Tunable Electromagnetically Induced Transparency-Like in Graphene metasurfaces and its Application as a Refractive Index Sensor
We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of...
Saved in:
Published in | Journal of lightwave technology Vol. 39; no. 5; pp. 1544 - 1549 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2020.3035041 |
Cover
Loading…
Abstract | We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications. |
---|---|
AbstractList | We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications. We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces. The unit cells of metasurfaces are composed of a pair of parallel graphene strips and a two-split rectangular graphene ring resonator, both of which are performed as bright modes. The physical mechanism behind the EIT-like effect results from the frequency detuning and hybridization coupling of two bright modes. The FDTD simulation results show an excellent agreement with the theoretical analysis based on the coupled Lorentz oscillators model. Moreover, the transparency window of EIT-like effect can be modulated not only by changing the geometry of the nanostructure, but also by adjusting the Fermi level of graphene, allowing for an actively tunable group time delay of the light. In addition, owing to the peak frequency of the transparency window is highly sensitive to the variation of refractive index of the surrounding media, we demonstrate a refractive index sensor with sensitivity of ∼ 6800 nm/RIU, and the calculated FOM can reach up to about 14.2. Therefore, our proposed nanostructure provides a feasible platform for slow light and sensing applications. |
Author | Jia, Zhongpeng Huang, Li Su, Jiangbin Tang, Bin |
Author_xml | – sequence: 1 givenname: Zhongpeng surname: Jia fullname: Jia, Zhongpeng email: 981017005@qq.com organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China – sequence: 2 givenname: Li surname: Huang fullname: Huang, Li email: 420665063@qq.com organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China – sequence: 3 givenname: Jiangbin surname: Su fullname: Su, Jiangbin email: jbsu@cczu.edu.cn organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China – sequence: 4 givenname: Bin orcidid: 0000-0001-6871-1966 surname: Tang fullname: Tang, Bin email: btang@cczu.edu.cn organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China |
BookMark | eNp9kE1LJDEQhoMoOH7cBS8Bzz2bSvojfRTxaxkQdDw3NemKxu1Jt0l62Tn517dnR_bgwVNB8TxvUe8R2_e9J8bOQMwBRP3j52I5l0KKuRKqEDnssRkUhc6kBLXPZqJSKtOVzA_ZUYxvQkCe62rGPpajx1VH_Lojk0K_xhdPyRnsug2_9-1oqOXLgD4OGMibTbZwv4g7z28DDq_kia8pYRyDRUORo2-5S5FfDkM3pSTXe47Tmj-SDWiS-03bWPrDn8jHPpywA4tdpNPPecyeb66XV3fZ4uH2_upykRlZQ8p00dqVhGIlbV3UQha4MlbkWlVQWiDQhQUUFZiWoAatW5krFFBSRVJS1apjdrHLHUL_PlJMzVs_Bj-dbGReS11OcDlR5Y4yoY8xkG2MS_-eSAFd14BotmU3U9nNtuzms-xJFF_EIbg1hs13yvlOcUT0H69lXkqh1V-xYY0o |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_3390_mi14061231 crossref_primary_10_1016_j_isci_2024_111301 crossref_primary_10_1364_OME_449748 crossref_primary_10_3390_s23208401 crossref_primary_10_1088_1674_1056_ac05a7 crossref_primary_10_3390_nano12213853 crossref_primary_10_1016_j_optlastec_2023_109431 crossref_primary_10_1088_2040_8986_ac3dda crossref_primary_10_1016_j_jlumin_2022_119332 crossref_primary_10_3390_electronics12122655 crossref_primary_10_1016_j_optcom_2023_129989 crossref_primary_10_1039_D4DT02032D crossref_primary_10_1016_j_ijleo_2022_170086 crossref_primary_10_1016_j_physleta_2024_129401 crossref_primary_10_1016_j_diamond_2023_110535 crossref_primary_10_1016_j_optlastec_2023_110186 crossref_primary_10_3390_cryst13030437 crossref_primary_10_3390_mi14050985 crossref_primary_10_3390_coatings13061123 crossref_primary_10_3390_photonics10060698 crossref_primary_10_3390_coatings13071261 crossref_primary_10_1016_j_ijleo_2023_171172 crossref_primary_10_1016_j_ijleo_2022_169907 crossref_primary_10_1039_D3CP02529B crossref_primary_10_1016_j_optcom_2024_130694 crossref_primary_10_1016_j_optcom_2025_131684 crossref_primary_10_1016_j_optcom_2024_130859 crossref_primary_10_1016_j_physe_2023_115842 crossref_primary_10_1016_j_solener_2023_111796 crossref_primary_10_1142_S0217984923502482 crossref_primary_10_1016_j_ijthermalsci_2023_108457 crossref_primary_10_1039_D3CP01615C crossref_primary_10_1016_j_diamond_2024_110800 crossref_primary_10_1039_D3DT00531C crossref_primary_10_3390_mi14091684 crossref_primary_10_1016_j_optcom_2023_129697 crossref_primary_10_1016_j_cjph_2024_10_037 crossref_primary_10_1016_j_diamond_2023_110481 crossref_primary_10_1016_j_optmat_2021_111535 crossref_primary_10_1140_epjd_s10053_023_00657_x crossref_primary_10_1016_j_materresbull_2023_112635 crossref_primary_10_1063_5_0207068 crossref_primary_10_1007_s11664_023_10898_6 crossref_primary_10_1016_j_physleta_2025_130300 crossref_primary_10_1002_mop_33398 crossref_primary_10_1364_JOSAB_531111 crossref_primary_10_1364_OE_473668 crossref_primary_10_3390_photonics10010067 crossref_primary_10_1016_j_diamond_2023_110713 crossref_primary_10_1016_j_surfin_2024_104248 crossref_primary_10_3390_mi14081597 crossref_primary_10_7498_aps_71_20211312 crossref_primary_10_1016_j_diamond_2025_112230 crossref_primary_10_1063_5_0227353 crossref_primary_10_1016_j_optcom_2023_129910 crossref_primary_10_1007_s11468_023_01801_4 crossref_primary_10_1039_D3CP03709F crossref_primary_10_1016_j_optcom_2024_131449 crossref_primary_10_1088_2040_8986_ac7b97 crossref_primary_10_1016_j_materresbull_2023_112572 crossref_primary_10_1016_j_diamond_2023_110686 crossref_primary_10_1088_1361_6463_ac1a9f crossref_primary_10_1088_1361_6528_ac7d60 crossref_primary_10_3390_mi14050953 crossref_primary_10_1039_D1CP05594A crossref_primary_10_1016_j_applthermaleng_2023_121074 crossref_primary_10_1109_JSTQE_2024_3359185 crossref_primary_10_3390_photonics10090978 crossref_primary_10_3390_cryst11080985 |
Cites_doi | 10.1364/OE.382485 10.1364/OE.389247 10.1021/nl201771h 10.1109/LPT.2015.2421302 10.1364/OL.41.005470 10.1364/OE.24.029216 10.1364/PRJ.7.000994 10.1016/j.optcom.2020.126164 10.1007/s00339-018-1844-6 10.1038/ncomms2153 10.1063/1.4891234 10.1002/adom.201600581 10.1038/nphoton.2010.186 10.1088/1367-2630/ab83d5 10.1109/LPT.2018.2808607 10.1063/1.4831776 10.1039/C8NR03564D 10.1038/ncomms6753 10.1016/j.optmat.2020.109972 10.1103/PhysRevLett.101.047401 10.1515/nanoph-2016-0168 10.1039/C5NR07114C 10.1364/OL.36.004530 10.1119/1.1412644 10.1109/JLT.2017.2768037 10.1007/s00339-020-3374-2 10.1088/1367-2630/ab9e8a 10.1103/PhysRevB.97.155403 10.1109/JLT.2018.2804336 10.1364/JOSAA.393248 10.1002/lpor.201100021 10.1109/JSTQE.2020.3021589 10.1038/srep09726 10.1002/adom.201500676 10.1109/JSTQE.2017.2657681 10.1364/OE.27.013884 10.1103/PhysRevLett.99.147401 10.35848/1882-0786/ab9f63 10.7567/APEX.11.082002 10.1364/OE.19.000628 10.1364/OE.19.021652 10.1088/2053-1583/aa70ff 10.1021/nl200197j |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2020.3035041 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 1549 |
ExternalDocumentID | 10_1109_JLT_2020_3035041 9246208 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University grantid: 2018GZKF03008 funderid: 10.13039/501100004921 – fundername: State Key Laboratory of Advanced Optical Communication Systems and Networks funderid: 10.13039/501100011416 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20201446 funderid: 10.13039/501100004608 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c291t-85dfb215b2f959025abcf0483716f1e185f1a071cde19188d243a016e7e22e7d3 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:08:04 EDT 2025 Tue Jul 01 01:01:57 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Wed Aug 27 02:48:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-85dfb215b2f959025abcf0483716f1e185f1a071cde19188d243a016e7e22e7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6871-1966 |
PQID | 2492860166 |
PQPubID | 85485 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2492860166 crossref_primary_10_1109_JLT_2020_3035041 crossref_citationtrail_10_1109_JLT_2020_3035041 ieee_primary_9246208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 xing-ri (ref45) 2011; 19 ref1 ref39 ref17 ref38 ref16 ref19 ref18 liu (ref2) 2012; 100 ref46 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 yao (ref30) 2016; 34 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref29 doi: 10.1364/OE.382485 – ident: ref1 doi: 10.1364/OE.389247 – ident: ref43 doi: 10.1021/nl201771h – ident: ref11 doi: 10.1109/LPT.2015.2421302 – ident: ref26 doi: 10.1364/OL.41.005470 – ident: ref41 doi: 10.1364/OE.24.029216 – ident: ref13 doi: 10.1364/PRJ.7.000994 – ident: ref40 doi: 10.1016/j.optcom.2020.126164 – ident: ref46 doi: 10.1007/s00339-018-1844-6 – ident: ref22 doi: 10.1038/ncomms2153 – ident: ref37 doi: 10.1063/1.4891234 – ident: ref39 doi: 10.1002/adom.201600581 – ident: ref25 doi: 10.1038/nphoton.2010.186 – ident: ref34 doi: 10.1088/1367-2630/ab83d5 – ident: ref27 doi: 10.1109/LPT.2018.2808607 – ident: ref44 doi: 10.1063/1.4831776 – ident: ref14 doi: 10.1039/C8NR03564D – ident: ref21 doi: 10.1038/ncomms6753 – ident: ref5 doi: 10.1016/j.optmat.2020.109972 – ident: ref10 doi: 10.1103/PhysRevLett.101.047401 – ident: ref7 doi: 10.1515/nanoph-2016-0168 – ident: ref12 doi: 10.1039/C5NR07114C – ident: ref36 doi: 10.1364/OL.36.004530 – ident: ref8 doi: 10.1119/1.1412644 – ident: ref31 doi: 10.1109/JLT.2017.2768037 – ident: ref23 doi: 10.1007/s00339-020-3374-2 – ident: ref16 doi: 10.1088/1367-2630/ab9e8a – ident: ref20 doi: 10.1103/PhysRevB.97.155403 – ident: ref6 doi: 10.1109/JLT.2018.2804336 – ident: ref33 doi: 10.1364/JOSAA.393248 – ident: ref35 doi: 10.1002/lpor.201100021 – ident: ref32 doi: 10.1109/JSTQE.2020.3021589 – volume: 34 start-page: 3937 year: 2016 ident: ref30 article-title: Dynamically tunable graphene plasmonically induced transparency in the terahertz region publication-title: J Lightw Technol – ident: ref38 doi: 10.1038/srep09726 – ident: ref4 doi: 10.1002/lpor.201100021 – ident: ref24 doi: 10.1002/adom.201500676 – ident: ref3 doi: 10.1109/JSTQE.2017.2657681 – ident: ref17 doi: 10.1364/OE.27.013884 – ident: ref18 doi: 10.1103/PhysRevLett.99.147401 – volume: 100 year: 2012 ident: ref2 article-title: Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode publication-title: Appl Phys Lett – ident: ref15 doi: 10.35848/1882-0786/ab9f63 – ident: ref28 doi: 10.7567/APEX.11.082002 – ident: ref9 doi: 10.1364/OE.19.000628 – volume: 19 start-page: 21652 year: 2011 ident: ref45 article-title: Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling publication-title: Opt Express doi: 10.1364/OE.19.021652 – ident: ref42 doi: 10.1088/2053-1583/aa70ff – ident: ref19 doi: 10.1021/nl200197j |
SSID | ssj0014487 |
Score | 2.5789223 |
Snippet | We present numerical and theoretical analysis of the tunable electromagnetically induced transparency-like (EIT-like) effect based on graphene metasurfaces.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1544 |
SubjectTerms | Couplings electromagnetically induced transparency-like (EIT-like) Graphene Metasurfaces Nanostructure Optical ring resonators Optical variables control Oscillators Peak frequency Refractive index Refractivity Resonant frequency sensors slow light Strips |
Title | Tunable Electromagnetically Induced Transparency-Like in Graphene metasurfaces and its Application as a Refractive Index Sensor |
URI | https://ieeexplore.ieee.org/document/9246208 https://www.proquest.com/docview/2492860166 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4xpEl7WfmxiQ6Y_LCXSUvbOHabPCIEQwj2AEXiLXLsM6ooKaLpRHnhX-fOSYsGCO0tiuLI0p3t73z3fQfwwyiXeqNVlKDBSGljopRgbmQw9lmmrNM95g6f_ukfXajjS325Ar-WXBhEDMVn2OHHkMt3Ezvjq7IuxQp9yczeDxS41VytZcaAwoxAjR4kCa1wqRYpyV7WPT4ZUiAoKT7lNJqK_zmCQk-VVxtxOF0OW3C6mFddVHLdmVVFxz68kGz834mvwecGZoq92i_WYQXLDWg1kFM0C3q6AR9DBaidbsLjcBZoVOKgboxzY67KmuA4ngtu8GFpYC2FzvwxO49ORtcoRqX4zZrXtGWKG6z4wtFzlZcwpROjair2njPkwtBrcYY-MLP-Iv8W78U5RdKTuy9wcXgw3D-Kmu4MkZVZXEWpdr4gwFBIn7EGjDaF9UGgPu77GAkH-NgQgLEOKSZMUydVYghg4gClxIFLvsJqOSlxCwShmsQUiVMu8UqnWPRQpeQmsUbMtBm0obswWG4b6XLuoDHOQwjTy3Iycc4mzhsTt-HncsRtLdvxzrebbLHld42x2rCz8Im8WdfTnPUVU1aw6X97e9Q2fJJc9RKq1HZgtbqb4S7Blqr4Hvz1CVFQ6lg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4hENpexgabVsY2P-wFaWkbx26TRzTBCmt5gCLxFjn2eaqAdKIpGrzw17lz0k5jE-ItiuLI0p3t73z3fQfwxSiXeqNVlKDBSGljopRgbmQw9lmmrNNd5g6PjnuDM3V0rs9X4OuSC4OIofgM2_wYcvluaud8VdahWKEnmdm7Rue-ymq21jJnQIFGIEf3k4TWuFSLpGQ36xwNxxQKSopQOZGm4r8OodBV5Z-tOJwvBxswWsysLiu5aM-rom3vHok2Pnfqr-FVAzTFXu0Zb2AFy03YaECnaJb0bBPWQw2onW3B_XgeiFRiv26Nc2V-ljXF8fJWcIsPSwNrMXRmkNnbaDi5QDEpxXdWvaZNU1xhxVeOnuu8hCmdmFQzsfcnRy4MvRYn6AM36wb5t_hbnFIsPb1-C2cH--Nvg6jpzxBZmcVVlGrnC4IMhfQZq8BoU1gfJOrjno-RkICPDUEY65CiwjR1UiWGICb2UUrsu-QdrJbTEt-DIFyTmCJxyiVe6RSLLqqUHCXWiJk2_RZ0FgbLbSNezj00LvMQxHSznEycs4nzxsQt2F2O-FULdzzx7RZbbPldY6wW7Cx8Im9W9ixnhcWUNWx62_8f9RleDMajYT48PP7xAV5KroEJNWs7sFpdz_EjgZiq-BR89wHDdu2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+Electromagnetically+Induced+Transparency-Like+in+Graphene+metasurfaces+and+its+Application+as+a+Refractive+Index+Sensor&rft.jtitle=Journal+of+lightwave+technology&rft.au=Jia%2C+Zhongpeng&rft.au=Huang%2C+Li&rft.au=Su%2C+Jiangbin&rft.au=Tang%2C+Bin&rft.date=2021-03-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=5&rft.spage=1544&rft.epage=1549&rft_id=info:doi/10.1109%2FJLT.2020.3035041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_3035041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |