The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review

Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal spray technology Vol. 31; no. 4; pp. 780 - 817
Main Authors Li, Chang-Jiu, Luo, Xiao-Tao, Yao, Shu-Wei, Li, Guang-Rong, Li, Cheng-Xin, Yang, Guan-Jun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Subjects
Online AccessGet full text
ISSN1059-9630
1544-1016
DOI10.1007/s11666-022-01379-z

Cover

Loading…
Abstract Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful applications of ceramic coatings. Three bonding mechanisms contribute to the enhancement of the adhesion and cohesion, including mechanical interlocking, physical bonding and chemical bonding. It is still challenging to achieve chemical bonding in thermally-sprayed coatings. In this paper, the main factors influencing the bonding formation during thermal spraying of ceramic coatings, including spray particle parameters and substrate parameters, are examined from splat formation to coating formation to find solutions to the above challenge. The research progress on splat formation revealing characteristic dynamic parameters relating to the bonding formation kinetics will be briefly presented for the key factors determining splat shape, flattening time, solidification time, cooling rate, interface temperature, and transient dynamic contact pressure during flattening. The typical coating lamellar structure features with limited intersplat bonding less than one-third for refractory ceramics, which dominate the coating properties and performance based on theoretical relationships between the microstructure and properties, are presented. The effects of spray particle parameters on the intersplat bonding reveal that the bonding ratio is increased with increasing particle temperature, but decreased with increasing particle velocity which benefits only the mechanical bonding. Most importantly, recent studies have revealed that the liquid splat–substrate interface temperature higher than the glass transition temperature of spray materials is a necessary and sufficient condition for splat bonding formation. A critical bonding temperature concept is proposed to control the intersplat bonding formation by controlling the substrate preheating temperature. The critical bonding temperature is related to the melting point of spray materials. A model is proposed to understand the effect of the interface temperature on the bonding formation of impacting liquid splat and the bonding mechanisms. The condition for certain ceramic spray materials to form a bulk-like dense coating with the intersplat interface completely bonded becomes well understood. Moreover, the effect of metal substrate oxide scale control on the adhesion reveals that an adhesive strength higher than 100 MPa can be achieved for plasma-sprayed ceramic coatings. The excellent bonding at the interface between the splat and the oxide scale pre-oxidized on the metal substrate can be also explained by the bonding formation model. It becomes possible that, through both the controls of the pre-oxidation and the deposition temperature, all the interfaces in the ceramic coating with the metal/oxide-scale/splat/splat system can be bonded by chemical bonding to achieve an excellent load-bearing ceramic-coating system.
AbstractList Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful applications of ceramic coatings. Three bonding mechanisms contribute to the enhancement of the adhesion and cohesion, including mechanical interlocking, physical bonding and chemical bonding. It is still challenging to achieve chemical bonding in thermally-sprayed coatings. In this paper, the main factors influencing the bonding formation during thermal spraying of ceramic coatings, including spray particle parameters and substrate parameters, are examined from splat formation to coating formation to find solutions to the above challenge. The research progress on splat formation revealing characteristic dynamic parameters relating to the bonding formation kinetics will be briefly presented for the key factors determining splat shape, flattening time, solidification time, cooling rate, interface temperature, and transient dynamic contact pressure during flattening. The typical coating lamellar structure features with limited intersplat bonding less than one-third for refractory ceramics, which dominate the coating properties and performance based on theoretical relationships between the microstructure and properties, are presented. The effects of spray particle parameters on the intersplat bonding reveal that the bonding ratio is increased with increasing particle temperature, but decreased with increasing particle velocity which benefits only the mechanical bonding. Most importantly, recent studies have revealed that the liquid splat–substrate interface temperature higher than the glass transition temperature of spray materials is a necessary and sufficient condition for splat bonding formation. A critical bonding temperature concept is proposed to control the intersplat bonding formation by controlling the substrate preheating temperature. The critical bonding temperature is related to the melting point of spray materials. A model is proposed to understand the effect of the interface temperature on the bonding formation of impacting liquid splat and the bonding mechanisms. The condition for certain ceramic spray materials to form a bulk-like dense coating with the intersplat interface completely bonded becomes well understood. Moreover, the effect of metal substrate oxide scale control on the adhesion reveals that an adhesive strength higher than 100 MPa can be achieved for plasma-sprayed ceramic coatings. The excellent bonding at the interface between the splat and the oxide scale pre-oxidized on the metal substrate can be also explained by the bonding formation model. It becomes possible that, through both the controls of the pre-oxidation and the deposition temperature, all the interfaces in the ceramic coating with the metal/oxide-scale/splat/splat system can be bonded by chemical bonding to achieve an excellent load-bearing ceramic-coating system.
Author Li, Chang-Jiu
Yang, Guan-Jun
Luo, Xiao-Tao
Li, Guang-Rong
Yao, Shu-Wei
Li, Cheng-Xin
Author_xml – sequence: 1
  givenname: Chang-Jiu
  surname: Li
  fullname: Li, Chang-Jiu
  email: licj@mail.xjtu.edu.cn
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Xiao-Tao
  surname: Luo
  fullname: Luo, Xiao-Tao
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Shu-Wei
  surname: Yao
  fullname: Yao, Shu-Wei
  organization: National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University
– sequence: 4
  givenname: Guang-Rong
  surname: Li
  fullname: Li, Guang-Rong
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University
– sequence: 5
  givenname: Cheng-Xin
  surname: Li
  fullname: Li, Cheng-Xin
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University
– sequence: 6
  givenname: Guan-Jun
  surname: Yang
  fullname: Yang, Guan-Jun
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University
BookMark eNp9kMFOAjEQhhuDiYC-gKe-QHXabrtbb7gRNJKYKJ6b0i24BLakXTTw9HbBkwdO0_ydbzLzDVCv8Y1D6JbCHQXI7yOlUkoCjBGgPFfkcIH6VGQZoUBlL71BKKIkhys0iHEFAEIy0Uevsy-HH31T1c0Sj33YmLb2Da52oQvSZ0rW-GMbzL4L_AKXLphNbXHpU2uzjA94hN_dd-1-rtHlwqyju_mrQ_Q5fpqVz2T6NnkpR1NimaItKcRcVNZUvHCyqJx1YKllBbdVpkSljKIq3cJBWJ47yEQhhZI09c45cAY5H6LiNNcGH2NwC23r9rh3G0y91hR0J0WfpOgkRR-l6ENC2T90G-qNCfvzED9BcdtZcUGv_C406cRz1C_INXZ0
CitedBy_id crossref_primary_10_1016_j_surfcoat_2025_132072
crossref_primary_10_1016_j_triboint_2024_109733
crossref_primary_10_1177_08927057231200009
crossref_primary_10_1007_s11666_024_01774_8
crossref_primary_10_1007_s11666_025_01982_w
crossref_primary_10_3390_cryst14100845
crossref_primary_10_1016_j_jmrt_2023_05_009
crossref_primary_10_3390_coatings12111716
crossref_primary_10_1016_j_surfcoat_2023_129651
crossref_primary_10_1016_j_ceramint_2022_07_004
crossref_primary_10_1016_j_ceramint_2025_01_394
crossref_primary_10_1038_s43246_024_00533_0
crossref_primary_10_1088_2631_8695_ad2f82
crossref_primary_10_1016_j_surfcoat_2024_131145
crossref_primary_10_1007_s11665_024_09581_6
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125439
crossref_primary_10_1007_s11696_023_03089_4
crossref_primary_10_1016_j_ceramint_2024_03_127
crossref_primary_10_1016_j_surfin_2024_105531
crossref_primary_10_1016_j_engfailanal_2023_107692
crossref_primary_10_1007_s10853_025_10685_0
crossref_primary_10_1007_s11666_024_01907_z
crossref_primary_10_3103_S1068798X24702332
crossref_primary_10_1016_j_jmrt_2025_01_019
crossref_primary_10_3390_jmmp9020050
crossref_primary_10_1016_j_matchemphys_2023_128019
crossref_primary_10_3390_coatings13111947
crossref_primary_10_1016_j_jeurceramsoc_2024_116850
crossref_primary_10_1007_s44251_023_00030_5
crossref_primary_10_1016_j_jeurceramsoc_2025_117200
crossref_primary_10_1088_1742_6596_2572_1_012006
crossref_primary_10_1016_j_jeurceramsoc_2024_04_063
crossref_primary_10_1016_j_mtcomm_2024_110619
crossref_primary_10_1007_s11666_023_01683_2
crossref_primary_10_1016_j_ceramint_2024_12_374
crossref_primary_10_4028_p_sNm0Zd
crossref_primary_10_1016_j_ceramint_2022_05_046
crossref_primary_10_1007_s11666_024_01751_1
crossref_primary_10_1007_s00339_024_07532_5
crossref_primary_10_1016_j_surfcoat_2024_131339
crossref_primary_10_1016_j_surfcoat_2024_130625
Cites_doi 10.1007/s11666-010-9562-4
10.1016/j.msea.2003.10.056
10.1016/j.tsf.2010.11.047
10.1038/35065704
10.31399/asm.cp.itsc2005p0924
10.1016/j.msea.2003.10.295
10.1361/105996300770349890
10.1111/j.1151-2916.2002.tb00574.x
10.1016/0040-6090(81)90633-7
10.1038/nmat2219
10.1007/s11666-007-9148-y
10.1361/10599630419364
10.1007/BF02647159
10.1023/A:1018574221589
10.1016/j.surfcoat.2005.01.014
10.1007/BF02656450
10.1002/9780470456323.ch14
10.1016/B978-0-12-341820-3.50010-2
10.1007/s11666-009-9439-6
10.1080/00202967.1997.11871174
10.1007/s11666-013-9904-0
10.1016/S0921-5093(99)00459-1
10.1361/105996302770348754
10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H
10.1007/BF02645867
10.1007/BF02608548
10.1016/j.surfcoat.2013.08.044
10.1016/0272-8842(95)00106-9
10.1016/j.actamat.2017.05.052
10.1007/BF02648529
10.1016/S0043-1648(99)00147-7
10.1016/S0040-6090(01)00769-6
10.1016/j.surfcoat.2003.10.048
10.1016/0040-6090(82)90016-5
10.1016/j.surfcoat.2007.09.040
10.1007/s11666-007-9081-0
10.1088/0022-3727/4/11/206
10.1007/s11666-019-00950-5
10.1016/j.actamat.2016.03.020
10.1016/j.surfcoat.2011.08.041
10.1007/978-3-7091-8293-2
10.1007/s11666-019-00943-4
10.1007/s11666-016-0420-x
10.1016/j.ijheatmasstransfer.2006.10.022
10.1016/j.ijhydene.2021.07.121
10.1016/j.surfcoat.2004.04.063
10.1016/0040-6090(91)90029-W
10.1007/s11666-009-9313-6
10.1016/S0257-8972(96)02923-4
10.1016/j.surfcoat.2009.10.008
10.1016/j.surfcoat.2015.04.031
10.1007/s11666-015-0287-2
10.1361/105996306X92596
10.1007/BF02648525
10.1002/9780470318782.ch30
10.1016/j.surfcoat.2004.01.002
10.1088/0034-4885/36/11/002
10.1007/s11666-018-0818-8
10.1016/S1359-6454(00)00393-1
10.1016/j.ceramint.2015.09.010
10.1361/105996303770348249
10.1016/j.apsusc.2014.11.041
10.1016/j.actamat.2016.07.057
10.31399/asm.cp.itsc2005p0311
10.1007/s11666-016-0464-y
10.1016/0017-9310(76)90183-6
10.1023/A:1017932617123
10.31399/asm.cp.itsc2003p0875
10.1007/BF02648528
10.1007/s11666-018-0755-6
10.1007/s11666-008-9237-6
10.1361/105996306X146947
10.1016/j.surfcoat.2020.126705
10.4028/www.scientific.net/KEM.373-374.69
10.1361/10599630522422
10.2320/matertrans.45.1869
10.1007/BF02648527
10.1007/s11666-021-01166-2
10.1038/nmat3275
10.1016/0040-6090(84)90506-6
10.1007/s11666-016-0488-3
10.1007/BF02825607
10.1016/j.msea.2006.11.132
10.1016/j.ijthermalsci.2009.09.011
10.6028/jres.054.033
10.1016/0040-6090(91)90114-D
10.1016/j.wear.2005.07.006
10.1007/BF02658980
10.1063/1.4880959
10.1007/s11666-012-9864-9
10.1007/s00339-010-5586-3
10.1007/BF02397914
10.1016/j.ssi.2007.02.011
10.1016/0257-8972(95)02670-3
10.1007/s11666-011-9653-x
10.1111/j.1551-2916.2009.02953.x
10.1016/S0921-5093(04)00900-1
10.1007/s11666-018-0754-7
10.1116/1.1312743
10.1615/HighTempMatProc.v9.i3.70
10.1016/j.surfcoat.2019.05.068
10.1016/j.surfcoat.2019.01.085
10.1016/j.tsf.2004.05.073
10.1016/0022-3093(88)90133-0
10.1111/j.1551-2916.2005.00912.x
10.1016/j.surfcoat.2013.09.010
10.1007/BF02646432
10.1007/BF02646972
10.1361/10599630419670
10.1088/1757-899X/61/1/012022
10.1002/1096-9918(200008)30:1<585::AID-SIA844>3.0.CO;2-Y
10.1142/9789814354479_0007
10.1016/S1359-6454(99)00384-5
10.1007/s11666-011-9660-y
10.1361/105996306X147027
10.1007/s11666-015-0275-6
10.1016/j.tsf.2005.08.142
10.1116/1.1312746
10.1007/s11666-010-9591-z
10.1179/imr.1997.42.3.117
10.1016/j.jpowsour.2007.10.031
10.1361/105996300770349935
10.1007/s11666-013-9965-0
10.1016/S0040-6090(01)01361-X
10.1016/j.surfcoat.2021.127159
10.1007/978-0-387-68991-3
10.31399/asm.cp.itsc1996p0749
10.1007/s11666-007-9097-5
10.1016/S1359-6462(00)00416-4
10.1361/10599630418158
10.1016/j.actamat.2006.03.024
10.1038/ncomms9310
10.1016/0040-6090(82)90453-9
10.1016/j.surfcoat.2008.09.037
10.1002/9780470754085
10.1007/s11666-018-0759-2
10.1016/j.actamat.2008.10.024
10.1023/A:1015310509520
10.1007/s11666-016-0473-x
10.1111/jace.13033
10.1111/j.1551-2916.2008.02775.x
10.1039/b202553a
10.1016/j.surfcoat.2007.03.028
10.1016/j.surfcoat.2003.10.129
10.1016/j.msea.2005.08.226
10.1007/s11666-017-0633-7
10.1111/j.1551-2916.2008.02476.x
10.1088/0957-0233/1/8/023
10.1016/0257-8972(92)90004-T
10.1016/0167-577X(96)00071-7
10.1002/advs.201902209
10.1039/C5TA01203A
10.31399/asm.cp.itsc2004p0157
10.1007/BF02608554
10.1007/s11666-007-9032-9
10.2207/qjjws.20.317
ContentType Journal Article
Copyright ASM International 2022
Copyright_xml – notice: ASM International 2022
DBID AAYXX
CITATION
DOI 10.1007/s11666-022-01379-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1544-1016
EndPage 817
ExternalDocumentID 10_1007_s11666_022_01379_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8R4
8R5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
LK5
LLZTM
M4Y
M7R
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PCBAR
PDBOC
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z8M
Z8N
Z8T
Z8Z
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-85b5dcad38e68dece0c1c283cd495d9a919666305c37e045865961e68b3032073
IEDL.DBID U2A
ISSN 1059-9630
IngestDate Thu Apr 24 23:00:32 EDT 2025
Tue Jul 01 01:56:23 EDT 2025
Fri Feb 21 02:44:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords intrinsic bonding temperature
ceramic coating
adhesive strength
thermal spray
cohesion
interface bonding
critical bonding temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-85b5dcad38e68dece0c1c283cd495d9a919666305c37e045865961e68b3032073
PageCount 38
ParticipantIDs crossref_citationtrail_10_1007_s11666_022_01379_z
crossref_primary_10_1007_s11666_022_01379_z
springer_journals_10_1007_s11666_022_01379_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of thermal spray technology
PublicationTitleAbbrev J Therm Spray Tech
PublicationYear 2022
Publisher Springer US
Publisher_xml – name: Springer US
References H.D. Steffens and U. Fischer, Correlation Between Microstructure and Physical Properties of Plasma Sprayed Zirconia Coatings, in Proceedings of 2nd National Thermal Spray Conference, ASM International, Materials Park, OH, 1989, pp. 167-73
LiuHLaverniaEJRangelRHNumerical Simulation of Impingement of Molten Ti, Ni, and W Droplets on a Flat SubstrateJ. Thermal Spray Technol.199323693781:CAS:528:DyaK2cXhslSns7o%3D10.1007/BF02645867
McPhersonRShaferBVInterlamellar Contact within Plasma Sprayed CoatingsThin Solid Films1982972012041:CAS:528:DyaL3sXitFSqsQ%3D%3D10.1016/0040-6090(82)90453-9
KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A200436912413710.1016/j.msea.2003.10.2951:CAS:528:DC%2BD2cXhs12itLY%3D
ShibeVChawlaVErosion Studies of D-gun-sprayed WC-12Co, Cr3C2-25%NiCr and Al2O3-13%TiO2 Coatings on ASTM A36 SteelJ. Thermal Spray Technol.201928201520281:CAS:528:DC%2BC1MXitFyrsLrF10.1007/s11666-019-00950-5
ChraskaTKingAHTransmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia - part II. Interfaces and Subsequent Splat SolidificationThin Solid Films200139740481:CAS:528:DC%2BD3MXns1Wqt7w%3D10.1016/S0040-6090(01)01361-X
LiC-JOhmoriAThe Lamellar Structure of a Detonation Gun Sprayed Al2O3 CoatingSurf. Coat. Technol.1996822542581:CAS:528:DyaK28XjvFGmsr0%3D10.1016/0257-8972(95)02670-3
F.N. Longo, Metallurgy of Flame Sprayed Nickel Aluminide Coatings, Weld. J. 1966, p 66s-69s.
McPhersonRA Model for the Thermal Conductivity of Plasma Sprayed Ceramic CoatingsThin Solid Films198411289951:CAS:528:DyaL2cXhsVKjs78%3D10.1016/0040-6090(84)90506-6
MarkocsanNNylenPWigrenJLiXHTricoireAEffect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier CoatingsJ. Therm. Spray Technol.20091822012081:CAS:528:DC%2BD1MXlsF2msLg%3D10.1007/s11666-009-9313-6
MoreauCCieloPLamontagneMFlattening and Solidification of Thermally Sprayed ParticlesJ. Therm. Spray Technol.199213173241:CAS:528:DyaK2cXhsVSqtrg%3D10.1007/BF02647159
GuoHBKurodaSMurakamiHSegmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow PowdersThin Solid Films2006506-5071361391:CAS:528:DC%2BD28XivVCrs7w%3D10.1016/j.tsf.2005.08.142
ZhangYGHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6
PaksereshtAHRahimipourMRVaeziMRSalehiMEffect of Splat Morphology on the Microstructure and Dielectric Properties of Plasma Sprayed Barium Titanate FilmsAppl. Surf. Sci.20153247978061:CAS:528:DC%2BC2cXhvFCns73M10.1016/j.apsusc.2014.11.041
TurunenEVarisTHannulaS-PVaidyaAKulkarniAGutleberJSampathSHermanHOn the Role of Particle State and Deposition Procedure on Mechanical, Tribological and Dielectric Response of High Velocity Oxy-Fuel Sprayed Alumina CoatingsMater. Sci. Eng. A2006A4151111:CAS:528:DC%2BD2MXht1Oitb3N10.1016/j.msea.2005.08.226
YaoS-WTianJ-JYangG-JLiC-XLuoX-TLiC-JUnderstanding the Formation of the Limited Interlamellar Bonding in Thermal Spray Ceramic Coatings Based on the Intrinsic Bonding Temperature ConceptJ. Thermal Spray Technol.201625161716301:CAS:528:DC%2BC28Xhs1Ogt7bE10.1007/s11666-016-0464-y
LiC-JLiJ-LTransient Contact Pressure during Flattening of Thermal Spray Droplet and its Effect on Splat FormationJ. Therm. Spray Technol.200413222923810.1361/10599630418158
SrinivasanVSampathSEstimation of Molten Content of the Spray Stream from Analysis of Experimental Particle DiagnosticsJ. Thermal Spray Technol.20051947648310.1007/s11666-009-9439-61:CAS:528:DC%2BC3cXmt1agtg%3D%3D
J.-L. Li, Splatting Behavior of the Droplet Impinging on Substrate in Plasma Spraying, Ph.D Thesis, Xi’an Jiaotong University, 1999
ValetteSDenoirjeanALefortPPlasma Sprayed Steel: Adhesion of an Alumina Film via a Wustite InterlayerSurf. Coat. Technol.2008202260326111:CAS:528:DC%2BD1cXit1Srtrw%3D10.1016/j.surfcoat.2007.09.040
McPhersonRThe Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed CoatingsThin Solid Films1981832973101:CAS:528:DyaL3MXmt1eqsLY%3D10.1016/0040-6090(81)90633-7
BrossardSMunroePRTranATTHylandMMStudy of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel SubstratesSurf. Coat. Technol.2010204159916071:CAS:528:DC%2BD1MXhsFahs7%2FJ10.1016/j.surfcoat.2009.10.008
LiC-JOhmoriARelationship between the Structure and Properties of Thermally Sprayed DepositsJ. Therm. Spray Technol.20021133653741:CAS:528:DC%2BD38Xot1GhtrY%3D10.1361/105996302770348754
XingYZLiC-JZhangQLiC-XYangG-JInfluence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia DepositsJ. Am. Ceram. Soc.20089112393139361:CAS:528:DC%2BD1MXosVOm10.1111/j.1551-2916.2008.02775.x
McPhersonRFormation of Metastable Phase in Flame- and Plasma-Prepared AluminaJ. Mater. Sci.197388518581:CAS:528:DyaE3sXltVOltrc%3D10.1007/BF02397914
C. Moreau, M. Lamontagne and P. Cielo, Influence of the Coating Thickness on the Cooling Rate of Plasma-Sprayed Particles Impinging on a Substrate, in Proceedings of the Fourth National Thermal Spray Conference, Pittsburgh, PA, USA, 4-12 May 1991, ASM International, 1992, pp 237-243
M.F. Smith, Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 77-85
GuoHBKurodaSMurakamiHMicrostructures and Properties of Plasma-Spayed Segmented Thermal Barrier CoatingsJ. Am. Ceram. Soc.2006894143214391:CAS:528:DC%2BD28Xjs1SrsL4%3D10.1111/j.1551-2916.2005.00912.x
PaulSCipitriaATsipasSAClyneTWSintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different StabilisersSurf. Coat. Technol.20092038106910741:CAS:528:DC%2BD1cXhsFajtr7I10.1016/j.surfcoat.2008.09.037
S. Safai and H. Herman, Plasma-Sprayed Materials, In Ultrarapid Quenching of Liquid Alloys, Treatise on Materials Science and Technology, Vol.20, Ed. H. Herman, 1981, pp.183-214.
HeimannRBGrabmannOZumbrinkTJennissenHPBiometric Processes during in Vitro Leaching of Plasma-Sprayed Hydroxyapatite Coatings for Endo-Prosthetic ApplicationsMater. Siss. U. Werkstofftech2001329139211:CAS:528:DC%2BD38XhsVKmtrY%3D10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H
LiC-JZouJHuoH-BYaoJ-TYangG-JMicrostructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten ParticlesJ. Thermal Spray Technol.2016252642721:CAS:528:DC%2BC2MXhsVOqtbfI10.1007/s11666-015-0287-2
WangJLuoX-TLiC-JMaNTakahashiMEffect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr SplatSurf. Coat. Technol.201937136461:CAS:528:DC%2BC1MXjtFOlt74%3D10.1016/j.surfcoat.2019.01.085
WangWHThe Nature and Properties of Amorphous MatterProg. Phys201333177351In Chinese
LiC-JWangW-ZQuantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings through Visualization of Voids DistributionMater. Sci. Eng A20043861-2101910.1016/S0921-5093(04)00900-1
Colmenares-AnguloJShinodaKWentzTZhangWTanYSampathSOn the Response of Different Particle State Sensors to Deliberate Process VariationsJ. Thermal Spray Technol.2011201035104810.1007/s11666-011-9653-x
WangW-ZHeYDependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar StructureJ. Thermal Spray Technol.200413342543110.1361/105996304193641:CAS:528:DC%2BD2cXptFSntr8%3D
ZhangYHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6
LiLKharasBZhangHSampathSSuppression of Crystallization during High Velocity Impact Quenching of Alumina Droplets: Observations and CharacterizationMater. Sci. Eng. A2007A45635421:CAS:528:DC%2BD2sXjsVGnt7Y%3D10.1016/j.msea.2006.11.132
OravaJGreerALGholipourBHewakDWSmithCECharacterization of Supercooled Liquid Ge2Sb2Te5 and its Crystallization by Ultrafast-Heating CalorimetryNature Mater.2012112792831:CAS:528:DC%2BC38XktVaktLo%3D10.1038/nmat3275
T.J. Roseberry, F.W. Boulger, A Plasma Flame Spray Handbook, Report No.MT-043, US, Department of Commerce, National Technical Information Service, Springfield, US, 1977
L. Gyenis, A. Grimaud, O. Betoule, F. Monerie-Moulin, and P. Fauchais, Influence of Temperature Control during Spraying on Hardness and Cohesion of Alumina Coating, in Proceedings of 2nd Plasma-Technic-Symposium, Vol.1, Lucerne, Switzerland, June 5-7, 1991, eds. S. Blum-Sandmeier, H. Eschnauer, P. Huber, A.R. Nicill, pp. 95--101
ValetteSTrolliardGDenoirjeanALefortPIron/Wustite/Magnetite/Alumina Relatisonships in Plasma Coated Steel: A TEM StudySolid State Ionics20071784294371:CAS:528:DC%2BD2sXjsVSgt70%3D10.1016/j.ssi.2007.02.011
W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma Sprayed Coatings and Relationship between Lamellar Microstructure and Properties of Coatings, Xi’an Jiaotong University, Ph.D., Thesis, 2004
SuYJWangHPorterWDde Arellano LopezARFaberKTThermal Conductivity and Phase Evolution of Plasma-Sprayed Multilayer CoatingsJ. Mater. Sci.200136351135181:CAS:528:DC%2BD3MXmsFGqtL0%3D10.1023/A:1017932617123
FeuersteinAKnappJTaylorTAsharyABolcavageAHitchmanNTechnical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A ReviewJ. Thermal Spray Technol.2008171992131:CAS:528:DC%2BD1cXns1yisL4%3D10.1007/s11666-007-9148-y
LiLWangXXWeiGVaidyaAZhangHSampathSSubstrate Melting During Thermal Spray Splat QuenchingThin Solid Films20044681131191:CAS:528:DC%2BD2cXnvFGlsbw%3D10.1016/j.tsf.2004.05.073
PlancheMPCostilSVerdyCCoddetCDifferent Spray Processes for Different Al2O3 Coating PropertiesAppl. Phys. A. Mater. Sci. Process.2010996656711:CAS:528:DC%2BC3cXot1Cksr0%3D10.1007/
1379_CR152
1379_CR151
1379_CR157
1379_CR156
AA Syed (1379_CR96) 2003; 7
C-J Li (1379_CR178) 2019; 28
A McDonald (1379_CR23) 2006; 15
Y Lahmar-Mebdoua (1379_CR80) 2010; 49
1379_CR160
A Cipitria (1379_CR136) 2009; 57
VP Elyutin (1379_CR182) 1969; 43
ATT Tran (1379_CR92) 2008; 17
HT Litter (1379_CR172) 1954; 17
C Moreau (1379_CR56) 1995; 4
V Pershin (1379_CR25) 2003; 12
A Maitre (1379_CR112) 2002; 4
1379_CR130
C-J Li (1379_CR120) 2004; 386
S Brossard (1379_CR91) 2010; 204
1379_CR6
M Vardelle (1379_CR48) 1995; 4
J Orava (1379_CR181) 2012; 11
X Jiang (1379_CR51) 2001; 385
C-J Li (1379_CR52) 2004; 184
DM Zhu (1379_CR144) 2000; 9
RB Heimann (1379_CR106) 2001; 32
C Moreau (1379_CR74) 1990; 1
L Li (1379_CR20) 2004; 468
G Trapaga (1379_CR65) 1992; 23B
E-J Yang (1379_CR177) 2015; 274
C-J Li (1379_CR11) 2002; 11
HB Guo (1379_CR35) 2004; 186
DA Gereman (1379_CR4) 1972
J Knuuttila (1379_CR197) 1999; 232
S Hao (1379_CR42) 2011; 20
C-J Li (1379_CR135) 2006; 260
R McPherson (1379_CR72) 1973; 8
OG Angel (1379_CR82) 1955; 54
S-W Yao (1379_CR195) 2016; 25
PG Debenedetti (1379_CR184) 2001; 410
A Kulkarni (1379_CR154) 2004; 369
1379_CR193
Y-Z Xing (1379_CR40) 2008; 176
C-J Li (1379_CR69) 2005; 191
J Wang (1379_CR158) 2019; 371
C-J Li (1379_CR202) 2013; 22
H Liu (1379_CR67) 1993; 2
W Tillmann (1379_CR85) 2021; 406
C-J Li (1379_CR68) 2004; 13
ATT Tran (1379_CR90) 2011; 519
1379_CR15
J-J Tian (1379_CR78) 2016; 110
Y Zhang (1379_CR95) 2016; 25
T Chraska (1379_CR192) 2001; 397
Y Tan (1379_CR140) 2009; 92
Y Yang (1379_CR108) 1997; 89
J Madejski (1379_CR63) 1976; 19
S Kuroda (1379_CR98) 1991; 200
1379_CR17
P Fauchais (1379_CR1) 2014
Y-P Wang (1379_CR204) 2021; 46
H Jones (1379_CR64) 1971; 4
AA Syed (1379_CR97) 2005; 200
AH Pakseresht (1379_CR200) 2015; 324
A Ohmori (1379_CR133) 1993
E-J Yang (1379_CR176) 2016; 42
1379_CR171
E Turunen (1379_CR29) 2006; A415
J Wang (1379_CR93) 2017; 26
R McPherson (1379_CR9) 1982; 97
R Dutton (1379_CR141) 2000; 9
DT Gawne (1379_CR101) 1997; 75
R Chen (1379_CR179) 2021; 30
S Costil (1379_CR169) 2007; 16
V Viswanathan (1379_CR203) 2014; 97
YG Zhang (1379_CR62) 2016; 25
1379_CR31
T Liu (1379_CR175) 2014; 8
E Kadyrov (1379_CR153) 1996; 5
X-Y Dong (1379_CR79) 2020; 29
WG Chi (1379_CR138) 2008; 91
1379_CR30
W-Z Wang (1379_CR131) 2004; 13
CC Berndt (1379_CR8) 1980
WH Wang (1379_CR185) 2013; 33
D Holland-Moritz (1379_CR186) 2004; A375
1379_CR39
A McDonald (1379_CR54) 2007; 50
V Shibe (1379_CR28) 2019; 28
JF Bisson (1379_CR86) 2005; 14
W Zhang (1379_CR194) 2009; 8
S Sampath (1379_CR199) 1999; A272
S Bhusal (1379_CR61) 2019; 374
Y-Z Xing (1379_CR88) 2008; 373-374
P Fauchais (1379_CR150) 1989; 20B
A Kulkarni (1379_CR167) 2000; 43
NR Shankar (1379_CR109) 1982; 3
1379_CR49
J Wu (1379_CR149) 2002; 85
C-J Li (1379_CR18) 2006; 15
J Colmenares-Angulo (1379_CR165) 2011; 20
P Fauchais (1379_CR53) 1996; 22
S Dallaire (1379_CR19) 1982; 95
S-W Yao (1379_CR44) 2016; 119
1379_CR55
C-J Li (1379_CR163) 1995
YZ Xing (1379_CR134) 2008; 91
1379_CR57
1379_CR58
S Goutier (1379_CR24) 2011; 275
S Valette (1379_CR115) 2007; 178
Y Arata (1379_CR125) 1987; 16
C-J Li (1379_CR132) 1997; 32
CA Angell (1379_CR183) 1988; 102
GN Heintze (1379_CR32) 1992; 50
HB Guo (1379_CR37) 2006; 506-507
S-W Yao (1379_CR190) 2017; 134
C-J Li (1379_CR45) 2013; 22
L Li (1379_CR191) 2007; A456
S Paul (1379_CR146) 2007; 16
I-H Jung (1379_CR34) 2004; 180-181
CP Royall (1379_CR188) 2008; 7
P Fauchais (1379_CR21) 2004; 13
I Sevostianov (1379_CR123) 2000; 48
S Valette (1379_CR77) 2021; 416
L Chen (1379_CR99) 2016; 25
AD Jadhav (1379_CR145) 2006; 54
S Goutier (1379_CR76) 2011; 20
A Tricoire (1379_CR38) 2005; 9
A Ohmori (1379_CR129) 1991; 201
E Kadyrov (1379_CR27) 1995; 4
IH Jung (1379_CR33) 2000; 9
S-W Yao (1379_CR198) 2018; 27
1379_CR75
YJ Su (1379_CR168) 2001; 36
G-J Yang (1379_CR43) 2013; 235
A Ohmori (1379_CR127) 1990; 19
L Bianchi (1379_CR70) 1997; 305
1379_CR73
S Paul (1379_CR137) 2009; 203
1379_CR111
Jyun Miyase (1379_CR100) 1985
1379_CR110
C-J Li (1379_CR119) 2016; 25
L Bianchi (1379_CR60) 1995; 4
1379_CR81
V Srinivasan (1379_CR87) 2005; 19
H Liu (1379_CR180) 2020; 7
1379_CR84
1379_CR114
1379_CR113
GM Smith (1379_CR170) 2018; 27
A Feuerstein (1379_CR174) 2008; 17
N Markocsan (1379_CR142) 2009; 18
Y Hu (1379_CR187) 2015; 6
E-J Yang (1379_CR196) 2014; 61
S Goutier (1379_CR59) 2013; 235
PS Babu (1379_CR162) 2007; 16
VV Sobolev (1379_CR83) 1996; 28
1379_CR122
1379_CR121
RT Allsop (1379_CR14) 1961; 63
M Bertagnolli (1379_CR66) 1995; 4
1379_CR128
WW Zhang (1379_CR148) 2018; 27
1379_CR126
MP Planche (1379_CR155) 2010; 99
CU Hardwicke (1379_CR117) 2013; 22
A Vardelle (1379_CR3) 2016; 25
S-L Zhang (1379_CR201) 2015; A 3
JR Davis (1379_CR2) 2004
ATT Tran (1379_CR89) 2011; 206
P Saravanan (1379_CR159) 2000; 9
A Hasui (1379_CR46) 1970; 12
RW Trice (1379_CR147) 2002; 37
BN Kocthkob (1379_CR26) 1978
C-J Li (1379_CR161) 1996; 82
R McPherson (1379_CR173) 1981; 83
Y Tanaka (1379_CR94) 2002; 20
Y-Z Xing (1379_CR41) 2007; 179
M Fukumoto (1379_CR50) 2004; 45
AJ Allen (1379_CR124) 2001; 49
S Kitahara (1379_CR16) 1974; 11
HJ Ratzer-Scheibe (1379_CR143) 2007; 201
A Kulkarni (1379_CR166) 2004; A369
R McPherson (1379_CR10) 1984; 112
RC Tucker (1379_CR12) 1974; 11
H Jones (1379_CR71) 1973; 36
S Valette (1379_CR116) 2008; 202
C Moreau (1379_CR22) 1992; 1
L Sun (1379_CR118) 2018; 27
1379_CR107
1379_CR105
HB Guo (1379_CR36) 2006; 89
1379_CR104
1379_CR103
RC Dykhuizen (1379_CR47) 1994; 3
1379_CR102
YZ Wang (1379_CR139) 2011; 20
L Pawlowski (1379_CR5) 2008
VV Sobolev (1379_CR13) 1997; 42
D Matejka (1379_CR7) 1989
J Orava (1379_CR189) 2014; 140
N Branland (1379_CR164) 2006; 15
References_xml – reference: LiC-JOhmoriAThe Lamellar Structure of a Detonation Gun Sprayed Al2O3 CoatingSurf. Coat. Technol.1996822542581:CAS:528:DyaK28XjvFGmsr0%3D10.1016/0257-8972(95)02670-3
– reference: OhmoriALiC-JSurayanarayananSThe structure of thermally sprayed ceramic coatings and its dominant effect on the coating propertiesPlasma Spraying, Theory and Applications1993SingaporeWorld Scientific17920010.1142/9789814354479_0007
– reference: G. Johner, V. Wilms, K.K. Schweitzer and P. Adam, Experimental and Theroretical Aspects of Thick Thermal Barrier Coatings for Turbine Applications, Proc. 1st National Thermal Spray Conferene, 14-17 Sept., 1998, Orlando, Florida, ASM International, 1988, pp. 155-166
– reference: ElyutinVPKostikovVIMintonBSNagibinYAViscosity of AluminaRuss. J. Chem.196943316
– reference: W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma Sprayed Coatings and Relationship between Lamellar Microstructure and Properties of Coatings, Xi’an Jiaotong University, Ph.D., Thesis, 2004
– reference: F.N. Longo, Metallurgy of Flame Sprayed Nickel Aluminide Coatings, Weld. J. 1966, p 66s-69s.
– reference: LiC-JLiC-XYangG-JWangY-YExamination of Substrate Surface Melting-Induced Splashing during Splat Formation in Plasma SprayingJ. Thermal Spray Technol.20061547177241:CAS:528:DC%2BD2sXptlanuw%3D%3D10.1361/105996306X146947
– reference: ChiWGSampathSWangHMicrostructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia CoatingsJ. Am. Ceram. Soc.2008918263626451:CAS:528:DC%2BD1cXhtVehsLjI10.1111/j.1551-2916.2008.02476.x
– reference: HeintzeGNUematsuSPreparation and Structures of Plasma-Sprayed γ-and α-Al2O3 CoatingsSurface Coat. Technol.19925032132221:CAS:528:DyaK38Xhsl2muro%3D10.1016/0257-8972(92)90004-T
– reference: WangWHThe Nature and Properties of Amorphous MatterProg. Phys201333177351In Chinese
– reference: MoreauCCieloPLamontagneMDallaireSVardelleMImpacting Particle Temperature Monitoring during Plasma Spray DepositionMeas. Sci. Technol.199018078141:CAS:528:DyaK3cXltVOntr0%3D10.1088/0957-0233/1/8/023
– reference: HardwickeCULauY-CAdvances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A ReviewJ. Thermal Spray Technol.20132256457610.1007/s11666-013-9904-0
– reference: OravaJGreerALGholipourBHewakDWSmithCECharacterization of Supercooled Liquid Ge2Sb2Te5 and its Crystallization by Ultrafast-Heating CalorimetryNature Mater.2012112792831:CAS:528:DC%2BC38XktVaktLo%3D10.1038/nmat3275
– reference: GoutierSVardelleMFauchaisPComparison between Metallic and Ceramic Splats: Influence of Viscosity and Kinetic Energy on the Particle FlatteningSurf. Coat. Technol.20132356576681:CAS:528:DC%2BC3sXhsV2ksbnI10.1016/j.surfcoat.2013.08.044
– reference: OravaJGreerALFast and Slow Crystal Growth Kinetics in Glass-Forming MeltsJ. Chem. Phys.20141402145041:STN:280:DC%2BC2cfgsFymtw%3D%3D10.1063/1.4880959
– reference: KocthkobBNShestelinUAPlasma Spraying, Moskow Metallurgical Publishing1978LtdJapan-Soviet Communication Publishing Co.In Japanese
– reference: J. Pech and B. Hannoyer, Influence of Oxide Layer Promoted by d.c. Plasma Preheating on the Adhesion Coating and Role of the Initial Surface Pretreatment. Surf. Interface Anal. 30, 585-588 (2000)
– reference: YaoS-WTianJ-JYangG-JLiC-XLuoX-TLiC-JUnderstanding the Formation of the Limited Interlamellar Bonding in Thermal Spray Ceramic Coatings Based on the Intrinsic Bonding Temperature ConceptJ. Thermal Spray Technol.201625161716301:CAS:528:DC%2BC28Xhs1Ogt7bE10.1007/s11666-016-0464-y
– reference: MiyaseJyunJapan Thermal Spray Associate, Handbook of Thermal Spray1985TokyoAuto PressIn Japanese
– reference: McPhersonRShaferBVInterlamellar Contact within Plasma Sprayed CoatingsThin Solid Films1982972012041:CAS:528:DyaL3sXitFSqsQ%3D%3D10.1016/0040-6090(82)90453-9
– reference: KurodaSClyneTWThe Quenching Stress in Thermally Sprayed CoatingsThin Solid Films199120049661:CAS:528:DyaK3MXktlemtbo%3D10.1016/0040-6090(91)90029-W
– reference: Colmenares-AnguloJShinodaKWentzTZhangWTanYSampathSOn the Response of Different Particle State Sensors to Deliberate Process VariationsJ. Thermal Spray Technol.2011201035104810.1007/s11666-011-9653-x
– reference: GeremanDAHechtNLArc Plasma Technology in Materials Science1972Wien, New YorkSpringer 10.1007/978-3-7091-8293-2
– reference: MatejkaDBenkoBPlasma Spraying of Metallic and Ceramic Materials1989Baffins Lane, Chichester, UKWiley
– reference: TianJ-JYaoS-WLuoX-TLiC-XLiC-JAn Effective Approach for Creating Metallurgical Self-Bonding in Plasma-Spraying of NiCr-Mo Coating by Designing Shell-Core-Structured PowdersACTA Mater.201611019301:CAS:528:DC%2BC28XksFOgs7k%3D10.1016/j.actamat.2016.03.020
– reference: TranATTHylandMMQiuTWithyBJamesBJEffects of Surface Chemistry on Splat Formation During Plasma SprayingJ. Thermal Spray Technol.2008175-6200863710.1007/s11666-008-9237-61:CAS:528:DC%2BD1MXpvFGntw%3D%3D
– reference: HasuiAKitaharaSFukushimaTOn Relation between Properties of Coating and Spraying Angle in Plasma Jet SprayingTrans. Natl. Res. Inst. Met.1970129201:CAS:528:DyaE3cXktlKlt7s%3D
– reference: MoreauCCieloPLamontagneMFlattening and Solidification of Thermally Sprayed ParticlesJ. Therm. Spray Technol.199213173241:CAS:528:DyaK2cXhsVSqtrg%3D10.1007/BF02647159
– reference: GoutierSVardelleMLabbeJCFauchaisPFlattening and Cooling of Millimeter and Micrometer-Sized Alumina DropsJ. Thermal Spray Technol.20112059671:CAS:528:DC%2BC3cXhsFyju7fJ10.1007/s11666-010-9562-4
– reference: YangE-JLuoX-TYangG-JLiC-JTakahashiMImpact of Deposition Temperature on Crystalline Structure of Plasma-Sprayed Al2O3 Splats Revealed by FIB-HRTEM TechniqueCeram. Int.20164218538601:CAS:528:DC%2BC2MXhsFWhtbnN10.1016/j.ceramint.2015.09.010
– reference: YaoS-WLiuTLiC-JYangG-JLiC-XEpitaxial Growth during the Rapid Solidification of Plasma-Sprayed Molten TiO2 SplatACTA Mater.201713466801:CAS:528:DC%2BC2sXhtFyntr3J10.1016/j.actamat.2017.05.052
– reference: M. Vardelle, A. Vardelle, and P. Fauchais, Study of Trajectories and Temperatures of Powders in a D.C. Plasma Jet—Correlation With Alumina Sprayed Coatings, in Proceedings of the 10th International Thermal Spraying Conference, German Welding Society, Essen, Germany, 1983, pp. 88-92
– reference: LitterHTDrakeLCPore Size Distribution of Porous Materials, Pressure Porosometer and Determination of Macro-Size DistributionInds. Chem. Eng.195417782786
– reference: McPhersonRFormation of Metastable Phase in Flame- and Plasma-Prepared AluminaJ. Mater. Sci.197388518581:CAS:528:DyaE3sXltVOltrc%3D10.1007/BF02397914
– reference: HaoSLiC-JYangG-JInfluence of Deposition Temperature on the Microstructures and Properties of Plasma-sprayed Al2O3 CoatingsJ. Thermal Spray Technol.2011201601691:CAS:528:DC%2BC3cXhsFyju7vM10.1007/s11666-010-9591-z
– reference: ValetteSTrolliardGDenoirjeanALefortPIron/Wustite/Magnetite/Alumina Relatisonships in Plasma Coated Steel: A TEM StudySolid State Ionics20071784294371:CAS:528:DC%2BD2sXjsVSgt70%3D10.1016/j.ssi.2007.02.011
– reference: ChraskaTKingAHTransmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia - part II. Interfaces and Subsequent Splat SolidificationThin Solid Films200139740481:CAS:528:DC%2BD3MXns1Wqt7w%3D10.1016/S0040-6090(01)01361-X
– reference: R.S. Lima, B.R. Marple, K.A. Khor, H. Li, P. Cheang, Mechanical Properties, Microstructural Characteristics and In-Vitro Behavior of APS Sprayed Nanostructured and Conventional Hydroxyapatite Coatings, in the Proceedings of 2004 International Thermal Spray Conference, ISBN-3-87155-792-7, DVS , 2004, Dusseldorf, Germany
– reference: BerndtCCMcPhersonRPaskJEvansAThe Adhesion of Plasma Sprayed Ceramic Coatings to MetalsMaterials Science Research, Surface and Interfaces in Ceramic and Ceramic-Metal Systems1980New York and LondonPlenum619628
– reference: BissonJFMoreauCDorfmanMDambraCMallonJInfluence of Hydrogen on the Microstructure of Plasma-Sprayed Yttria-Stabilized Zirconia CoatingsJ. Thermal Spray Technol.200514859010.1361/10599630522422
– reference: XingY-ZLiYLiC-JLiC-XYangG-JInfluence of Substrate Temperature on Microcracks Formation in Plasma-Sprayed Yttria-Stabilized Zirconia SplatsKey Eng. Mater.2008373-37469721:CAS:528:DC%2BD1cXlvFCmtbs%3D10.4028/www.scientific.net/KEM.373-374.69
– reference: H.D. Steffens and U. Fischer, Correlation Between Microstructure and Physical Properties of Plasma Sprayed Zirconia Coatings, in Proceedings of 2nd National Thermal Spray Conference, ASM International, Materials Park, OH, 1989, pp. 167-73
– reference: TanYLongtinJPSampathSWangHEffect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ CoatingsJ. Am. Ceram. Soc.20099237107161:CAS:528:DC%2BD1MXktVWitr8%3D10.1111/j.1551-2916.2009.02953.x
– reference: FauchaisPFukumotoMVardelleAVardelleMKnowledge Concerning Splat Formation: An Invited ReviewJ. Therm. Spray Technol.20041333373601:CAS:528:DC%2BD2cXptFSnsLg%3D10.1361/10599630419670
– reference: CipitriaAGolosnoyIOClyneTWA Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing CoatingsACTA Mater.20095749809921:CAS:528:DC%2BD1MXhsFelu70%3D10.1016/j.actamat.2008.10.024
– reference: A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, 2002, pp. 83-86
– reference: SrinivasanVSampathSEstimation of Molten Content of the Spray Stream from Analysis of Experimental Particle DiagnosticsJ. Thermal Spray Technol.20051947648310.1007/s11666-009-9439-61:CAS:528:DC%2BC3cXmt1agtg%3D%3D
– reference: ZhangYHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6
– reference: SuYJWangHPorterWDde Arellano LopezARFaberKTThermal Conductivity and Phase Evolution of Plasma-Sprayed Multilayer CoatingsJ. Mater. Sci.200136351135181:CAS:528:DC%2BD3MXmsFGqtL0%3D10.1023/A:1017932617123
– reference: ValetteSDenoirjeanALefortPPlasma Sprayed Steel: Adhesion of an Alumina Film via a Wustite InterlayerSurf. Coat. Technol.2008202260326111:CAS:528:DC%2BD1cXit1Srtrw%3D10.1016/j.surfcoat.2007.09.040
– reference: ChenRZhangS-LLiC-JLiC-XPlasma-Sprayed High-Performance (Bi2O3)0.75(Y2O3)0.25 Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs)J. Thermal Spray Technol.2021301962041:CAS:528:DC%2BB3MXmt1agsbc%3D10.1007/s11666-021-01166-2
– reference: SampathSJiangXYMatejicekJLegerACVardelleASubstrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized ZirconiaMater. Sci. Eng. A1999A2721812181:CAS:528:DyaK1MXmvVGkt7s%3D10.1016/S0921-5093(99)00459-1
– reference: FeuersteinAKnappJTaylorTAsharyABolcavageAHitchmanNTechnical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A ReviewJ. Thermal Spray Technol.2008171992131:CAS:528:DC%2BD1cXns1yisL4%3D10.1007/s11666-007-9148-y
– reference: DavisJRHandbook of Thermal Spray Technology2004Materials ParkASM International
– reference: BianchiLGrimaudABleinFLucchesePFauchaisPComparison of Plasma-Sprayed Alumina Coatings by RF and DC Plasma SprayingJ. Thermal Spray Technol.1995459661:CAS:528:DyaK2MXmtFWrs7c%3D10.1007/BF02648529
– reference: ValetteSBernardieRAbsiJLefortPElaboration and Characterisation of Plasma Sprayed Alumina Coatings on Nickel with Nickel Oxide InterlayerSurf. Coat. Technol.202141612715910.1016/j.surfcoat.2021.1271591:CAS:528:DC%2BB3MXpsFKntLs%3D
– reference: CostilSVerdyCBolotRCoddetCOn the Role of Spraying Process on Microstructural, Mechanical, and Thermal Response of Alumina CoatingsJ. Thermal Spray Technol.2007168398431:CAS:528:DC%2BD1cXpvVSnsg%3D%3D10.1007/s11666-007-9081-0
– reference: JonesHCooling, Freezing and Substrate Impact of Droplets Formed by Rotary AtomizationJ. Phys. D19714165716601:CAS:528:DyaE38XoslOntQ%3D%3D10.1088/0022-3727/4/11/206
– reference: YangYLiuZChuangYMeasurements of Residual Stress and Bond Strength of Plasma Sprayed Laminated CoatingsSurf. Coat. Technol.199789971001:CAS:528:DyaK2sXislOntb4%3D10.1016/S0257-8972(96)02923-4
– reference: ZhuDMMillerRAThermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux ConditionsJ. Therm. Spray Technol.2000921751801:CAS:528:DC%2BD3cXls1Ojsb0%3D10.1361/105996300770349890
– reference: Y. Fukuda, H. Yamasaki, M. Kumonn, M. Kawahara and H. Kimura, Detonation Coating for Coal Fired Boiler Tubes, Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, pp. 49-54.
– reference: KnuuttilaJAhmaniemiSMantylaTWet Abrasion and Slurry Erosion Resistance of Thermally Sprayed Oxide CoatingsWear19992322072121:CAS:528:DyaK1MXmvVGkurs%3D10.1016/S0043-1648(99)00147-7
– reference: PawlowskiLThe Science and Engineering of Thermal Spray Coatings2008New YorkWiley10.1002/9780470754085
– reference: GoutierSVardelleMFauchaisPLast Developments in Diagnostics to Follow Splats Formation during Plasma SprayingJ. Phys.: Conf. Series2011275
– reference: BertagnolliMMarcheseMJacucciGModeling of Particles Impacting on a Rigid Substrate under Plasma Spraying ConditionsJ. Thermal Spray Technol.1995441491:CAS:528:DyaK2MXmtFWrs7k%3D10.1007/BF02648527
– reference: DongX-YLuoX-TZhangS-LLiC-JA Novel Strategy for Depositing Dense Self-fluxing Alloy Coatings with Sufficiently Bonded Splats by One-Step Atmospheric Plasma SprayingJ. Thermal Spray Technol.20202911731841:CAS:528:DC%2BC1MXitFyrs7zK10.1007/s11666-019-00943-4
– reference: M.W. Chase, NIST-JANAF Thermochemical tables, DTIC Doc. (1998)
– reference: KadyrovEGas-Particle Interaction in Detonation Spraying SystemsJ. Thermal Spray Technol.199652185951:CAS:528:DyaK28Xkt1Kmu78%3D10.1007/BF02646432
– reference: AllenAJIkavskyJLongGGWallaceJSBerndtCCHermanHMicrostructural Characterization of Yttria-stabilized Zirconia Plasma-Sprayed Deposits Using Multiple Small-Angle Neutron ScatteringActa Mater.200149166116751:CAS:528:DC%2BD3MXjtV2htLc%3D10.1016/S1359-6454(00)00393-1
– reference: L. Gyenis, A. Grimaud, O. Betoule, F. Monerie-Moulin, and P. Fauchais, Influence of Temperature Control during Spraying on Hardness and Cohesion of Alumina Coating, in Proceedings of 2nd Plasma-Technic-Symposium, Vol.1, Lucerne, Switzerland, June 5-7, 1991, eds. S. Blum-Sandmeier, H. Eschnauer, P. Huber, A.R. Nicill, pp. 95--101
– reference: PaksereshtAHRahimipourMRVaeziMRSalehiMEffect of Splat Morphology on the Microstructure and Dielectric Properties of Plasma Sprayed Barium Titanate FilmsAppl. Surf. Sci.20153247978061:CAS:528:DC%2BC2cXhvFCns73M10.1016/j.apsusc.2014.11.041
– reference: L. Bianchi,A. Denoirjean, P. Fauchais, O. Postel, Generation of Alumina Plasma Sprayed Coatings on Alumina Substances, In Thermal Spray: Practical Solutions for Engineering Problems, Proceedings of 9th National Thermal Spray Conference & Exposition, C.C. Berndt (ed), ASM International, Materials Park, Ohio-USA, 1996, pp. 749-755
– reference: FauchaisPHeberlainJVRBoulosMIThermal Spray Fundamentals From Powder to Part2014New YorkSpringer10.1007/978-0-387-68991-3
– reference: GuoHBKurodaSMurakamiHMicrostructures and Properties of Plasma-Spayed Segmented Thermal Barrier CoatingsJ. Am. Ceram. Soc.2006894143214391:CAS:528:DC%2BD28Xjs1SrsL4%3D10.1111/j.1551-2916.2005.00912.x
– reference: FauchaisPVardelleMVardelleABianchiLPlasma Spray: Study of the Coating GenerationCeram. Int.1996222953031:CAS:528:DyaK28Xkt1ektbc%3D10.1016/0272-8842(95)00106-9
– reference: KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A200436912413710.1016/j.msea.2003.10.2951:CAS:528:DC%2BD2cXhs12itLY%3D
– reference: OhmoriALiC-JArataYInfluence of Plasma Spray Conditions on the Structure of Al2O3 CoatingsTrans. Jpn. Weld. Res. Inst.1990192592701:CAS:528:DyaK3MXltFyru7o%3D
– reference: KadyrovEKadyrovVGas Dynamical Parameters of Detonation Powder SprayingJ. Thermal Spray Technol.19954328628610.1007/BF02646972
– reference: McPhersonRA Model for the Thermal Conductivity of Plasma Sprayed Ceramic CoatingsThin Solid Films198411289951:CAS:528:DyaL2cXhsVKjs78%3D10.1016/0040-6090(84)90506-6
– reference: TillmannWKhalilOBaumannIInfluence of spray gun parameters on inflight particle’s characteristics, the splat-type distribution, and microstructure of plasma-sprayed YSZ coatingsSurf. Coat. Technol.20214061:CAS:528:DC%2BB3cXis1ais7rO10.1016/j.surfcoat.2020.126705
– reference: T.J. Roseberry, F.W. Boulger, A Plasma Flame Spray Handbook, Report No.MT-043, US, Department of Commerce, National Technical Information Service, Springfield, US, 1977
– reference: TranATTHylandMMShinodaKSampathSInhibition of Molten Droplet Deposition by Substrate Surface HydroxidesSurf. Coat. Technol.2011206128312921:CAS:528:DC%2BC3MXhsVagt7nO10.1016/j.surfcoat.2011.08.041
– reference: LiuHLaverniaEJRangelRHNumerical Simulation of Impingement of Molten Ti, Ni, and W Droplets on a Flat SubstrateJ. Thermal Spray Technol.199323693781:CAS:528:DyaK2cXhslSns7o%3D10.1007/BF02645867
– reference: A. Ohmori, C.-J. Li, and Y. Arata, Structure of Plasma-Sprayed Alumina Coatings Revealed by Using Copper Electroplating, in Thermal Spray Coating, Properties, Processes and Applications, T.F. Bernecki, ed., ASM International, Materials Park, OH, 1992, pp. 105-13
– reference: BrossardSMunroePRTranATTHylandMMStudy of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel SubstratesSurf. Coat. Technol.2010204159916071:CAS:528:DC%2BD1MXhsFahs7%2FJ10.1016/j.surfcoat.2009.10.008
– reference: YangE-JLuoX-TYangG-JLiC-JTakahashiMEpitaxial Grain Growth during 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma SprayingSurf. Coat. Technol.201527437431:CAS:528:DC%2BC2MXnt1elu7o%3D10.1016/j.surfcoat.2015.04.031
– reference: MadejskiJSolidification of Droplets on a Cold SubstrateInt. J. Heat Mass Transf.1976191009101310.1016/0017-9310(76)90183-6
– reference: JungIHBaeKKYangMSIhmSKA Study of the Microstructure of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma SprayingJ. Thermal Spray Technol.2000944634771:CAS:528:DC%2BD3MXjsFOgsw%3D%3D10.1007/BF02608548
– reference: SobolevVVGuilemanyJMDroplet-Substrate Impact Interaction in Thermal SprayingMater. Lett.19962833l33510.1016/0167-577X(96)00071-7
– reference: S. Safai and H. Herman, Plasma-Sprayed Materials, In Ultrarapid Quenching of Liquid Alloys, Treatise on Materials Science and Technology, Vol.20, Ed. H. Herman, 1981, pp.183-214.
– reference: LiC-JWangW-ZQuantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings through Visualization of Voids DistributionMater. Sci. Eng A20043861-2101910.1016/S0921-5093(04)00900-1
– reference: McPhersonRThe Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed CoatingsThin Solid Films1981832973101:CAS:528:DyaL3MXmt1eqsLY%3D10.1016/0040-6090(81)90633-7
– reference: LiC-JOhmoriAMcPhersonRThe Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic CoatingsJ. Mater. Sci.19973299710041:CAS:528:DyaK2sXhsVensbY%3D10.1023/A:1018574221589
– reference: MarkocsanNNylenPWigrenJLiXHTricoireAEffect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier CoatingsJ. Therm. Spray Technol.20091822012081:CAS:528:DC%2BD1MXlsF2msLg%3D10.1007/s11666-009-9313-6
– reference: KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A2004A3691241371:CAS:528:DC%2BD2cXhs12itLY%3D10.1016/j.msea.2003.10.295
– reference: PlancheMPCostilSVerdyCCoddetCDifferent Spray Processes for Different Al2O3 Coating PropertiesAppl. Phys. A. Mater. Sci. Process.2010996656711:CAS:528:DC%2BC3cXot1Cksr0%3D10.1007/s00339-010-5586-3
– reference: GuoHBKurodaSMurakamiHSegmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow PowdersThin Solid Films2006506-5071361391:CAS:528:DC%2BD28XivVCrs7w%3D10.1016/j.tsf.2005.08.142
– reference: ZhangYGHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6
– reference: LiLWangXXWeiGVaidyaAZhangHSampathSSubstrate Melting During Thermal Spray Splat QuenchingThin Solid Films20044681131191:CAS:528:DC%2BD2cXnvFGlsbw%3D10.1016/j.tsf.2004.05.073
– reference: TricoireAVardelleMFauchaisPBraillardFMalieABengtssonPMacrocrack Formation in Plasma-Sprayed YSZ TBCs When Spraying Thick PassesHigh Temp. Mater. Process2005940141310.1615/HighTempMatProc.v9.i3.70
– reference: TurunenEVarisTHannulaS-PVaidyaAKulkarniAGutleberJSampathSHermanHOn the Role of Particle State and Deposition Procedure on Mechanical, Tribological and Dielectric Response of High Velocity Oxy-Fuel Sprayed Alumina CoatingsMater. Sci. Eng. A2006A4151111:CAS:528:DC%2BD2MXht1Oitb3N10.1016/j.msea.2005.08.226
– reference: JonesHSplat Cooling and Metastable PhasesRep. Progr. Phys.1973361114251:CAS:528:DyaE2cXltFemtA%3D%3D10.1088/0034-4885/36/11/002
– reference: R.C. Tucker and M.O. Price, The Effect of Angle of Deposition on the Properties of Selected Detonation Gun Coatings, in Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, p 61-71
– reference: YangE-JLiC-JYangG-JLiC-XTakahashiMEffect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 CoatingIOP Conf. Series: Mater. Sci. Eng.2014610120221:CAS:528:DC%2BC2cXhvFKgt77P10.1088/1757-899X/61/1/012022
– reference: TuckerRCStructure Property Relationships in Deposits Produced by Plasma Spray and Detonation Gun TechniquesJ. Vac. Sci. Technol.19741147257341:CAS:528:DyaE2MXitVGgtQ%3D%3D10.1116/1.1312743
– reference: C.-J. Li, Effect of the Surface Adsorbates on the Morphology of Plasma-Sprayed Splats, Tagungsband Conference Proceedings (2005 Int. Thermal Spray Conf.], Ed. E. Lugscheider, May 2-5, Bussel, Switzerland, German Welding Research Institute, 2005, Germany, pp. 311-319
– reference: PershinVLufithaMChandraSMostaghimiJEffect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel CoatingsJ. Therm. Spray Technol.2003123703761:CAS:528:DC%2BD3sXotlGhtLs%3D10.1361/105996303770348249
– reference: J.-L. Li, Splatting Behavior of the Droplet Impinging on Substrate in Plasma Spraying, Ph.D Thesis, Xi’an Jiaotong University, 1999
– reference: JungI-HMoonJ-SSongK-CYangM-SMicrostructure of Yttria Stabilized Zirconia Deposited by Plasma SprayingSurf. Coat. Technol.2004180-1814544571:CAS:528:DC%2BD2cXisVWjtb8%3D10.1016/j.surfcoat.2003.10.129
– reference: ZhangS-LLiC-JLiC-XYangG-JLiuMAtmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel CellsJ. Mater. Chem.2015A 37535755310.1039/C5TA01203A1:CAS:528:DC%2BC2MXjsFWnuro%3D
– reference: FukumotoMOhgitaniIYasuiTEffect of Substrate Surface Change on Flattening Behaviour of Thermal Sprayed ParticlesMater. Trans.2004456186918731:CAS:528:DC%2BD2cXlvVanurg%3D10.2320/matertrans.45.1869
– reference: SmithGMSmithASampathSFracture Toughness of Thermal Spray Ceramics: Measurement Techniques and Processing DependenceJ. Thermal Spray Technol.201827107610891:CAS:528:DC%2BC1cXhs1Omt7nK10.1007/s11666-018-0755-6
– reference: LiC-JZhangQ-LYaoS-WYangG-JLiC-XPlasma Spraying of Dense Ceramic Coating with Fully Bonded Lamellae Through Materials Design Based on the Critical Bonding Temperature ConceptJ. Thermal Spray Technol.2019281–2536210.1007/s11666-018-0818-81:CAS:528:DC%2BC1MXmvVeluro%3D
– reference: WangY-PGaoJ-TLiJ-HLiC-JLiC-XPreparation of Bulk-Like La0.8Sr0.2Ga0.8Mg0.2O3-d Coatings for Porous Metal-Supported Solid Oxide Fuel Cells via Plasma Spraying at Increased Particle TemperaturesInt. J. Hydrog. Energy20214632655326641:CAS:528:DC%2BB3MXhs12rtb%2FP10.1016/j.ijhydene.2021.07.121
– reference: DebenedettiPGStillingerFHSupercooled Liquids and the Glass TransitionNature20014102592671:CAS:528:DC%2BD3MXitV2js7k%3D10.1038/35065704
– reference: Lahmar-MebdouaYVardelleAFauchaisPGobinDModelling the Nucleation Process in Alumina Lamellae Deposited on a Steel SubstrateInt. J. Therm. Sci.2010495225521:CAS:528:DC%2BD1MXhsFaku7vM10.1016/j.ijthermalsci.2009.09.011
– reference: LiuHChenWPanRShanZQiaoADrewittJWEHennetLJahnSLangstaffDPChassGATaoHYueYGreavesGNFrom Molten Calcium Aluminates through Phase Transitions to Cement PhasesAdv. Sci.2020719022091:CAS:528:DC%2BB3cXisVSisLk%3D10.1002/advs.201902209
– reference: MoreauCGougeonPLamontagneMInfluence of Substrate Preparation on the Flattening and Cooling of Plasma-Sprayed ParticlesJ. Thermal Spray Technol.1995425331:CAS:528:DyaK2MXmtFWrs7s%3D10.1007/BF02648525
– reference: WangYZWuWZhengXBZengYDingMJZhangCGRelationship Between the Microstructure and Thermal Conductivity of Plasma-Sprayed ZrO2 CoatingsJ. Therm Spray Technol.2011206117711821:CAS:528:DC%2BC3MXhsFarsrnE10.1007/s11666-011-9660-y
– reference: JadhavADPadtureNPJordanEHGellMMiranzoPFullerERLow-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered MicrostructuresActa Mater.20065412334333491:CAS:528:DC%2BD28Xmt1amsrg%3D10.1016/j.actamat.2006.03.024
– reference: AngellCAStructural Instability and Relaxation in Liquid and Glassy Phases near the Fragile liquid LimitJ. Non-Cryst. Solids19881022052211:CAS:528:DyaL1cXltlemtb0%3D10.1016/0022-3093(88)90133-0
– reference: YaoS-WYangG-JLiC-XLiC-JImproving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding TemperatureJ. Thermal Spray Technol.2018271-225341:CAS:528:DC%2BC2sXhsVGkt7nK10.1007/s11666-017-0633-7
– reference: A. Vardelle, M. Vardelle, R. McPherson, and P. Fauchais, Study of the Influence of Particle Temperature and Velocity Distribution Within a Plasma Jet Coating Formation, in Proceedings of the 9th International Thermal Spraying Conference, Nederland Inst. Voor Lastetechnik, Hague, The Netherlands, 1980, pp. 155-61
– reference: C.-J. Li, H.-L. Liao, P. Gougeon, G. Montavon and C. Coddet, Effect of Reynolds Numbers of Molten Particle on Splat Formation in Plasma Spraying, Thermal Spray: Advancing the Science and Applying the Technology, (Ed.) C. Moreau and B. Marple, Published by ASM international, Materials Park, OH-USA, 2003, pp. 875-882
– reference: TriceRWSuYJMawdsleyJRFaberKTDe Arellano-LopezARWangHPorterWDEffect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZJ. Mater. Sci.20023711235923651:CAS:528:DC%2BD38XkvVeltLY%3D10.1023/A:1015310509520
– reference: WangJLiC-JYangG-JLiC-XEffect of Oxidation on the Bonding Formation of Plasma-sprayed Stainless Steel Splats onto Stainless Steel SubstrateJ. Thermal Spray Technol.2017261-247591:CAS:528:DC%2BC28XitV2msbjM10.1007/s11666-016-0488-3
– reference: LiC-JYangG-JOhmoriA.Akira Ohmori, Relationship between Particle Erosion and Lamellar Microstructure for Plasma Sprayed Alumina CoatingsWear2006260116621171:CAS:528:DC%2BD28XkvFyqsLk%3D10.1016/j.wear.2005.07.006
– reference: HuYLiFLiMBaiHWangWFive-Fold Symmetry as Indicator of Dynamic Arrest in Metallic Glass-Forming LiquidsNat. Commun.2015683101:CAS:528:DC%2BC2MXhsFeitrzI10.1038/ncomms9310
– reference: Ratzer-ScheibeHJSchulzUThe Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier CoatingsSurf. Coat. Technol.2007201187880788810.1016/j.surfcoat.2007.03.0281:CAS:528:DC%2BD2sXlvVagu7Y%3D
– reference: LiC-JLiYYangG-JLiC-XEvolution of Lamellar Interface Cracks during Isothermal Cyclic Test of Plasma-Sprayed 8YSZ coating with a columnar structured YSZ interlayerJ. Thermal Spray Technol.2013226137413821:CAS:528:DC%2BC3sXhvVGms7nJ10.1007/s11666-013-9965-0
– reference: McDonaldAMoreauCChandraSThermal Contact Resistance between Plasma-Sprayed Particles and Flat SurfacesInt. J. Heat Mass Transf.200750173717491:CAS:528:DC%2BD2sXitlyqtb8%3D10.1016/j.ijheatmasstransfer.2006.10.022
– reference: Y. Arata, A .Ohmori and C.-J. Li, Study on the Structure of Plasma Sprayed Ceramic Coating by Using Copper Electroplating, in Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, pp. 205-210
– reference: LiuTYangE-JYangG-JLiC-XLiC-JThe Interface Bonding Formation during Plasma Spraying of La2Zr2O7 CoatingMater. Res. Innov.20148S4S973S978
– reference: WuJWeiXZPadtureNPKlemensPGGellMGarciaEMiranzoPOsendiMILow-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating ApplicationsJ. Am. Ceram. Soc.20028512303130351:CAS:528:DC%2BD3sXhvVChtQ%3D%3D10.1111/j.1151-2916.2002.tb00574.x
– reference: B. Wielage, J. Drozak, Bonding Problems by APS-sprayed Coatings, TS90 Thermal Spray Conference, August 29-31, 1990, Essen, DVS, Dusseldorf, Germany, 1990, pp 243-246.
– reference: ArataYOhmoriALiC-JCharacteristics of Metal Electroplating to Plasma Sprayed Ceramic CoatingsTrans. Jpn. Weld. Res. Inst.1987162592651:CAS:528:DyaL1cXkt12jtr4%3D
– reference: ZhangWSampathSA Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray ProcessesJ. Thermal Spray Technol.200982334
– reference: LiC-JZouJHuoH-BYaoJ-TYangG-JMicrostructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten ParticlesJ. Thermal Spray Technol.2016252642721:CAS:528:DC%2BC2MXhsVOqtbfI10.1007/s11666-015-0287-2
– reference: LiC-JOhmoriARelationship between the Structure and Properties of Thermally Sprayed DepositsJ. Therm. Spray Technol.20021133653741:CAS:528:DC%2BD38Xot1GhtrY%3D10.1361/105996302770348754
– reference: LiC-JLiaoHLGougeonPMontavonGCoddetCExperimental Determination of the Relationship between Flattening Degree and Reynolds Number for Spray Molten DropletsSurf. Coat. Technol.20051912-33753831:CAS:528:DC%2BD2cXhtVKqtbjL10.1016/j.surfcoat.2004.04.063
– reference: DallaireSInfluence of Temperature on the Bonding Mechanism of Plasma-Sprayed CoatingsThin Solid Films19829532372441:CAS:528:DyaL38Xmt1WisbY%3D10.1016/0040-6090(82)90016-5
– reference: VardelleMVardelleALegerACFauchaisPGobinDInfluence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying ProcessesJ. Thermal Spray Technol.19954150581:CAS:528:DyaK2MXmtFWrs7Y%3D10.1007/BF02648528
– reference: J.M. Houben and G.G.V. Liempd, Metallurgical Interactions of Mo and Steel During Plasma Spraying, Proceedings of 10th International Thermal Spray Conference, May 4-7, 1983 (Essen, Germany), German Welding Institute, 1983, pp. 66-71
– reference: A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malie, P. Bengtsson, New Concepts for Plasma Sprayed Zirconia TBC for Aeronautic Applications, in: E. Lugscheider (Ed.), Thermal Spray Connects: Explore its Surfacing Potential, Proceedings of the 2005 International Thermal Spray Conference, Basil, Switzerland, 2005, pp. 924-928
– reference: WangW-ZHeYDependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar StructureJ. Thermal Spray Technol.200413342543110.1361/105996304193641:CAS:528:DC%2BD2cXptFSntr8%3D
– reference: M.F. Smith, Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 77-85
– reference: SyedAADenoirjeanAHannoyerBFauchaisPDenoirjeanPKhanAALabbeJCInfluence of Substrate Surface Conditions on the Plasma Sprayed Ceramic and Metallic Particles FlatteningSurf. Coat. Technol.2005200231732331:CAS:528:DC%2BD2MXht1GgtrfP10.1016/j.surfcoat.2005.01.014
– reference: VardelleAMoreauCAkedoJAshrafizadehHBerndtCCBerghausJOBoulosMBroganJBourtsalasACDolatabadiADorfmanMEdenTJFauchaisPFisherGGaertnerFGindratMHenneRHylandMIrissouEJordanEHKhorKAKillingerALauYCLiC-JLiLLongtinJMarkocsanNMassetPJMatejicekJMauerGMcDonaldAMostaghimiJSampathSSchillerGShinodaKSmithMFSyedAAThemelisNJTomaFLTrellesJPVassenRVuoristoPThe 2016 Thermal Spray RoadmapJ. Therm. Spray Technol.2016258137614401:CAS:528:DC%2BC28XhvFylsL7F10.1007/s11666-016-0473-x
– reference: SevostianovIKachanovMModeling of the Anisotropic Elastic Properties of Plasma-Sprayed Coatings in Relation to Their MicrostructureActa Mater.200048136113701:CAS:528:DC%2BD3cXhvVCktrg%3D10.1016/S1359-6454(99)00384-5
– reference: XingY-ZLiC-XLiC-JLongH-GXieY-XMicrostructure Development of Plasma Sprayed Yttria-Stabilized Zirconia and its Effect on Electrical ConductivitySolid State Ionics20071792714831485
– reference: OhmoriALiC-JQuantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper ElectroplatingThin Solid Films19912012412521:CAS:528:DyaK3MXltFyqsrg%3D10.1016/0040-6090(91)90114-D
– reference: KitaharaSA Study of the Bonding Mechanism of Sprayed CoatingsJ. Vac. Sci. Technol.19741147477531:CAS:528:DyaE2MXitVGqtw%3D%3D10.1116/1.1312746
– reference: ChenLYangGJLiC-JHierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic CoatingsJ. Thermal Spray Technol.20162595997010.1007/s11666-016-0420-x1:CAS:528:DC%2BC28XovFWmtL0%3D
– reference: D.M. Gray, Y.C. Lau, C.A. Johnson, M.P. Borom, W.A. Nelson, Thermal Barrier Coatings Having an Improved Columnar Microstructure, United States Patent, 5,830,586, Nov. 3, 1988
– reference: C. Moreau, M. Lamontagne and P. Cielo, Influence of the Coating Thickness on the Cooling Rate of Plasma-Sprayed Particles Impinging on a Substrate, in Proceedings of the Fourth National Thermal Spray Conference, Pittsburgh, PA, USA, 4-12 May 1991, ASM International, 1992, pp 237-243
– reference: High-performance Ceramic Coatings: North American Markets and Technologies, BCC Research, Wellesley, MA USA, 2010. Web: www.bccresearch.com
– reference: McDonaldALamontagneMChandraSMoreauCPhotographing Impact of Plasma-Sprayed Particles on Metal SubstratesJ. Thermal Spray Technol.2006157087161:CAS:528:DC%2BD2sXptlanug%3D%3D10.1361/105996306X147027
– reference: FauchaisPVardelleMVardelleACoudertJFPlasma Spraying of Ceramic Particles in Argon-Hydrogen D.C. Plasma Jets: Modeling and Measurements of Particles in Flight Correlation with Thermophysical Properties of Sprayed LayersMetall. Trans. B198920B2632761:CAS:528:DyaL1MXksVCjtLs%3D10.1007/BF02825607
– reference: GawneDTGriffithsBJDongGThe influence of Pretreatment on the Adhesion of Ceramic Coatings on SteelTrans. IMF19977562052071:CAS:528:DyaK2sXntlCns7c%3D10.1080/00202967.1997.11871174
– reference: C.-J. Li, A.Ohmori and Y.Harada, 1995, Experimental Investigation of the Morphologies of Plasma Sprayed Copper Splats, Proceedings of 14th International Thermal Spray Conference (14th ITSC), 1995, Japan High Temperature Society, ed. A.Ohmori, pp. 333-339
– reference: WangJLuoX-TLiC-JMaNTakahashiMEffect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr SplatSurf. Coat. Technol.201937136461:CAS:528:DC%2BC1MXjtFOlt74%3D10.1016/j.surfcoat.2019.01.085
– reference: RoyallCPWilliamsSROhtsukaTTanakaHDirect Observation of a Local Structural Mechanism for Dynamic ArrestNat. Mater.200875565611:CAS:528:DC%2BD1cXnslKqsLw%3D10.1038/nmat2219
– reference: JiangXWanYHermanHSampathSRole of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets during Thermal SprayThin Solid Films20013851321411:CAS:528:DC%2BD3MXhvVWqt70%3D10.1016/S0040-6090(01)00769-6
– reference: M. Fukumoto, S. Katoh, and I. Okane, Splat Behavior of Plasma Sprayed Particles on Flat Substrate Surface, in: A. Ohmori (Ed.), Thermal Spraying: Current Status and Future Trends, vol. 1, High Temperature Society of Japan, 1995, pp. 353-358
– reference: F. Ferguen, P. Fauchais, A. Vardelle and D. Gobin, Numerical Investigation of Impact and Solidification YSZ Droplets Plasma-Sprayed onto a Substrate: Effect of Thermal Properties and Roughness, Advanced Ceramics Coatings and Interfaces III, eds. H.T Lin and D.M Zhu, American Ceramic Society, 2009, pp.159-170
– reference: TrapagaGMatthysEFVaenciaJJSzekelyJFluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impacting on Substrate: Comparison of Numerical and Experimental ResultsMetall. Trans. B199223B7017181:CAS:528:DyaK3sXhtVOms74%3D10.1007/BF02656450
– reference: PaulSCipitriaAGolosnoyIOXieLDorfmanMRClyneTWEffects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed ZirconiaJ. Therm. Spray Technol.2007165-67988031:CAS:528:DC%2BD1cXpvVSgtw%3D%3D10.1007/s11666-007-9097-5
– reference: H.D. Steffens, M. Mack and R. Lauterbach, Measurement of Particle Velocities for an Analytical Model of Low Pressure Plasma Jets, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 67-76
– reference: TanakaYNakashimaMFukumotoMEffect of substrate surface condition on flattening behavior of thermal sprayed ceramic particlesQuarterly J. Japan Weld. Soc.20022031732110.2207/qjjws.20.317In Japanese
– reference: HeimannRBGrabmannOZumbrinkTJennissenHPBiometric Processes during in Vitro Leaching of Plasma-Sprayed Hydroxyapatite Coatings for Endo-Prosthetic ApplicationsMater. Siss. U. Werkstofftech2001329139211:CAS:528:DC%2BD38XhsVKmtrY%3D10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H
– reference: ShankarNRBerndtCCH, Herman, Failure and Acoustic Emission Response of Plasma Sprayed ZrO2-8 wt% Y2O3 CoatingsCeramic Eng. Sci. Process.198237727921:CAS:528:DyaL3sXksVagtb8%3D10.1002/9780470318782.ch30
– reference: SaravananPSelvarajanVSrivastavaMPRaoDSJoshiSVSundararajaGStudy of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental DesignJ. Therm. Spray Technol.200095055121:CAS:528:DC%2BD3MXjsFOgtQ%3D%3D10.1007/BF02608554
– reference: N. Iwamoto, Y. Makino, N. Umesaki, S. Endo, H. Kobayashi, The Effect of Pretreatments of Metals on Bond Adhesion, in Proceedings of the 10th International Thermal Spray Conference, 80, DVS, Dusseldorf, Germany, 1983, pp. 18-22.
– reference: AngelOGWaterdrop Collisions with Solid SurfacesJ. Res. Natl. Bure. Stand.19555428129810.6028/jres.054.033
– reference: MaitreADenoirjeanAFauchaisPLefortPPlasma-Jet Coating of Preoxidized XC38 Steel: Influence of the Nature of the Oxide LayerPhys. Chem. Chem. Phys.20024388738931:CAS:528:DC%2BD38Xltl2jtbY%3D10.1039/b202553a
– reference: LiLKharasBZhangHSampathSSuppression of Crystallization during High Velocity Impact Quenching of Alumina Droplets: Observations and CharacterizationMater. Sci. Eng. A2007A45635421:CAS:528:DC%2BD2sXjsVGnt7Y%3D10.1016/j.msea.2006.11.132
– reference: LiC-JYangG-JLiC-XDevelopment of the Particle Interface Bonding in Thermal Spray Coatings: A ReviewJ. Thermal Spray Technol.20132221922061:CAS:528:DC%2BC3sXjtVCntb0%3D10.1007/s11666-012-9864-9
– reference: BranlandNMeillotEFauchaisPVardelleAGitzhoferFBoulosMRelationships between Microstructure and Electrical Properties of RF and DC Plasma-Sprayed Titania CoatingsJ. Thermal Spray Technol.200615153621:CAS:528:DC%2BD28XjsVGns70%3D10.1361/105996306X92596
– reference: BhusalSZhangCBustillosJNautiyalPBoeslBAgarwaAA computational approach for predicting microstructure and mechanical properties of plasma sprayed ceramic coatings from powder to bulkSurf. Coat. Technol.20193741111:CAS:528:DC%2BC1MXhtVygurzE10.1016/j.surfcoat.2019.05.068
– reference: ZhangWWLiGRZhangQYangGJZhangGWMuHMSelf-Enhancing Thermal Insulation Performance of Bimodal-Structured Thermal Barrier CoatingJ. Therm. Spray Technol.20182771064107510.1007/s11666-018-0754-7
– reference: GuoHBVassenRStoverDAtmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack DensitySurf. Coat. Technol.20041863533631:CAS:528:DC%2BD2cXlvFGrsL0%3D10.1016/j.surfcoat.2004.01.002
– reference: BianchiLLegerACVardelleMVardelleAFauchaisPSplat Formation and Cooling of Plasma-Sprayed ZirconiaSurf. Coat. Technol.199730535471:CAS:528:DyaK2sXlsFahur0%3D
– reference: TranATTHylandMMShinodaKSampathSInfluence of Substrate Surface Conditions on the Deposition and Spreading of Molten DropletsThin Solid Films2011519244524561:CAS:528:DC%2BC3MXht1Cjsbc%3D10.1016/j.tsf.2010.11.047
– reference: ViswanathanVDwivediGSampathSTroczynskiTEngineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional PerformanceJ. Am. Ceram. Soc.201497277027781:CAS:528:DC%2BC2cXhsVOitrrP10.1111/jace.13033
– reference: LiC-JLiJ-LTransient Contact Pressure during Flattening of Thermal Spray Droplet and its Effect on Splat FormationJ. Therm. Spray Technol.200413222923810.1361/10599630418158
– reference: DuttonRWheelerRRavichandranKSAnKEffect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier CoatingsJ. Therm. Spray Technol.2000922042091:CAS:528:DC%2BD3cXls1Ojsbk%3D10.1361/105996300770349935
– reference: SobolevVVGuilemanyJMNuttingJMiquelJRDevelopment of Substrate-Coating Adhesion in Thermal SprayingInt. Mater. Rev.19974231171361:CAS:528:DyaK1cXkvFSh10.1179/imr.1997.42.3.117
– reference: XingYZLiC-JZhangQLiC-XYangG-JInfluence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia DepositsJ. Am. Ceram. Soc.20089112393139361:CAS:528:DC%2BD1MXosVOm10.1111/j.1551-2916.2008.02775.x
– reference: LiC-JOhmoriAArataYOhmoriAEffect of Spray Methods on the Lamellar Structure of Al2O3 CoatingsThermal Spray, Current Status and Future Trends1995JapanJapan High Temperature Society, Osaka501506
– reference: KulkarniASampathSGolandAHermanHComputed Microtomography Studies to Characterize Microstructure-Property Correlations in Thermal Sprayed Alumina DepositsScripta Mater.2000434714761:CAS:528:DC%2BD3cXlvVWgtL0%3D10.1016/S1359-6462(00)00416-4
– reference: Holland-MoritzDSchenkTSimonetVBellissentRConvertPHansenTHerlachDShort-Range Order in Undercooled Metallic LiquidsMater. Sci. Eng. A2004A3759810310.1016/j.msea.2003.10.0561:CAS:528:DC%2BD2cXlvVWmuro%3D
– reference: DykhuizenRCReview of Impact and Solidification of Molten Thermal Spray DropletsJ. Therm. Spray Technol.199433513611:CAS:528:DyaK2MXkvVSkur8%3D10.1007/BF02658980
– reference: V. Wilm, H.Herman, Crystallography and Microstructure of Equilibrium and Metastable Phases Resulting from Plasma Spraying of Ceramic Coatings, in Proceedings of 8th International Thermal Spray Conf,, Miami Beach, Florida, American Welding Society, 1976, pp. 236-243
– reference: SyedAADenoirjeanPDenoirjeanALabbeJCFauchaisPInfluence of Substrate Surface Preheating Stage on the Morphology and Flattening of SplatsHigh Temp. Mater. Process.200371952031:CAS:528:DC%2BD2cXnsFSksbk%3D
– reference: LiC-JLiJ-LEvaporated-Gas-Induced Splashing Model for Splat Formation during Plasma SprayingSurf. Coat. Technol.2004184113231:CAS:528:DC%2BD2cXks1Whtrs%3D10.1016/j.surfcoat.2003.10.048
– reference: BabuPSRaoDSRaoGVNSundararajanGEffect of Feedstock Size and its Distribution on the Properties of Detonation Sprayed CoatingsJ. Thermal Spray Technol.20071622812901:CAS:528:DC%2BD2sXosF2htLc%3D10.1007/s11666-007-9032-9
– reference: ShibeVChawlaVErosion Studies of D-gun-sprayed WC-12Co, Cr3C2-25%NiCr and Al2O3-13%TiO2 Coatings on ASTM A36 SteelJ. Thermal Spray Technol.201928201520281:CAS:528:DC%2BC1MXitFyrsLrF10.1007/s11666-019-00950-5
– reference: SunLThermal Spray Coatings on Orthopedic Devices: When and How the FDA Reviews Your CoatingsJ. Therm Spray Technol.201827128012901:CAS:528:DC%2BC1cXhslKiu7jL10.1007/s11666-018-0759-2
– reference: XingY-ZLiC-JLiC-XYangG-JInfluence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel CellsJ. Power Sour.2008176131381:CAS:528:DC%2BD2sXhsVGlu7zO10.1016/j.jpowsour.2007.10.031
– reference: YangG-JLiC-XHaoSXingY-ZYangE-JLiC-JCritical Bonding Temperature for the Splat Bonding Formation during Plasma Spraying of Ceramic MaterialsSurf. Coat. Technol.20132358418471:CAS:528:DC%2BC3sXhsFCit73L10.1016/j.surfcoat.2013.09.010
– reference: PaulSCipitriaATsipasSAClyneTWSintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different StabilisersSurf. Coat. Technol.20092038106910741:CAS:528:DC%2BD1cXhsFajtr7I10.1016/j.surfcoat.2008.09.037
– reference: YaoS-WLiC-JTianJ-JYangG-JLiC-XConditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate after High-speed ImpactACTA Mater.20161199251:CAS:528:DC%2BC28XhtlartL%2FI10.1016/j.actamat.2016.07.057
– reference: AllsopRTPittTJHardyJVThe Adhesion of Sprayed MolybdenumMetall.1961631251311:CAS:528:DyaF3MXos1yrtg%3D%3D
– reference: W. Funk, F, Goebe, M. Mauz, The Influence of Substrate Temperature on the Bond Strength of Plasma Sprayed Oxide Ceramics, in 1st Plasma Technic Symposium, Vol.1, H. Eschnauer, P. Huber, A.R. Nicoll, S. Sandmeier (Eds), Plasma-Technic AG, Wohlen, Switzerland, pp 59-66.
– volume: 20
  start-page: 59
  year: 2011
  ident: 1379_CR76
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-010-9562-4
– volume: A375
  start-page: 98
  year: 2004
  ident: 1379_CR186
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.056
– volume: 275
  year: 2011
  ident: 1379_CR24
  publication-title: J. Phys.: Conf. Series
– volume: 519
  start-page: 2445
  year: 2011
  ident: 1379_CR90
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.11.047
– volume: 410
  start-page: 259
  year: 2001
  ident: 1379_CR184
  publication-title: Nature
  doi: 10.1038/35065704
– ident: 1379_CR39
  doi: 10.31399/asm.cp.itsc2005p0924
– volume: A369
  start-page: 124
  year: 2004
  ident: 1379_CR166
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.295
– volume: 9
  start-page: 175
  issue: 2
  year: 2000
  ident: 1379_CR144
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996300770349890
– volume-title: Plasma Spraying, Moskow Metallurgical Publishing
  year: 1978
  ident: 1379_CR26
– volume: 85
  start-page: 3031
  issue: 12
  year: 2002
  ident: 1379_CR149
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2002.tb00574.x
– volume: 83
  start-page: 297
  year: 1981
  ident: 1379_CR173
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(81)90633-7
– volume: 7
  start-page: 556
  year: 2008
  ident: 1379_CR188
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2219
– ident: 1379_CR121
– volume: 17
  start-page: 199
  year: 2008
  ident: 1379_CR174
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-007-9148-y
– volume: 13
  start-page: 425
  issue: 3
  year: 2004
  ident: 1379_CR131
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/10599630419364
– ident: 1379_CR156
– volume: 1
  start-page: 317
  year: 1992
  ident: 1379_CR22
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02647159
– volume: 32
  start-page: 997
  year: 1997
  ident: 1379_CR132
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1018574221589
– volume: 200
  start-page: 2317
  year: 2005
  ident: 1379_CR97
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.01.014
– volume: 23B
  start-page: 701
  year: 1992
  ident: 1379_CR65
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02656450
– ident: 1379_CR81
  doi: 10.1002/9780470456323.ch14
– ident: 1379_CR73
  doi: 10.1016/B978-0-12-341820-3.50010-2
– ident: 1379_CR103
– volume: 19
  start-page: 476
  year: 2005
  ident: 1379_CR87
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-009-9439-6
– volume: 75
  start-page: 205
  issue: 6
  year: 1997
  ident: 1379_CR101
  publication-title: Trans. IMF
  doi: 10.1080/00202967.1997.11871174
– volume: 22
  start-page: 564
  year: 2013
  ident: 1379_CR117
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-013-9904-0
– volume: A272
  start-page: 181
  year: 1999
  ident: 1379_CR199
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(99)00459-1
– volume: 11
  start-page: 365
  issue: 3
  year: 2002
  ident: 1379_CR11
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996302770348754
– volume: 32
  start-page: 913
  year: 2001
  ident: 1379_CR106
  publication-title: Mater. Siss. U. Werkstofftech
  doi: 10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H
– volume: 2
  start-page: 369
  year: 1993
  ident: 1379_CR67
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02645867
– volume: 17
  start-page: 782
  year: 1954
  ident: 1379_CR172
  publication-title: Inds. Chem. Eng.
– volume: 9
  start-page: 463
  issue: 4
  year: 2000
  ident: 1379_CR33
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02608548
– volume: 8
  start-page: S973
  issue: S4
  year: 2014
  ident: 1379_CR175
  publication-title: Mater. Res. Innov.
– volume: 235
  start-page: 657
  year: 2013
  ident: 1379_CR59
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.08.044
– volume: 22
  start-page: 295
  year: 1996
  ident: 1379_CR53
  publication-title: Ceram. Int.
  doi: 10.1016/0272-8842(95)00106-9
– ident: 1379_CR17
– volume: 134
  start-page: 66
  year: 2017
  ident: 1379_CR190
  publication-title: ACTA Mater.
  doi: 10.1016/j.actamat.2017.05.052
– volume-title: Japan Thermal Spray Associate, Handbook of Thermal Spray
  year: 1985
  ident: 1379_CR100
– volume: 4
  start-page: 59
  year: 1995
  ident: 1379_CR60
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02648529
– volume: 232
  start-page: 207
  year: 1999
  ident: 1379_CR197
  publication-title: Wear
  doi: 10.1016/S0043-1648(99)00147-7
– volume: 385
  start-page: 132
  year: 2001
  ident: 1379_CR51
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)00769-6
– ident: 1379_CR122
– volume: 184
  start-page: 13
  issue: 1
  year: 2004
  ident: 1379_CR52
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2003.10.048
– volume: 95
  start-page: 237
  issue: 3
  year: 1982
  ident: 1379_CR19
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(82)90016-5
– volume: 202
  start-page: 2603
  year: 2008
  ident: 1379_CR116
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.09.040
– volume: 16
  start-page: 839
  year: 2007
  ident: 1379_CR169
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-007-9081-0
– volume: 4
  start-page: 1657
  year: 1971
  ident: 1379_CR64
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/4/11/206
– volume: 28
  start-page: 2015
  year: 2019
  ident: 1379_CR28
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-019-00950-5
– volume: 110
  start-page: 19
  year: 2016
  ident: 1379_CR78
  publication-title: ACTA Mater.
  doi: 10.1016/j.actamat.2016.03.020
– volume: 206
  start-page: 1283
  year: 2011
  ident: 1379_CR89
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.08.041
– volume-title: Arc Plasma Technology in Materials Science
  year: 1972
  ident: 1379_CR4
  doi: 10.1007/978-3-7091-8293-2
– volume: 29
  start-page: 173
  issue: 1
  year: 2020
  ident: 1379_CR79
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-019-00943-4
– volume: 25
  start-page: 959
  year: 2016
  ident: 1379_CR99
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-016-0420-x
– volume: 50
  start-page: 1737
  year: 2007
  ident: 1379_CR54
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2006.10.022
– volume: 46
  start-page: 32655
  year: 2021
  ident: 1379_CR204
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.07.121
– volume: 191
  start-page: 375
  issue: 2-3
  year: 2005
  ident: 1379_CR69
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.04.063
– volume: 200
  start-page: 49
  year: 1991
  ident: 1379_CR98
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(91)90029-W
– ident: 1379_CR15
– volume: 18
  start-page: 201
  issue: 2
  year: 2009
  ident: 1379_CR142
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-009-9313-6
– volume: 12
  start-page: 9
  year: 1970
  ident: 1379_CR46
  publication-title: Trans. Natl. Res. Inst. Met.
– volume: 89
  start-page: 97
  year: 1997
  ident: 1379_CR108
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(96)02923-4
– volume: 204
  start-page: 1599
  year: 2010
  ident: 1379_CR91
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.10.008
– volume: 274
  start-page: 37
  year: 2015
  ident: 1379_CR177
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.04.031
– volume: 25
  start-page: 264
  year: 2016
  ident: 1379_CR119
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-015-0287-2
– ident: 1379_CR114
– volume: 15
  start-page: 53
  issue: 1
  year: 2006
  ident: 1379_CR164
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/105996306X92596
– start-page: 619
  volume-title: Materials Science Research, Surface and Interfaces in Ceramic and Ceramic-Metal Systems
  year: 1980
  ident: 1379_CR8
– volume: 4
  start-page: 25
  year: 1995
  ident: 1379_CR56
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02648525
– volume: 3
  start-page: 772
  year: 1982
  ident: 1379_CR109
  publication-title: Ceramic Eng. Sci. Process.
  doi: 10.1002/9780470318782.ch30
– volume: 186
  start-page: 353
  year: 2004
  ident: 1379_CR35
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.01.002
– volume: 36
  start-page: 1425
  issue: 11
  year: 1973
  ident: 1379_CR71
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/36/11/002
– ident: 1379_CR49
– volume: 28
  start-page: 53
  issue: 1–2
  year: 2019
  ident: 1379_CR178
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-018-0818-8
– volume: 49
  start-page: 1661
  year: 2001
  ident: 1379_CR124
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00393-1
– ident: 1379_CR55
– volume: 42
  start-page: 853
  issue: 1
  year: 2016
  ident: 1379_CR176
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.09.010
– volume: 12
  start-page: 370
  year: 2003
  ident: 1379_CR25
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996303770348249
– ident: 1379_CR104
– volume: 324
  start-page: 797
  year: 2015
  ident: 1379_CR200
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.11.041
– volume: 119
  start-page: 9
  year: 2016
  ident: 1379_CR44
  publication-title: ACTA Mater.
  doi: 10.1016/j.actamat.2016.07.057
– ident: 1379_CR58
  doi: 10.31399/asm.cp.itsc2005p0311
– volume: 25
  start-page: 1617
  year: 2016
  ident: 1379_CR195
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-016-0464-y
– volume: 19
  start-page: 1009
  year: 1976
  ident: 1379_CR63
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(76)90183-6
– volume: 36
  start-page: 3511
  year: 2001
  ident: 1379_CR168
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1017932617123
– ident: 1379_CR171
– ident: 1379_CR57
  doi: 10.31399/asm.cp.itsc2003p0875
– volume: 43
  start-page: 316
  year: 1969
  ident: 1379_CR182
  publication-title: Russ. J. Chem.
– volume: 4
  start-page: 50
  issue: 1
  year: 1995
  ident: 1379_CR48
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02648528
– ident: 1379_CR126
– ident: 1379_CR160
– volume: 27
  start-page: 1076
  year: 2018
  ident: 1379_CR170
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-018-0755-6
– volume: 19
  start-page: 259
  year: 1990
  ident: 1379_CR127
  publication-title: Trans. Jpn. Weld. Res. Inst.
– volume: 17
  start-page: 2008
  issue: 5-6
  year: 2008
  ident: 1379_CR92
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-008-9237-6
– volume: 15
  start-page: 717
  issue: 4
  year: 2006
  ident: 1379_CR18
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/105996306X146947
– volume: 7
  start-page: 195
  year: 2003
  ident: 1379_CR96
  publication-title: High Temp. Mater. Process.
– ident: 1379_CR130
– volume: 406
  year: 2021
  ident: 1379_CR85
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126705
– volume: 373-374
  start-page: 69
  year: 2008
  ident: 1379_CR88
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.373-374.69
– volume: 14
  start-page: 85
  year: 2005
  ident: 1379_CR86
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/10599630522422
– volume: 45
  start-page: 1869
  issue: 6
  year: 2004
  ident: 1379_CR50
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.45.1869
– volume: 4
  start-page: 41
  year: 1995
  ident: 1379_CR66
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02648527
– volume: 8
  start-page: 34
  issue: 23
  year: 2009
  ident: 1379_CR194
  publication-title: J. Thermal Spray Technol.
– volume: 30
  start-page: 196
  year: 2021
  ident: 1379_CR179
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-021-01166-2
– volume: 11
  start-page: 279
  year: 2012
  ident: 1379_CR181
  publication-title: Nature Mater.
  doi: 10.1038/nmat3275
– volume: 112
  start-page: 89
  year: 1984
  ident: 1379_CR10
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(84)90506-6
– volume: 26
  start-page: 47
  issue: 1-2
  year: 2017
  ident: 1379_CR93
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-016-0488-3
– volume: 20B
  start-page: 263
  year: 1989
  ident: 1379_CR150
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02825607
– volume: A456
  start-page: 35
  year: 2007
  ident: 1379_CR191
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.11.132
– volume: 49
  start-page: 522
  year: 2010
  ident: 1379_CR80
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.09.011
– volume: 54
  start-page: 281
  year: 1955
  ident: 1379_CR82
  publication-title: J. Res. Natl. Bure. Stand.
  doi: 10.6028/jres.054.033
– volume: 33
  start-page: 177
  year: 2013
  ident: 1379_CR185
  publication-title: Prog. Phys
– ident: 1379_CR84
– ident: 1379_CR6
– volume: 201
  start-page: 241
  year: 1991
  ident: 1379_CR129
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(91)90114-D
– volume: 260
  start-page: 1166
  year: 2006
  ident: 1379_CR135
  publication-title: Wear
  doi: 10.1016/j.wear.2005.07.006
– volume: 3
  start-page: 351
  year: 1994
  ident: 1379_CR47
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02658980
– volume: 140
  start-page: 214504
  year: 2014
  ident: 1379_CR189
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880959
– ident: 1379_CR31
– ident: 1379_CR193
– volume: 22
  start-page: 192
  issue: 2
  year: 2013
  ident: 1379_CR45
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-012-9864-9
– volume: 99
  start-page: 665
  year: 2010
  ident: 1379_CR155
  publication-title: Appl. Phys. A. Mater. Sci. Process.
  doi: 10.1007/s00339-010-5586-3
– volume: 8
  start-page: 851
  year: 1973
  ident: 1379_CR72
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF02397914
– volume: 178
  start-page: 429
  year: 2007
  ident: 1379_CR115
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.02.011
– volume: 82
  start-page: 254
  year: 1996
  ident: 1379_CR161
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/0257-8972(95)02670-3
– volume: 20
  start-page: 1035
  year: 2011
  ident: 1379_CR165
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-011-9653-x
– volume: 92
  start-page: 710
  issue: 3
  year: 2009
  ident: 1379_CR140
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.02953.x
– volume: 386
  start-page: 10
  issue: 1-2
  year: 2004
  ident: 1379_CR120
  publication-title: Mater. Sci. Eng A
  doi: 10.1016/S0921-5093(04)00900-1
– volume: 27
  start-page: 1064
  issue: 7
  year: 2018
  ident: 1379_CR148
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-018-0754-7
– volume: 11
  start-page: 725
  issue: 4
  year: 1974
  ident: 1379_CR12
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.1312743
– volume: 9
  start-page: 401
  year: 2005
  ident: 1379_CR38
  publication-title: High Temp. Mater. Process
  doi: 10.1615/HighTempMatProc.v9.i3.70
– volume: 374
  start-page: 1
  year: 2019
  ident: 1379_CR61
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.05.068
– volume: 371
  start-page: 36
  year: 2019
  ident: 1379_CR158
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.01.085
– volume: 468
  start-page: 113
  year: 2004
  ident: 1379_CR20
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.05.073
– volume: 102
  start-page: 205
  year: 1988
  ident: 1379_CR183
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(88)90133-0
– volume: 89
  start-page: 1432
  issue: 4
  year: 2006
  ident: 1379_CR36
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00912.x
– volume: 235
  start-page: 841
  year: 2013
  ident: 1379_CR43
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.09.010
– volume: 5
  start-page: 185
  issue: 2
  year: 1996
  ident: 1379_CR153
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02646432
– volume: 4
  start-page: 286
  issue: 3
  year: 1995
  ident: 1379_CR27
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02646972
– volume: 13
  start-page: 337
  issue: 3
  year: 2004
  ident: 1379_CR21
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/10599630419670
– volume: 61
  start-page: 012022
  year: 2014
  ident: 1379_CR196
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/61/1/012022
– ident: 1379_CR110
  doi: 10.1002/1096-9918(200008)30:1<585::AID-SIA844>3.0.CO;2-Y
– start-page: 179
  volume-title: Plasma Spraying, Theory and Applications
  year: 1993
  ident: 1379_CR133
  doi: 10.1142/9789814354479_0007
– volume: 48
  start-page: 1361
  year: 2000
  ident: 1379_CR123
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00384-5
– volume: 20
  start-page: 1177
  issue: 6
  year: 2011
  ident: 1379_CR139
  publication-title: J. Therm Spray Technol.
  doi: 10.1007/s11666-011-9660-y
– volume: 15
  start-page: 708
  year: 2006
  ident: 1379_CR23
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/105996306X147027
– volume: 25
  start-page: 71
  issue: 1-2
  year: 2016
  ident: 1379_CR95
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-015-0275-6
– volume: 506-507
  start-page: 136
  year: 2006
  ident: 1379_CR37
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.08.142
– volume-title: Handbook of Thermal Spray Technology
  year: 2004
  ident: 1379_CR2
– volume: 11
  start-page: 747
  issue: 4
  year: 1974
  ident: 1379_CR16
  publication-title: J. Vac. Sci. Technol.
  doi: 10.1116/1.1312746
– volume: 369
  start-page: 124
  year: 2004
  ident: 1379_CR154
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.295
– volume-title: Plasma Spraying of Metallic and Ceramic Materials
  year: 1989
  ident: 1379_CR7
– ident: 1379_CR105
– ident: 1379_CR157
– volume: 20
  start-page: 160
  year: 2011
  ident: 1379_CR42
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-010-9591-z
– volume: 42
  start-page: 117
  issue: 3
  year: 1997
  ident: 1379_CR13
  publication-title: Int. Mater. Rev.
  doi: 10.1179/imr.1997.42.3.117
– ident: 1379_CR111
– volume: 25
  start-page: 71
  issue: 1-2
  year: 2016
  ident: 1379_CR62
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-015-0275-6
– ident: 1379_CR30
– volume: 176
  start-page: 31
  issue: 1
  year: 2008
  ident: 1379_CR40
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2007.10.031
– ident: 1379_CR102
– volume: 9
  start-page: 204
  issue: 2
  year: 2000
  ident: 1379_CR141
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996300770349935
– volume: 22
  start-page: 1374
  issue: 6
  year: 2013
  ident: 1379_CR202
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-013-9965-0
– volume: 397
  start-page: 40
  year: 2001
  ident: 1379_CR192
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)01361-X
– volume: 416
  start-page: 127
  year: 2021
  ident: 1379_CR77
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127159
– volume-title: Thermal Spray Fundamentals From Powder to Part
  year: 2014
  ident: 1379_CR1
  doi: 10.1007/978-0-387-68991-3
– ident: 1379_CR113
  doi: 10.31399/asm.cp.itsc1996p0749
– volume: 16
  start-page: 798
  issue: 5-6
  year: 2007
  ident: 1379_CR146
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-007-9097-5
– ident: 1379_CR152
– volume: 43
  start-page: 471
  year: 2000
  ident: 1379_CR167
  publication-title: Scripta Mater.
  doi: 10.1016/S1359-6462(00)00416-4
– volume: 13
  start-page: 229
  issue: 2
  year: 2004
  ident: 1379_CR68
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/10599630418158
– volume: 54
  start-page: 3343
  issue: 12
  year: 2006
  ident: 1379_CR145
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.03.024
– volume: 179
  start-page: 1483
  issue: 27
  year: 2007
  ident: 1379_CR41
  publication-title: Solid State Ionics
– volume: 6
  start-page: 8310
  year: 2015
  ident: 1379_CR187
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9310
– volume: 97
  start-page: 201
  year: 1982
  ident: 1379_CR9
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(82)90453-9
– ident: 1379_CR128
– volume: 203
  start-page: 1069
  issue: 8
  year: 2009
  ident: 1379_CR137
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2008.09.037
– volume-title: The Science and Engineering of Thermal Spray Coatings
  year: 2008
  ident: 1379_CR5
  doi: 10.1002/9780470754085
– volume: 27
  start-page: 1280
  year: 2018
  ident: 1379_CR118
  publication-title: J. Therm Spray Technol.
  doi: 10.1007/s11666-018-0759-2
– volume: 57
  start-page: 980
  issue: 4
  year: 2009
  ident: 1379_CR136
  publication-title: ACTA Mater.
  doi: 10.1016/j.actamat.2008.10.024
– volume: 37
  start-page: 2359
  issue: 11
  year: 2002
  ident: 1379_CR147
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1015310509520
– ident: 1379_CR151
– volume: 25
  start-page: 1376
  issue: 8
  year: 2016
  ident: 1379_CR3
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0473-x
– volume: 97
  start-page: 2770
  year: 2014
  ident: 1379_CR203
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13033
– volume: 91
  start-page: 3931
  issue: 12
  year: 2008
  ident: 1379_CR134
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02775.x
– volume: 4
  start-page: 3887
  year: 2002
  ident: 1379_CR112
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b202553a
– volume: 16
  start-page: 259
  year: 1987
  ident: 1379_CR125
  publication-title: Trans. Jpn. Weld. Res. Inst.
– volume: 201
  start-page: 7880
  issue: 18
  year: 2007
  ident: 1379_CR143
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.03.028
– volume: 305
  start-page: 35
  year: 1997
  ident: 1379_CR70
  publication-title: Surf. Coat. Technol.
– volume: 180-181
  start-page: 454
  year: 2004
  ident: 1379_CR34
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2003.10.129
– volume: A415
  start-page: 1
  year: 2006
  ident: 1379_CR29
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.08.226
– volume: 27
  start-page: 25
  issue: 1-2
  year: 2018
  ident: 1379_CR198
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-017-0633-7
– volume: 91
  start-page: 2636
  issue: 8
  year: 2008
  ident: 1379_CR138
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02476.x
– volume: 1
  start-page: 807
  year: 1990
  ident: 1379_CR74
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/1/8/023
– volume: 63
  start-page: 125
  year: 1961
  ident: 1379_CR14
  publication-title: Metall.
– start-page: 501
  volume-title: Thermal Spray, Current Status and Future Trends
  year: 1995
  ident: 1379_CR163
– volume: 50
  start-page: 213
  issue: 3
  year: 1992
  ident: 1379_CR32
  publication-title: Surface Coat. Technol.
  doi: 10.1016/0257-8972(92)90004-T
– volume: 28
  start-page: 33l
  year: 1996
  ident: 1379_CR83
  publication-title: Mater. Lett.
  doi: 10.1016/0167-577X(96)00071-7
– volume: 7
  start-page: 1902209
  year: 2020
  ident: 1379_CR180
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902209
– volume: A 3
  start-page: 7535
  year: 2015
  ident: 1379_CR201
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA01203A
– ident: 1379_CR107
  doi: 10.31399/asm.cp.itsc2004p0157
– volume: 9
  start-page: 505
  year: 2000
  ident: 1379_CR159
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02608554
– volume: 16
  start-page: 281
  issue: 2
  year: 2007
  ident: 1379_CR162
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/s11666-007-9032-9
– ident: 1379_CR75
– volume: 20
  start-page: 317
  year: 2002
  ident: 1379_CR94
  publication-title: Quarterly J. Japan Weld. Soc.
  doi: 10.2207/qjjws.20.317
SSID ssj0005625
Score 2.5375886
SecondaryResourceType review_article
Snippet Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 780
SubjectTerms Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Machines
Manufacturing
Materials Science
Processes
Review
Surfaces and Interfaces
Thin Films
Tribology
Title The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review
URI https://link.springer.com/article/10.1007/s11666-022-01379-z
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZbe9kOY0_WPYoPu22GJK6TeLe0NCsr9LIVulNIbOdU2tLHpb9-Uh7rCqOwU0ii-CDJkYz0fQJ4CjDoiqyTceK24Z1AWK487fLcGOVIipFZ0SA78gfjzvtETipQ2Krudq9LksWfegd2owoXp-5zoslTfHsMTYlnd_LrsRftGjv8YtQqJQ4c3cupoDJ_r7EfjvZroUWIic_hrMoNWVQa8wKO7OwSTn8xBl7BEM3KaBQw3rG4Bh6yEmzI8CU-mbKPxTIl-BKb56xnlzRynvXmKXU4r15ZxMqCwDWM4_5nb8CreQhce8pd81Bm0ujUiND6obHaOtrVmB5og6cco1KFuwkTCEdqEVgqgPpS-S7KZoLGpAfiBhqz-czeApOhsNameSAkMa4LlQuT4pKYjyntB0EL3Fotia7IwmlmxTTZ0RyTKhNUZVKoMtm24Pnnm0VJlXFQ-qXWdlJtm9UB8bv_id_DiVdYmVpsHqCxXm7sI2YP66wNzSjudkd0ffsa9tuF83wDFT-8Og
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED61MLQd-q5Knx66tUYJjpO4G0JQWihLQaJTlNjOUgQIwsKv7zmPUqoKiTHJ2bLO59xZ9913AA8eOl0WORE13DbU8ZimoiZtGislLG58ZJQCZHtue-C8DfkwLwqbF2j3IiWZ_qlXxW4mw0UN-tzQ5Am63IWyg3dwXoJy_eWz01xBO9y02aoJHSgamJUXy_w_y7pDWs-Gpk6mdQSDYnkZtuSrukiiqlz-YW7cdv3HcJhHnaSemckJ7OjxKRz84iI8gw4aDDFNhvGJtIqSRpKVMRL8iG9G5GM6C01hFJnEpKFnppk9aUxCg52eP5M6yVIN5zBoNfuNNs07LVBZE3ZCfR5xJUPFfO36SkttSVti4CEV3p-UCAWeUwxNLC6Zp01q1eXCtVE2YqYBu8cuoDSejPUlEO4zrXUYe4wbLncmYqZCnBIjPSFdz6uAXag7kDkNuemGMQpWBMpGUQEqKkgVFSwr8PgzZpqRcGyUfio2IMgP5HyD-NV24vew1-6_d4Pua69zDfu1dD8NkOcGSslsoW8xRkmiu9wkvwHYvtlb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ97sGbLm2y3STrrVRDtVIELfQWkt3NqaSljZf-emfysC2I4DHJZA8zu5kJ833fANz5mHRF0kk4advwji8sV652eGqMakvKkUkBkB16_VHndSzHayz-Au1etyRLTgOpNGV5a2bS1or4Rt0uTkh0ksxTfLkNO_g5dgjUNXK7K5CHV4xdpSKC41ZrV7SZ39fYTE2bfdEi3YSHcFDViaxbBvYItmx2DPtr6oEnMMAQMxoLjFcsrEmIrCQeMnyIdybsYzaPicrEpinr2TmNn2e9aUxo58Uj67KyOXAKo_D5s9fn1WwErl3l5DyQiTQ6NiKwXmCstm3taCwVtME_HqNihScLi4m21MK31Az1pPIctE0EjUz3xRk0smlmz4HJQFhr49QXktTXhUqFiXFJrM2U9ny_CU7tlkhXwuE0v2ISrSSPyZURujIqXBktm3D_886slM340_qh9nZUHaHFH-YX_zO_hd33pzB6exkOLmHPLQJOyJsraOTzL3uNRUWe3BT75huahsBZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bonding+Formation+during+Thermal+Spraying+of+Ceramic+Coatings%3A+A+Review&rft.jtitle=Journal+of+thermal+spray+technology&rft.au=Li%2C+Chang-Jiu&rft.au=Luo%2C+Xiao-Tao&rft.au=Yao%2C+Shu-Wei&rft.au=Li%2C+Guang-Rong&rft.date=2022-04-01&rft.issn=1059-9630&rft.eissn=1544-1016&rft.volume=31&rft.issue=4&rft.spage=780&rft.epage=817&rft_id=info:doi/10.1007%2Fs11666-022-01379-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11666_022_01379_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9630&client=summon