: ref5
  doi: 10.1016/j.optmat.2020.109972
– ident: ref10
  doi: 10.1103/PhysRevLett.101.047401
– ident: ref7
  doi: 10.1515/nanoph-2016-0168
– ident: ref12
  doi: 10.1039/C5NR07114C
– ident: ref36
  doi: 10.1364/OL.36.004530
– ident: ref8
  doi: 10.1119/1.1412644
– ident: ref31
  doi: 10.1109/JLT.2017.2768037
– ident: ref23
  doi: 10.1007/s00339-020-3374-2
– ident: ref16
  doi: 10.1088/1367-2630/ab9e8a
– ident: ref20
  doi: 10.1103/PhysRevB.97.155403
– ident: ref6
  doi: 10.1109/JLT.2018.2804336
– ident: ref33
  doi: 10.1364/JOSAA.393248
– ident: ref35
  doi: 10.1002/lpor.201100021
– ident: ref32
  doi: 10.1109/JSTQE.2020.3021589
– volume: 34
  start-page: 3937
  year: 2016
  ident: ref30
  article-title: Dynamically tunable graphene plasmonically induced transparency in the terahertz region
  publication-title: J Lightw Technol
– ident: ref38
  doi: 10.1038/srep09726
– ident: ref4
  doi: 10.1002/lpor.201100021
– ident: ref24
  doi: 10.1002/adom.201500676
– ident: ref3
  doi: 10.1109/JSTQE.2017.2657681
– ident: ref17
  doi: 10.1364/OE.27.013884
– ident: ref18
  doi: 10.1103/PhysRevLett.99.147401
– volume: 100
  year: 2012
  ident: ref2
  article-title: Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode
  publication-title: Appl Phys Lett
– ident: ref15
  doi: 10.35848/1882-0786/ab9f63
– ident: ref28
  doi: 10.7567/APEX.11.082002
– ident: ref9
  doi: 10.1364/OE.19.000628
– volume: 19
  start-page: 21652
  year: 2011
  ident: ref45
  article-title: Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling
  publication-title: Opt Express
  doi: 10.1364/OE.19.021652
– ident: ref42
  doi: 10.1088/2053-1583/aa70ff
– ident: ref19
  doi: 10.1021/nl200197j
SSID ssj0014487
Score 2.5789223
Snippet We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1544
SubjectTerms Couplings
electromagnetically induced transparency-like (EIT-like)
Graphene
Metasurfaces
Nanostructure
Optical ring resonators
Optical variables control
Oscillators
Peak frequency
Refractive index
Refractivity
Resonant frequency
sensors
slow light
Strips
Title Tunable Electromagnetically Induced Transparency-Like in Graphene metasurfaces and its Application as a Refractive Index Sensor
URI https://ieeexplore.ieee.org/document/9246208
https://www.proquest.com/docview/2492860166
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xpEl7WfmxiQ6Y_LCXSUvbOHabPCIEQwj2AEXiLXLsM6ooKaLpRHnhX-fOSYsGCO0tiuLI0p3t73z3fQfwwyiXeqNVlKDBSGljopRgbmQw9lmmrNM95g6f_ukfXajjS325Ar-WXBhEDMVn2OHHkMt3Ezvjq7IuxQp9yczeDxS41VytZcaAwoxAjR4kCa1wqRYpyV7WPT4ZUiAoKT7lNJqK_zmCQk-VVxtxOF0OW3C6mFddVHLdmVVFxz68kGz834mvwecGZoq92i_WYQXLDWg1kFM0C3q6AR9DBaidbsLjcBZoVOKgboxzY67KmuA4ngtu8GFpYC2FzvwxO49ORtcoRqX4zZrXtGWKG6z4wtFzlZcwpROjair2njPkwtBrcYY-MLP-Iv8W78U5RdKTuy9wcXgw3D-Kmu4MkZVZXEWpdr4gwFBIn7EGjDaF9UGgPu77GAkH-NgQgLEOKSZMUydVYghg4gClxIFLvsJqOSlxCwShmsQUiVMu8UqnWPRQpeQmsUbMtBm0obswWG4b6XLuoDHOQwjTy3Iycc4mzhsTt-HncsRtLdvxzrebbLHld42x2rCz8Im8WdfTnPUVU1aw6X97e9Q2fJJc9RKq1HZgtbqb4S7Blqr4Hvz1CVFQ6lg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4hENpexgabVsY2P-wFaWkbx26TRzTBCmt5gCLxFjn2eaqAdKIpGrzw17lz0k5jE-ItiuLI0p3t73z3fQfwxSiXeqNVlKDBSGljopRgbmQw9lmmrNNd5g6PjnuDM3V0rs9X4OuSC4OIofgM2_wYcvluaud8VdahWKEnmdm7Rue-ymq21jJnQIFGIEf3k4TWuFSLpGQ36xwNxxQKSopQOZGm4r8OodBV5Z-tOJwvBxswWsysLiu5aM-rom3vHok2Pnfqr-FVAzTFXu0Zb2AFy03YaECnaJb0bBPWQw2onW3B_XgeiFRiv26Nc2V-ljXF8fJWcIsPSwNrMXRmkNnbaDi5QDEpxXdWvaZNU1xhxVeOnuu8hCmdmFQzsfcnRy4MvRYn6AM36wb5t_hbnFIsPb1-C2cH--Nvg6jpzxBZmcVVlGrnC4IMhfQZq8BoU1gfJOrjno-RkICPDUEY65CiwjR1UiWGICb2UUrsu-QdrJbTEt-DIFyTmCJxyiVe6RSLLqqUHCXWiJk2_RZ0FgbLbSNezj00LvMQxHSznEycs4nzxsQt2F2O-FULdzzx7RZbbPldY6wW7Cx8Im9W9ixnhcWUNWx62_8f9RleDMajYT48PP7xAV5KroEJNWs7sFpdz_EjgZiq-BR89wHDdu2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Electromagnetically+Induced+Transparency-Like+in+Graphene+metasurfaces+and+its+Application+as+a+Refractive+Index+Sensor&rft.jtitle=Journal+of+lightwave+technology&rft.au=Jia%2C+Zhongpeng&rft.au=Huang%2C+Li&rft.au=Su%2C+Jiangbin&rft.au=Tang%2C+Bin&rft.date=2021-03-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=5&rft.spage=1544&rft.epage=1549&rft_id=info:doi/10.1109%2FJLT.2020.3035041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_3035041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon