The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review
Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful ap...
Saved in:
Published in | Journal of thermal spray technology Vol. 31; no. 4; pp. 780 - 817 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-9630 1544-1016 |
DOI | 10.1007/s11666-022-01379-z |
Cover
Loading…
Abstract | Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful applications of ceramic coatings. Three bonding mechanisms contribute to the enhancement of the adhesion and cohesion, including mechanical interlocking, physical bonding and chemical bonding. It is still challenging to achieve chemical bonding in thermally-sprayed coatings. In this paper, the main factors influencing the bonding formation during thermal spraying of ceramic coatings, including spray particle parameters and substrate parameters, are examined from splat formation to coating formation to find solutions to the above challenge. The research progress on splat formation revealing characteristic dynamic parameters relating to the bonding formation kinetics will be briefly presented for the key factors determining splat shape, flattening time, solidification time, cooling rate, interface temperature, and transient dynamic contact pressure during flattening. The typical coating lamellar structure features with limited intersplat bonding less than one-third for refractory ceramics, which dominate the coating properties and performance based on theoretical relationships between the microstructure and properties, are presented. The effects of spray particle parameters on the intersplat bonding reveal that the bonding ratio is increased with increasing particle temperature, but decreased with increasing particle velocity which benefits only the mechanical bonding. Most importantly, recent studies have revealed that the liquid splat–substrate interface temperature higher than the glass transition temperature of spray materials is a necessary and sufficient condition for splat bonding formation. A critical bonding temperature concept is proposed to control the intersplat bonding formation by controlling the substrate preheating temperature. The critical bonding temperature is related to the melting point of spray materials. A model is proposed to understand the effect of the interface temperature on the bonding formation of impacting liquid splat and the bonding mechanisms. The condition for certain ceramic spray materials to form a bulk-like dense coating with the intersplat interface completely bonded becomes well understood. Moreover, the effect of metal substrate oxide scale control on the adhesion reveals that an adhesive strength higher than 100 MPa can be achieved for plasma-sprayed ceramic coatings. The excellent bonding at the interface between the splat and the oxide scale pre-oxidized on the metal substrate can be also explained by the bonding formation model. It becomes possible that, through both the controls of the pre-oxidation and the deposition temperature, all the interfaces in the ceramic coating with the metal/oxide-scale/splat/splat system can be bonded by chemical bonding to achieve an excellent load-bearing ceramic-coating system. |
---|---|
AbstractList | Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial fields for materials protection and various physical–chemical functions. The adhesion and cohesion are of primary importance for the successful applications of ceramic coatings. Three bonding mechanisms contribute to the enhancement of the adhesion and cohesion, including mechanical interlocking, physical bonding and chemical bonding. It is still challenging to achieve chemical bonding in thermally-sprayed coatings. In this paper, the main factors influencing the bonding formation during thermal spraying of ceramic coatings, including spray particle parameters and substrate parameters, are examined from splat formation to coating formation to find solutions to the above challenge. The research progress on splat formation revealing characteristic dynamic parameters relating to the bonding formation kinetics will be briefly presented for the key factors determining splat shape, flattening time, solidification time, cooling rate, interface temperature, and transient dynamic contact pressure during flattening. The typical coating lamellar structure features with limited intersplat bonding less than one-third for refractory ceramics, which dominate the coating properties and performance based on theoretical relationships between the microstructure and properties, are presented. The effects of spray particle parameters on the intersplat bonding reveal that the bonding ratio is increased with increasing particle temperature, but decreased with increasing particle velocity which benefits only the mechanical bonding. Most importantly, recent studies have revealed that the liquid splat–substrate interface temperature higher than the glass transition temperature of spray materials is a necessary and sufficient condition for splat bonding formation. A critical bonding temperature concept is proposed to control the intersplat bonding formation by controlling the substrate preheating temperature. The critical bonding temperature is related to the melting point of spray materials. A model is proposed to understand the effect of the interface temperature on the bonding formation of impacting liquid splat and the bonding mechanisms. The condition for certain ceramic spray materials to form a bulk-like dense coating with the intersplat interface completely bonded becomes well understood. Moreover, the effect of metal substrate oxide scale control on the adhesion reveals that an adhesive strength higher than 100 MPa can be achieved for plasma-sprayed ceramic coatings. The excellent bonding at the interface between the splat and the oxide scale pre-oxidized on the metal substrate can be also explained by the bonding formation model. It becomes possible that, through both the controls of the pre-oxidation and the deposition temperature, all the interfaces in the ceramic coating with the metal/oxide-scale/splat/splat system can be bonded by chemical bonding to achieve an excellent load-bearing ceramic-coating system. |
Author | Li, Chang-Jiu Yang, Guan-Jun Luo, Xiao-Tao Li, Guang-Rong Yao, Shu-Wei Li, Cheng-Xin |
Author_xml | – sequence: 1 givenname: Chang-Jiu surname: Li fullname: Li, Chang-Jiu email: licj@mail.xjtu.edu.cn organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University – sequence: 2 givenname: Xiao-Tao surname: Luo fullname: Luo, Xiao-Tao organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Shu-Wei surname: Yao fullname: Yao, Shu-Wei organization: National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University – sequence: 4 givenname: Guang-Rong surname: Li fullname: Li, Guang-Rong organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University – sequence: 5 givenname: Cheng-Xin surname: Li fullname: Li, Cheng-Xin organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University – sequence: 6 givenname: Guan-Jun surname: Yang fullname: Yang, Guan-Jun organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University |
BookMark | eNp9kMFOAjEQhhuDiYC-gKe-QHXabrtbb7gRNJKYKJ6b0i24BLakXTTw9HbBkwdO0_ydbzLzDVCv8Y1D6JbCHQXI7yOlUkoCjBGgPFfkcIH6VGQZoUBlL71BKKIkhys0iHEFAEIy0Uevsy-HH31T1c0Sj33YmLb2Da52oQvSZ0rW-GMbzL4L_AKXLphNbXHpU2uzjA94hN_dd-1-rtHlwqyju_mrQ_Q5fpqVz2T6NnkpR1NimaItKcRcVNZUvHCyqJx1YKllBbdVpkSljKIq3cJBWJ47yEQhhZI09c45cAY5H6LiNNcGH2NwC23r9rh3G0y91hR0J0WfpOgkRR-l6ENC2T90G-qNCfvzED9BcdtZcUGv_C406cRz1C_INXZ0 |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2025_132072 crossref_primary_10_1016_j_triboint_2024_109733 crossref_primary_10_1177_08927057231200009 crossref_primary_10_1007_s11666_024_01774_8 crossref_primary_10_1007_s11666_025_01982_w crossref_primary_10_3390_cryst14100845 crossref_primary_10_1016_j_jmrt_2023_05_009 crossref_primary_10_3390_coatings12111716 crossref_primary_10_1016_j_surfcoat_2023_129651 crossref_primary_10_1016_j_ceramint_2022_07_004 crossref_primary_10_1016_j_ceramint_2025_01_394 crossref_primary_10_1038_s43246_024_00533_0 crossref_primary_10_1088_2631_8695_ad2f82 crossref_primary_10_1016_j_surfcoat_2024_131145 crossref_primary_10_1007_s11665_024_09581_6 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125439 crossref_primary_10_1007_s11696_023_03089_4 crossref_primary_10_1016_j_ceramint_2024_03_127 crossref_primary_10_1016_j_surfin_2024_105531 crossref_primary_10_1016_j_engfailanal_2023_107692 crossref_primary_10_1007_s10853_025_10685_0 crossref_primary_10_1007_s11666_024_01907_z crossref_primary_10_3103_S1068798X24702332 crossref_primary_10_1016_j_jmrt_2025_01_019 crossref_primary_10_3390_jmmp9020050 crossref_primary_10_1016_j_matchemphys_2023_128019 crossref_primary_10_3390_coatings13111947 crossref_primary_10_1016_j_jeurceramsoc_2024_116850 crossref_primary_10_1007_s44251_023_00030_5 crossref_primary_10_1016_j_jeurceramsoc_2025_117200 crossref_primary_10_1088_1742_6596_2572_1_012006 crossref_primary_10_1016_j_jeurceramsoc_2024_04_063 crossref_primary_10_1016_j_mtcomm_2024_110619 crossref_primary_10_1007_s11666_023_01683_2 crossref_primary_10_1016_j_ceramint_2024_12_374 crossref_primary_10_4028_p_sNm0Zd crossref_primary_10_1016_j_ceramint_2022_05_046 crossref_primary_10_1007_s11666_024_01751_1 crossref_primary_10_1007_s00339_024_07532_5 crossref_primary_10_1016_j_surfcoat_2024_131339 crossref_primary_10_1016_j_surfcoat_2024_130625 |
Cites_doi | 10.1007/s11666-010-9562-4 10.1016/j.msea.2003.10.056 10.1016/j.tsf.2010.11.047 10.1038/35065704 10.31399/asm.cp.itsc2005p0924 10.1016/j.msea.2003.10.295 10.1361/105996300770349890 10.1111/j.1151-2916.2002.tb00574.x 10.1016/0040-6090(81)90633-7 10.1038/nmat2219 10.1007/s11666-007-9148-y 10.1361/10599630419364 10.1007/BF02647159 10.1023/A:1018574221589 10.1016/j.surfcoat.2005.01.014 10.1007/BF02656450 10.1002/9780470456323.ch14 10.1016/B978-0-12-341820-3.50010-2 10.1007/s11666-009-9439-6 10.1080/00202967.1997.11871174 10.1007/s11666-013-9904-0 10.1016/S0921-5093(99)00459-1 10.1361/105996302770348754 10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H 10.1007/BF02645867 10.1007/BF02608548 10.1016/j.surfcoat.2013.08.044 10.1016/0272-8842(95)00106-9 10.1016/j.actamat.2017.05.052 10.1007/BF02648529 10.1016/S0043-1648(99)00147-7 10.1016/S0040-6090(01)00769-6 10.1016/j.surfcoat.2003.10.048 10.1016/0040-6090(82)90016-5 10.1016/j.surfcoat.2007.09.040 10.1007/s11666-007-9081-0 10.1088/0022-3727/4/11/206 10.1007/s11666-019-00950-5 10.1016/j.actamat.2016.03.020 10.1016/j.surfcoat.2011.08.041 10.1007/978-3-7091-8293-2 10.1007/s11666-019-00943-4 10.1007/s11666-016-0420-x 10.1016/j.ijheatmasstransfer.2006.10.022 10.1016/j.ijhydene.2021.07.121 10.1016/j.surfcoat.2004.04.063 10.1016/0040-6090(91)90029-W 10.1007/s11666-009-9313-6 10.1016/S0257-8972(96)02923-4 10.1016/j.surfcoat.2009.10.008 10.1016/j.surfcoat.2015.04.031 10.1007/s11666-015-0287-2 10.1361/105996306X92596 10.1007/BF02648525 10.1002/9780470318782.ch30 10.1016/j.surfcoat.2004.01.002 10.1088/0034-4885/36/11/002 10.1007/s11666-018-0818-8 10.1016/S1359-6454(00)00393-1 10.1016/j.ceramint.2015.09.010 10.1361/105996303770348249 10.1016/j.apsusc.2014.11.041 10.1016/j.actamat.2016.07.057 10.31399/asm.cp.itsc2005p0311 10.1007/s11666-016-0464-y 10.1016/0017-9310(76)90183-6 10.1023/A:1017932617123 10.31399/asm.cp.itsc2003p0875 10.1007/BF02648528 10.1007/s11666-018-0755-6 10.1007/s11666-008-9237-6 10.1361/105996306X146947 10.1016/j.surfcoat.2020.126705 10.4028/www.scientific.net/KEM.373-374.69 10.1361/10599630522422 10.2320/matertrans.45.1869 10.1007/BF02648527 10.1007/s11666-021-01166-2 10.1038/nmat3275 10.1016/0040-6090(84)90506-6 10.1007/s11666-016-0488-3 10.1007/BF02825607 10.1016/j.msea.2006.11.132 10.1016/j.ijthermalsci.2009.09.011 10.6028/jres.054.033 10.1016/0040-6090(91)90114-D 10.1016/j.wear.2005.07.006 10.1007/BF02658980 10.1063/1.4880959 10.1007/s11666-012-9864-9 10.1007/s00339-010-5586-3 10.1007/BF02397914 10.1016/j.ssi.2007.02.011 10.1016/0257-8972(95)02670-3 10.1007/s11666-011-9653-x 10.1111/j.1551-2916.2009.02953.x 10.1016/S0921-5093(04)00900-1 10.1007/s11666-018-0754-7 10.1116/1.1312743 10.1615/HighTempMatProc.v9.i3.70 10.1016/j.surfcoat.2019.05.068 10.1016/j.surfcoat.2019.01.085 10.1016/j.tsf.2004.05.073 10.1016/0022-3093(88)90133-0 10.1111/j.1551-2916.2005.00912.x 10.1016/j.surfcoat.2013.09.010 10.1007/BF02646432 10.1007/BF02646972 10.1361/10599630419670 10.1088/1757-899X/61/1/012022 10.1002/1096-9918(200008)30:1<585::AID-SIA844>3.0.CO;2-Y 10.1142/9789814354479_0007 10.1016/S1359-6454(99)00384-5 10.1007/s11666-011-9660-y 10.1361/105996306X147027 10.1007/s11666-015-0275-6 10.1016/j.tsf.2005.08.142 10.1116/1.1312746 10.1007/s11666-010-9591-z 10.1179/imr.1997.42.3.117 10.1016/j.jpowsour.2007.10.031 10.1361/105996300770349935 10.1007/s11666-013-9965-0 10.1016/S0040-6090(01)01361-X 10.1016/j.surfcoat.2021.127159 10.1007/978-0-387-68991-3 10.31399/asm.cp.itsc1996p0749 10.1007/s11666-007-9097-5 10.1016/S1359-6462(00)00416-4 10.1361/10599630418158 10.1016/j.actamat.2006.03.024 10.1038/ncomms9310 10.1016/0040-6090(82)90453-9 10.1016/j.surfcoat.2008.09.037 10.1002/9780470754085 10.1007/s11666-018-0759-2 10.1016/j.actamat.2008.10.024 10.1023/A:1015310509520 10.1007/s11666-016-0473-x 10.1111/jace.13033 10.1111/j.1551-2916.2008.02775.x 10.1039/b202553a 10.1016/j.surfcoat.2007.03.028 10.1016/j.surfcoat.2003.10.129 10.1016/j.msea.2005.08.226 10.1007/s11666-017-0633-7 10.1111/j.1551-2916.2008.02476.x 10.1088/0957-0233/1/8/023 10.1016/0257-8972(92)90004-T 10.1016/0167-577X(96)00071-7 10.1002/advs.201902209 10.1039/C5TA01203A 10.31399/asm.cp.itsc2004p0157 10.1007/BF02608554 10.1007/s11666-007-9032-9 10.2207/qjjws.20.317 |
ContentType | Journal Article |
Copyright | ASM International 2022 |
Copyright_xml | – notice: ASM International 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11666-022-01379-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1544-1016 |
EndPage | 817 |
ExternalDocumentID | 10_1007_s11666_022_01379_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8R4 8R5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV LK5 LLZTM M4Y M7R MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PCBAR PDBOC PF0 PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z8M Z8N Z8T Z8Z Z92 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-85b5dcad38e68dece0c1c283cd495d9a919666305c37e045865961e68b3032073 |
IEDL.DBID | U2A |
ISSN | 1059-9630 |
IngestDate | Thu Apr 24 23:00:32 EDT 2025 Tue Jul 01 01:56:23 EDT 2025 Fri Feb 21 02:44:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | intrinsic bonding temperature ceramic coating adhesive strength thermal spray cohesion interface bonding critical bonding temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-85b5dcad38e68dece0c1c283cd495d9a919666305c37e045865961e68b3032073 |
PageCount | 38 |
ParticipantIDs | crossref_citationtrail_10_1007_s11666_022_01379_z crossref_primary_10_1007_s11666_022_01379_z springer_journals_10_1007_s11666_022_01379_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220400 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of thermal spray technology |
PublicationTitleAbbrev | J Therm Spray Tech |
PublicationYear | 2022 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | H.D. Steffens and U. Fischer, Correlation Between Microstructure and Physical Properties of Plasma Sprayed Zirconia Coatings, in Proceedings of 2nd National Thermal Spray Conference, ASM International, Materials Park, OH, 1989, pp. 167-73 LiuHLaverniaEJRangelRHNumerical Simulation of Impingement of Molten Ti, Ni, and W Droplets on a Flat SubstrateJ. Thermal Spray Technol.199323693781:CAS:528:DyaK2cXhslSns7o%3D10.1007/BF02645867 McPhersonRShaferBVInterlamellar Contact within Plasma Sprayed CoatingsThin Solid Films1982972012041:CAS:528:DyaL3sXitFSqsQ%3D%3D10.1016/0040-6090(82)90453-9 KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A200436912413710.1016/j.msea.2003.10.2951:CAS:528:DC%2BD2cXhs12itLY%3D ShibeVChawlaVErosion Studies of D-gun-sprayed WC-12Co, Cr3C2-25%NiCr and Al2O3-13%TiO2 Coatings on ASTM A36 SteelJ. Thermal Spray Technol.201928201520281:CAS:528:DC%2BC1MXitFyrsLrF10.1007/s11666-019-00950-5 ChraskaTKingAHTransmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia - part II. Interfaces and Subsequent Splat SolidificationThin Solid Films200139740481:CAS:528:DC%2BD3MXns1Wqt7w%3D10.1016/S0040-6090(01)01361-X LiC-JOhmoriAThe Lamellar Structure of a Detonation Gun Sprayed Al2O3 CoatingSurf. Coat. Technol.1996822542581:CAS:528:DyaK28XjvFGmsr0%3D10.1016/0257-8972(95)02670-3 F.N. Longo, Metallurgy of Flame Sprayed Nickel Aluminide Coatings, Weld. J. 1966, p 66s-69s. McPhersonRA Model for the Thermal Conductivity of Plasma Sprayed Ceramic CoatingsThin Solid Films198411289951:CAS:528:DyaL2cXhsVKjs78%3D10.1016/0040-6090(84)90506-6 MarkocsanNNylenPWigrenJLiXHTricoireAEffect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier CoatingsJ. Therm. Spray Technol.20091822012081:CAS:528:DC%2BD1MXlsF2msLg%3D10.1007/s11666-009-9313-6 MoreauCCieloPLamontagneMFlattening and Solidification of Thermally Sprayed ParticlesJ. Therm. Spray Technol.199213173241:CAS:528:DyaK2cXhsVSqtrg%3D10.1007/BF02647159 GuoHBKurodaSMurakamiHSegmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow PowdersThin Solid Films2006506-5071361391:CAS:528:DC%2BD28XivVCrs7w%3D10.1016/j.tsf.2005.08.142 ZhangYGHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6 PaksereshtAHRahimipourMRVaeziMRSalehiMEffect of Splat Morphology on the Microstructure and Dielectric Properties of Plasma Sprayed Barium Titanate FilmsAppl. Surf. Sci.20153247978061:CAS:528:DC%2BC2cXhvFCns73M10.1016/j.apsusc.2014.11.041 TurunenEVarisTHannulaS-PVaidyaAKulkarniAGutleberJSampathSHermanHOn the Role of Particle State and Deposition Procedure on Mechanical, Tribological and Dielectric Response of High Velocity Oxy-Fuel Sprayed Alumina CoatingsMater. Sci. Eng. A2006A4151111:CAS:528:DC%2BD2MXht1Oitb3N10.1016/j.msea.2005.08.226 YaoS-WTianJ-JYangG-JLiC-XLuoX-TLiC-JUnderstanding the Formation of the Limited Interlamellar Bonding in Thermal Spray Ceramic Coatings Based on the Intrinsic Bonding Temperature ConceptJ. Thermal Spray Technol.201625161716301:CAS:528:DC%2BC28Xhs1Ogt7bE10.1007/s11666-016-0464-y LiC-JLiJ-LTransient Contact Pressure during Flattening of Thermal Spray Droplet and its Effect on Splat FormationJ. Therm. Spray Technol.200413222923810.1361/10599630418158 SrinivasanVSampathSEstimation of Molten Content of the Spray Stream from Analysis of Experimental Particle DiagnosticsJ. Thermal Spray Technol.20051947648310.1007/s11666-009-9439-61:CAS:528:DC%2BC3cXmt1agtg%3D%3D J.-L. Li, Splatting Behavior of the Droplet Impinging on Substrate in Plasma Spraying, Ph.D Thesis, Xi’an Jiaotong University, 1999 ValetteSDenoirjeanALefortPPlasma Sprayed Steel: Adhesion of an Alumina Film via a Wustite InterlayerSurf. Coat. Technol.2008202260326111:CAS:528:DC%2BD1cXit1Srtrw%3D10.1016/j.surfcoat.2007.09.040 McPhersonRThe Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed CoatingsThin Solid Films1981832973101:CAS:528:DyaL3MXmt1eqsLY%3D10.1016/0040-6090(81)90633-7 BrossardSMunroePRTranATTHylandMMStudy of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel SubstratesSurf. Coat. Technol.2010204159916071:CAS:528:DC%2BD1MXhsFahs7%2FJ10.1016/j.surfcoat.2009.10.008 LiC-JOhmoriARelationship between the Structure and Properties of Thermally Sprayed DepositsJ. Therm. Spray Technol.20021133653741:CAS:528:DC%2BD38Xot1GhtrY%3D10.1361/105996302770348754 XingYZLiC-JZhangQLiC-XYangG-JInfluence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia DepositsJ. Am. Ceram. Soc.20089112393139361:CAS:528:DC%2BD1MXosVOm10.1111/j.1551-2916.2008.02775.x McPhersonRFormation of Metastable Phase in Flame- and Plasma-Prepared AluminaJ. Mater. Sci.197388518581:CAS:528:DyaE3sXltVOltrc%3D10.1007/BF02397914 C. Moreau, M. Lamontagne and P. Cielo, Influence of the Coating Thickness on the Cooling Rate of Plasma-Sprayed Particles Impinging on a Substrate, in Proceedings of the Fourth National Thermal Spray Conference, Pittsburgh, PA, USA, 4-12 May 1991, ASM International, 1992, pp 237-243 M.F. Smith, Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 77-85 GuoHBKurodaSMurakamiHMicrostructures and Properties of Plasma-Spayed Segmented Thermal Barrier CoatingsJ. Am. Ceram. Soc.2006894143214391:CAS:528:DC%2BD28Xjs1SrsL4%3D10.1111/j.1551-2916.2005.00912.x PaulSCipitriaATsipasSAClyneTWSintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different StabilisersSurf. Coat. Technol.20092038106910741:CAS:528:DC%2BD1cXhsFajtr7I10.1016/j.surfcoat.2008.09.037 S. Safai and H. Herman, Plasma-Sprayed Materials, In Ultrarapid Quenching of Liquid Alloys, Treatise on Materials Science and Technology, Vol.20, Ed. H. Herman, 1981, pp.183-214. HeimannRBGrabmannOZumbrinkTJennissenHPBiometric Processes during in Vitro Leaching of Plasma-Sprayed Hydroxyapatite Coatings for Endo-Prosthetic ApplicationsMater. Siss. U. Werkstofftech2001329139211:CAS:528:DC%2BD38XhsVKmtrY%3D10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H LiC-JZouJHuoH-BYaoJ-TYangG-JMicrostructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten ParticlesJ. Thermal Spray Technol.2016252642721:CAS:528:DC%2BC2MXhsVOqtbfI10.1007/s11666-015-0287-2 WangJLuoX-TLiC-JMaNTakahashiMEffect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr SplatSurf. Coat. Technol.201937136461:CAS:528:DC%2BC1MXjtFOlt74%3D10.1016/j.surfcoat.2019.01.085 WangWHThe Nature and Properties of Amorphous MatterProg. Phys201333177351In Chinese LiC-JWangW-ZQuantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings through Visualization of Voids DistributionMater. Sci. Eng A20043861-2101910.1016/S0921-5093(04)00900-1 Colmenares-AnguloJShinodaKWentzTZhangWTanYSampathSOn the Response of Different Particle State Sensors to Deliberate Process VariationsJ. Thermal Spray Technol.2011201035104810.1007/s11666-011-9653-x WangW-ZHeYDependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar StructureJ. Thermal Spray Technol.200413342543110.1361/105996304193641:CAS:528:DC%2BD2cXptFSntr8%3D ZhangYHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6 LiLKharasBZhangHSampathSSuppression of Crystallization during High Velocity Impact Quenching of Alumina Droplets: Observations and CharacterizationMater. Sci. Eng. A2007A45635421:CAS:528:DC%2BD2sXjsVGnt7Y%3D10.1016/j.msea.2006.11.132 OravaJGreerALGholipourBHewakDWSmithCECharacterization of Supercooled Liquid Ge2Sb2Te5 and its Crystallization by Ultrafast-Heating CalorimetryNature Mater.2012112792831:CAS:528:DC%2BC38XktVaktLo%3D10.1038/nmat3275 T.J. Roseberry, F.W. Boulger, A Plasma Flame Spray Handbook, Report No.MT-043, US, Department of Commerce, National Technical Information Service, Springfield, US, 1977 L. Gyenis, A. Grimaud, O. Betoule, F. Monerie-Moulin, and P. Fauchais, Influence of Temperature Control during Spraying on Hardness and Cohesion of Alumina Coating, in Proceedings of 2nd Plasma-Technic-Symposium, Vol.1, Lucerne, Switzerland, June 5-7, 1991, eds. S. Blum-Sandmeier, H. Eschnauer, P. Huber, A.R. Nicill, pp. 95--101 ValetteSTrolliardGDenoirjeanALefortPIron/Wustite/Magnetite/Alumina Relatisonships in Plasma Coated Steel: A TEM StudySolid State Ionics20071784294371:CAS:528:DC%2BD2sXjsVSgt70%3D10.1016/j.ssi.2007.02.011 W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma Sprayed Coatings and Relationship between Lamellar Microstructure and Properties of Coatings, Xi’an Jiaotong University, Ph.D., Thesis, 2004 SuYJWangHPorterWDde Arellano LopezARFaberKTThermal Conductivity and Phase Evolution of Plasma-Sprayed Multilayer CoatingsJ. Mater. Sci.200136351135181:CAS:528:DC%2BD3MXmsFGqtL0%3D10.1023/A:1017932617123 FeuersteinAKnappJTaylorTAsharyABolcavageAHitchmanNTechnical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A ReviewJ. Thermal Spray Technol.2008171992131:CAS:528:DC%2BD1cXns1yisL4%3D10.1007/s11666-007-9148-y LiLWangXXWeiGVaidyaAZhangHSampathSSubstrate Melting During Thermal Spray Splat QuenchingThin Solid Films20044681131191:CAS:528:DC%2BD2cXnvFGlsbw%3D10.1016/j.tsf.2004.05.073 PlancheMPCostilSVerdyCCoddetCDifferent Spray Processes for Different Al2O3 Coating PropertiesAppl. Phys. A. Mater. Sci. Process.2010996656711:CAS:528:DC%2BC3cXot1Cksr0%3D10.1007/ 1379_CR152 1379_CR151 1379_CR157 1379_CR156 AA Syed (1379_CR96) 2003; 7 C-J Li (1379_CR178) 2019; 28 A McDonald (1379_CR23) 2006; 15 Y Lahmar-Mebdoua (1379_CR80) 2010; 49 1379_CR160 A Cipitria (1379_CR136) 2009; 57 VP Elyutin (1379_CR182) 1969; 43 ATT Tran (1379_CR92) 2008; 17 HT Litter (1379_CR172) 1954; 17 C Moreau (1379_CR56) 1995; 4 V Pershin (1379_CR25) 2003; 12 A Maitre (1379_CR112) 2002; 4 1379_CR130 C-J Li (1379_CR120) 2004; 386 S Brossard (1379_CR91) 2010; 204 1379_CR6 M Vardelle (1379_CR48) 1995; 4 J Orava (1379_CR181) 2012; 11 X Jiang (1379_CR51) 2001; 385 C-J Li (1379_CR52) 2004; 184 DM Zhu (1379_CR144) 2000; 9 RB Heimann (1379_CR106) 2001; 32 C Moreau (1379_CR74) 1990; 1 L Li (1379_CR20) 2004; 468 G Trapaga (1379_CR65) 1992; 23B E-J Yang (1379_CR177) 2015; 274 C-J Li (1379_CR11) 2002; 11 HB Guo (1379_CR35) 2004; 186 DA Gereman (1379_CR4) 1972 J Knuuttila (1379_CR197) 1999; 232 S Hao (1379_CR42) 2011; 20 C-J Li (1379_CR135) 2006; 260 R McPherson (1379_CR72) 1973; 8 OG Angel (1379_CR82) 1955; 54 S-W Yao (1379_CR195) 2016; 25 PG Debenedetti (1379_CR184) 2001; 410 A Kulkarni (1379_CR154) 2004; 369 1379_CR193 Y-Z Xing (1379_CR40) 2008; 176 C-J Li (1379_CR69) 2005; 191 J Wang (1379_CR158) 2019; 371 C-J Li (1379_CR202) 2013; 22 H Liu (1379_CR67) 1993; 2 W Tillmann (1379_CR85) 2021; 406 C-J Li (1379_CR68) 2004; 13 ATT Tran (1379_CR90) 2011; 519 1379_CR15 J-J Tian (1379_CR78) 2016; 110 Y Zhang (1379_CR95) 2016; 25 T Chraska (1379_CR192) 2001; 397 Y Tan (1379_CR140) 2009; 92 Y Yang (1379_CR108) 1997; 89 J Madejski (1379_CR63) 1976; 19 S Kuroda (1379_CR98) 1991; 200 1379_CR17 P Fauchais (1379_CR1) 2014 Y-P Wang (1379_CR204) 2021; 46 H Jones (1379_CR64) 1971; 4 AA Syed (1379_CR97) 2005; 200 AH Pakseresht (1379_CR200) 2015; 324 A Ohmori (1379_CR133) 1993 E-J Yang (1379_CR176) 2016; 42 1379_CR171 E Turunen (1379_CR29) 2006; A415 J Wang (1379_CR93) 2017; 26 R McPherson (1379_CR9) 1982; 97 R Dutton (1379_CR141) 2000; 9 DT Gawne (1379_CR101) 1997; 75 R Chen (1379_CR179) 2021; 30 S Costil (1379_CR169) 2007; 16 V Viswanathan (1379_CR203) 2014; 97 YG Zhang (1379_CR62) 2016; 25 1379_CR31 T Liu (1379_CR175) 2014; 8 E Kadyrov (1379_CR153) 1996; 5 X-Y Dong (1379_CR79) 2020; 29 WG Chi (1379_CR138) 2008; 91 1379_CR30 W-Z Wang (1379_CR131) 2004; 13 CC Berndt (1379_CR8) 1980 WH Wang (1379_CR185) 2013; 33 D Holland-Moritz (1379_CR186) 2004; A375 1379_CR39 A McDonald (1379_CR54) 2007; 50 V Shibe (1379_CR28) 2019; 28 JF Bisson (1379_CR86) 2005; 14 W Zhang (1379_CR194) 2009; 8 S Sampath (1379_CR199) 1999; A272 S Bhusal (1379_CR61) 2019; 374 Y-Z Xing (1379_CR88) 2008; 373-374 P Fauchais (1379_CR150) 1989; 20B A Kulkarni (1379_CR167) 2000; 43 NR Shankar (1379_CR109) 1982; 3 1379_CR49 J Wu (1379_CR149) 2002; 85 C-J Li (1379_CR18) 2006; 15 J Colmenares-Angulo (1379_CR165) 2011; 20 P Fauchais (1379_CR53) 1996; 22 S Dallaire (1379_CR19) 1982; 95 S-W Yao (1379_CR44) 2016; 119 1379_CR55 C-J Li (1379_CR163) 1995 YZ Xing (1379_CR134) 2008; 91 1379_CR57 1379_CR58 S Goutier (1379_CR24) 2011; 275 S Valette (1379_CR115) 2007; 178 Y Arata (1379_CR125) 1987; 16 C-J Li (1379_CR132) 1997; 32 CA Angell (1379_CR183) 1988; 102 GN Heintze (1379_CR32) 1992; 50 HB Guo (1379_CR37) 2006; 506-507 S-W Yao (1379_CR190) 2017; 134 C-J Li (1379_CR45) 2013; 22 L Li (1379_CR191) 2007; A456 S Paul (1379_CR146) 2007; 16 I-H Jung (1379_CR34) 2004; 180-181 CP Royall (1379_CR188) 2008; 7 P Fauchais (1379_CR21) 2004; 13 I Sevostianov (1379_CR123) 2000; 48 S Valette (1379_CR77) 2021; 416 L Chen (1379_CR99) 2016; 25 AD Jadhav (1379_CR145) 2006; 54 S Goutier (1379_CR76) 2011; 20 A Tricoire (1379_CR38) 2005; 9 A Ohmori (1379_CR129) 1991; 201 E Kadyrov (1379_CR27) 1995; 4 IH Jung (1379_CR33) 2000; 9 S-W Yao (1379_CR198) 2018; 27 1379_CR75 YJ Su (1379_CR168) 2001; 36 G-J Yang (1379_CR43) 2013; 235 A Ohmori (1379_CR127) 1990; 19 L Bianchi (1379_CR70) 1997; 305 1379_CR73 S Paul (1379_CR137) 2009; 203 1379_CR111 Jyun Miyase (1379_CR100) 1985 1379_CR110 C-J Li (1379_CR119) 2016; 25 L Bianchi (1379_CR60) 1995; 4 1379_CR81 V Srinivasan (1379_CR87) 2005; 19 H Liu (1379_CR180) 2020; 7 1379_CR84 1379_CR114 1379_CR113 GM Smith (1379_CR170) 2018; 27 A Feuerstein (1379_CR174) 2008; 17 N Markocsan (1379_CR142) 2009; 18 Y Hu (1379_CR187) 2015; 6 E-J Yang (1379_CR196) 2014; 61 S Goutier (1379_CR59) 2013; 235 PS Babu (1379_CR162) 2007; 16 VV Sobolev (1379_CR83) 1996; 28 1379_CR122 1379_CR121 RT Allsop (1379_CR14) 1961; 63 M Bertagnolli (1379_CR66) 1995; 4 1379_CR128 WW Zhang (1379_CR148) 2018; 27 1379_CR126 MP Planche (1379_CR155) 2010; 99 CU Hardwicke (1379_CR117) 2013; 22 A Vardelle (1379_CR3) 2016; 25 S-L Zhang (1379_CR201) 2015; A 3 JR Davis (1379_CR2) 2004 ATT Tran (1379_CR89) 2011; 206 P Saravanan (1379_CR159) 2000; 9 A Hasui (1379_CR46) 1970; 12 RW Trice (1379_CR147) 2002; 37 BN Kocthkob (1379_CR26) 1978 C-J Li (1379_CR161) 1996; 82 R McPherson (1379_CR173) 1981; 83 Y Tanaka (1379_CR94) 2002; 20 Y-Z Xing (1379_CR41) 2007; 179 M Fukumoto (1379_CR50) 2004; 45 AJ Allen (1379_CR124) 2001; 49 S Kitahara (1379_CR16) 1974; 11 HJ Ratzer-Scheibe (1379_CR143) 2007; 201 A Kulkarni (1379_CR166) 2004; A369 R McPherson (1379_CR10) 1984; 112 RC Tucker (1379_CR12) 1974; 11 H Jones (1379_CR71) 1973; 36 S Valette (1379_CR116) 2008; 202 C Moreau (1379_CR22) 1992; 1 L Sun (1379_CR118) 2018; 27 1379_CR107 1379_CR105 HB Guo (1379_CR36) 2006; 89 1379_CR104 1379_CR103 RC Dykhuizen (1379_CR47) 1994; 3 1379_CR102 YZ Wang (1379_CR139) 2011; 20 L Pawlowski (1379_CR5) 2008 VV Sobolev (1379_CR13) 1997; 42 D Matejka (1379_CR7) 1989 J Orava (1379_CR189) 2014; 140 N Branland (1379_CR164) 2006; 15 |
References_xml | – reference: LiC-JOhmoriAThe Lamellar Structure of a Detonation Gun Sprayed Al2O3 CoatingSurf. Coat. Technol.1996822542581:CAS:528:DyaK28XjvFGmsr0%3D10.1016/0257-8972(95)02670-3 – reference: OhmoriALiC-JSurayanarayananSThe structure of thermally sprayed ceramic coatings and its dominant effect on the coating propertiesPlasma Spraying, Theory and Applications1993SingaporeWorld Scientific17920010.1142/9789814354479_0007 – reference: G. Johner, V. Wilms, K.K. Schweitzer and P. Adam, Experimental and Theroretical Aspects of Thick Thermal Barrier Coatings for Turbine Applications, Proc. 1st National Thermal Spray Conferene, 14-17 Sept., 1998, Orlando, Florida, ASM International, 1988, pp. 155-166 – reference: ElyutinVPKostikovVIMintonBSNagibinYAViscosity of AluminaRuss. J. Chem.196943316 – reference: W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma Sprayed Coatings and Relationship between Lamellar Microstructure and Properties of Coatings, Xi’an Jiaotong University, Ph.D., Thesis, 2004 – reference: F.N. Longo, Metallurgy of Flame Sprayed Nickel Aluminide Coatings, Weld. J. 1966, p 66s-69s. – reference: LiC-JLiC-XYangG-JWangY-YExamination of Substrate Surface Melting-Induced Splashing during Splat Formation in Plasma SprayingJ. Thermal Spray Technol.20061547177241:CAS:528:DC%2BD2sXptlanuw%3D%3D10.1361/105996306X146947 – reference: ChiWGSampathSWangHMicrostructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia CoatingsJ. Am. Ceram. Soc.2008918263626451:CAS:528:DC%2BD1cXhtVehsLjI10.1111/j.1551-2916.2008.02476.x – reference: HeintzeGNUematsuSPreparation and Structures of Plasma-Sprayed γ-and α-Al2O3 CoatingsSurface Coat. Technol.19925032132221:CAS:528:DyaK38Xhsl2muro%3D10.1016/0257-8972(92)90004-T – reference: WangWHThe Nature and Properties of Amorphous MatterProg. Phys201333177351In Chinese – reference: MoreauCCieloPLamontagneMDallaireSVardelleMImpacting Particle Temperature Monitoring during Plasma Spray DepositionMeas. Sci. Technol.199018078141:CAS:528:DyaK3cXltVOntr0%3D10.1088/0957-0233/1/8/023 – reference: HardwickeCULauY-CAdvances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A ReviewJ. Thermal Spray Technol.20132256457610.1007/s11666-013-9904-0 – reference: OravaJGreerALGholipourBHewakDWSmithCECharacterization of Supercooled Liquid Ge2Sb2Te5 and its Crystallization by Ultrafast-Heating CalorimetryNature Mater.2012112792831:CAS:528:DC%2BC38XktVaktLo%3D10.1038/nmat3275 – reference: GoutierSVardelleMFauchaisPComparison between Metallic and Ceramic Splats: Influence of Viscosity and Kinetic Energy on the Particle FlatteningSurf. Coat. Technol.20132356576681:CAS:528:DC%2BC3sXhsV2ksbnI10.1016/j.surfcoat.2013.08.044 – reference: OravaJGreerALFast and Slow Crystal Growth Kinetics in Glass-Forming MeltsJ. Chem. Phys.20141402145041:STN:280:DC%2BC2cfgsFymtw%3D%3D10.1063/1.4880959 – reference: KocthkobBNShestelinUAPlasma Spraying, Moskow Metallurgical Publishing1978LtdJapan-Soviet Communication Publishing Co.In Japanese – reference: J. Pech and B. Hannoyer, Influence of Oxide Layer Promoted by d.c. Plasma Preheating on the Adhesion Coating and Role of the Initial Surface Pretreatment. Surf. Interface Anal. 30, 585-588 (2000) – reference: YaoS-WTianJ-JYangG-JLiC-XLuoX-TLiC-JUnderstanding the Formation of the Limited Interlamellar Bonding in Thermal Spray Ceramic Coatings Based on the Intrinsic Bonding Temperature ConceptJ. Thermal Spray Technol.201625161716301:CAS:528:DC%2BC28Xhs1Ogt7bE10.1007/s11666-016-0464-y – reference: MiyaseJyunJapan Thermal Spray Associate, Handbook of Thermal Spray1985TokyoAuto PressIn Japanese – reference: McPhersonRShaferBVInterlamellar Contact within Plasma Sprayed CoatingsThin Solid Films1982972012041:CAS:528:DyaL3sXitFSqsQ%3D%3D10.1016/0040-6090(82)90453-9 – reference: KurodaSClyneTWThe Quenching Stress in Thermally Sprayed CoatingsThin Solid Films199120049661:CAS:528:DyaK3MXktlemtbo%3D10.1016/0040-6090(91)90029-W – reference: Colmenares-AnguloJShinodaKWentzTZhangWTanYSampathSOn the Response of Different Particle State Sensors to Deliberate Process VariationsJ. Thermal Spray Technol.2011201035104810.1007/s11666-011-9653-x – reference: GeremanDAHechtNLArc Plasma Technology in Materials Science1972Wien, New YorkSpringer 10.1007/978-3-7091-8293-2 – reference: MatejkaDBenkoBPlasma Spraying of Metallic and Ceramic Materials1989Baffins Lane, Chichester, UKWiley – reference: TianJ-JYaoS-WLuoX-TLiC-XLiC-JAn Effective Approach for Creating Metallurgical Self-Bonding in Plasma-Spraying of NiCr-Mo Coating by Designing Shell-Core-Structured PowdersACTA Mater.201611019301:CAS:528:DC%2BC28XksFOgs7k%3D10.1016/j.actamat.2016.03.020 – reference: TranATTHylandMMQiuTWithyBJamesBJEffects of Surface Chemistry on Splat Formation During Plasma SprayingJ. Thermal Spray Technol.2008175-6200863710.1007/s11666-008-9237-61:CAS:528:DC%2BD1MXpvFGntw%3D%3D – reference: HasuiAKitaharaSFukushimaTOn Relation between Properties of Coating and Spraying Angle in Plasma Jet SprayingTrans. Natl. Res. Inst. Met.1970129201:CAS:528:DyaE3cXktlKlt7s%3D – reference: MoreauCCieloPLamontagneMFlattening and Solidification of Thermally Sprayed ParticlesJ. Therm. Spray Technol.199213173241:CAS:528:DyaK2cXhsVSqtrg%3D10.1007/BF02647159 – reference: GoutierSVardelleMLabbeJCFauchaisPFlattening and Cooling of Millimeter and Micrometer-Sized Alumina DropsJ. Thermal Spray Technol.20112059671:CAS:528:DC%2BC3cXhsFyju7fJ10.1007/s11666-010-9562-4 – reference: YangE-JLuoX-TYangG-JLiC-JTakahashiMImpact of Deposition Temperature on Crystalline Structure of Plasma-Sprayed Al2O3 Splats Revealed by FIB-HRTEM TechniqueCeram. Int.20164218538601:CAS:528:DC%2BC2MXhsFWhtbnN10.1016/j.ceramint.2015.09.010 – reference: YaoS-WLiuTLiC-JYangG-JLiC-XEpitaxial Growth during the Rapid Solidification of Plasma-Sprayed Molten TiO2 SplatACTA Mater.201713466801:CAS:528:DC%2BC2sXhtFyntr3J10.1016/j.actamat.2017.05.052 – reference: M. Vardelle, A. Vardelle, and P. Fauchais, Study of Trajectories and Temperatures of Powders in a D.C. Plasma Jet—Correlation With Alumina Sprayed Coatings, in Proceedings of the 10th International Thermal Spraying Conference, German Welding Society, Essen, Germany, 1983, pp. 88-92 – reference: LitterHTDrakeLCPore Size Distribution of Porous Materials, Pressure Porosometer and Determination of Macro-Size DistributionInds. Chem. Eng.195417782786 – reference: McPhersonRFormation of Metastable Phase in Flame- and Plasma-Prepared AluminaJ. Mater. Sci.197388518581:CAS:528:DyaE3sXltVOltrc%3D10.1007/BF02397914 – reference: HaoSLiC-JYangG-JInfluence of Deposition Temperature on the Microstructures and Properties of Plasma-sprayed Al2O3 CoatingsJ. Thermal Spray Technol.2011201601691:CAS:528:DC%2BC3cXhsFyju7vM10.1007/s11666-010-9591-z – reference: ValetteSTrolliardGDenoirjeanALefortPIron/Wustite/Magnetite/Alumina Relatisonships in Plasma Coated Steel: A TEM StudySolid State Ionics20071784294371:CAS:528:DC%2BD2sXjsVSgt70%3D10.1016/j.ssi.2007.02.011 – reference: ChraskaTKingAHTransmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia - part II. Interfaces and Subsequent Splat SolidificationThin Solid Films200139740481:CAS:528:DC%2BD3MXns1Wqt7w%3D10.1016/S0040-6090(01)01361-X – reference: R.S. Lima, B.R. Marple, K.A. Khor, H. Li, P. Cheang, Mechanical Properties, Microstructural Characteristics and In-Vitro Behavior of APS Sprayed Nanostructured and Conventional Hydroxyapatite Coatings, in the Proceedings of 2004 International Thermal Spray Conference, ISBN-3-87155-792-7, DVS , 2004, Dusseldorf, Germany – reference: BerndtCCMcPhersonRPaskJEvansAThe Adhesion of Plasma Sprayed Ceramic Coatings to MetalsMaterials Science Research, Surface and Interfaces in Ceramic and Ceramic-Metal Systems1980New York and LondonPlenum619628 – reference: BissonJFMoreauCDorfmanMDambraCMallonJInfluence of Hydrogen on the Microstructure of Plasma-Sprayed Yttria-Stabilized Zirconia CoatingsJ. Thermal Spray Technol.200514859010.1361/10599630522422 – reference: XingY-ZLiYLiC-JLiC-XYangG-JInfluence of Substrate Temperature on Microcracks Formation in Plasma-Sprayed Yttria-Stabilized Zirconia SplatsKey Eng. Mater.2008373-37469721:CAS:528:DC%2BD1cXlvFCmtbs%3D10.4028/www.scientific.net/KEM.373-374.69 – reference: H.D. Steffens and U. Fischer, Correlation Between Microstructure and Physical Properties of Plasma Sprayed Zirconia Coatings, in Proceedings of 2nd National Thermal Spray Conference, ASM International, Materials Park, OH, 1989, pp. 167-73 – reference: TanYLongtinJPSampathSWangHEffect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ CoatingsJ. Am. Ceram. Soc.20099237107161:CAS:528:DC%2BD1MXktVWitr8%3D10.1111/j.1551-2916.2009.02953.x – reference: FauchaisPFukumotoMVardelleAVardelleMKnowledge Concerning Splat Formation: An Invited ReviewJ. Therm. Spray Technol.20041333373601:CAS:528:DC%2BD2cXptFSnsLg%3D10.1361/10599630419670 – reference: CipitriaAGolosnoyIOClyneTWA Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing CoatingsACTA Mater.20095749809921:CAS:528:DC%2BD1MXhsFelu70%3D10.1016/j.actamat.2008.10.024 – reference: A.S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Materials Park, 2002, pp. 83-86 – reference: SrinivasanVSampathSEstimation of Molten Content of the Spray Stream from Analysis of Experimental Particle DiagnosticsJ. Thermal Spray Technol.20051947648310.1007/s11666-009-9439-61:CAS:528:DC%2BC3cXmt1agtg%3D%3D – reference: ZhangYHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6 – reference: SuYJWangHPorterWDde Arellano LopezARFaberKTThermal Conductivity and Phase Evolution of Plasma-Sprayed Multilayer CoatingsJ. Mater. Sci.200136351135181:CAS:528:DC%2BD3MXmsFGqtL0%3D10.1023/A:1017932617123 – reference: ValetteSDenoirjeanALefortPPlasma Sprayed Steel: Adhesion of an Alumina Film via a Wustite InterlayerSurf. Coat. Technol.2008202260326111:CAS:528:DC%2BD1cXit1Srtrw%3D10.1016/j.surfcoat.2007.09.040 – reference: ChenRZhangS-LLiC-JLiC-XPlasma-Sprayed High-Performance (Bi2O3)0.75(Y2O3)0.25 Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs)J. Thermal Spray Technol.2021301962041:CAS:528:DC%2BB3MXmt1agsbc%3D10.1007/s11666-021-01166-2 – reference: SampathSJiangXYMatejicekJLegerACVardelleASubstrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized ZirconiaMater. Sci. Eng. A1999A2721812181:CAS:528:DyaK1MXmvVGkt7s%3D10.1016/S0921-5093(99)00459-1 – reference: FeuersteinAKnappJTaylorTAsharyABolcavageAHitchmanNTechnical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A ReviewJ. Thermal Spray Technol.2008171992131:CAS:528:DC%2BD1cXns1yisL4%3D10.1007/s11666-007-9148-y – reference: DavisJRHandbook of Thermal Spray Technology2004Materials ParkASM International – reference: BianchiLGrimaudABleinFLucchesePFauchaisPComparison of Plasma-Sprayed Alumina Coatings by RF and DC Plasma SprayingJ. Thermal Spray Technol.1995459661:CAS:528:DyaK2MXmtFWrs7c%3D10.1007/BF02648529 – reference: ValetteSBernardieRAbsiJLefortPElaboration and Characterisation of Plasma Sprayed Alumina Coatings on Nickel with Nickel Oxide InterlayerSurf. Coat. Technol.202141612715910.1016/j.surfcoat.2021.1271591:CAS:528:DC%2BB3MXpsFKntLs%3D – reference: CostilSVerdyCBolotRCoddetCOn the Role of Spraying Process on Microstructural, Mechanical, and Thermal Response of Alumina CoatingsJ. Thermal Spray Technol.2007168398431:CAS:528:DC%2BD1cXpvVSnsg%3D%3D10.1007/s11666-007-9081-0 – reference: JonesHCooling, Freezing and Substrate Impact of Droplets Formed by Rotary AtomizationJ. Phys. D19714165716601:CAS:528:DyaE38XoslOntQ%3D%3D10.1088/0022-3727/4/11/206 – reference: YangYLiuZChuangYMeasurements of Residual Stress and Bond Strength of Plasma Sprayed Laminated CoatingsSurf. Coat. Technol.199789971001:CAS:528:DyaK2sXislOntb4%3D10.1016/S0257-8972(96)02923-4 – reference: ZhuDMMillerRAThermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux ConditionsJ. Therm. Spray Technol.2000921751801:CAS:528:DC%2BD3cXls1Ojsb0%3D10.1361/105996300770349890 – reference: Y. Fukuda, H. Yamasaki, M. Kumonn, M. Kawahara and H. Kimura, Detonation Coating for Coal Fired Boiler Tubes, Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, pp. 49-54. – reference: KnuuttilaJAhmaniemiSMantylaTWet Abrasion and Slurry Erosion Resistance of Thermally Sprayed Oxide CoatingsWear19992322072121:CAS:528:DyaK1MXmvVGkurs%3D10.1016/S0043-1648(99)00147-7 – reference: PawlowskiLThe Science and Engineering of Thermal Spray Coatings2008New YorkWiley10.1002/9780470754085 – reference: GoutierSVardelleMFauchaisPLast Developments in Diagnostics to Follow Splats Formation during Plasma SprayingJ. Phys.: Conf. Series2011275 – reference: BertagnolliMMarcheseMJacucciGModeling of Particles Impacting on a Rigid Substrate under Plasma Spraying ConditionsJ. Thermal Spray Technol.1995441491:CAS:528:DyaK2MXmtFWrs7k%3D10.1007/BF02648527 – reference: DongX-YLuoX-TZhangS-LLiC-JA Novel Strategy for Depositing Dense Self-fluxing Alloy Coatings with Sufficiently Bonded Splats by One-Step Atmospheric Plasma SprayingJ. Thermal Spray Technol.20202911731841:CAS:528:DC%2BC1MXitFyrs7zK10.1007/s11666-019-00943-4 – reference: M.W. Chase, NIST-JANAF Thermochemical tables, DTIC Doc. (1998) – reference: KadyrovEGas-Particle Interaction in Detonation Spraying SystemsJ. Thermal Spray Technol.199652185951:CAS:528:DyaK28Xkt1Kmu78%3D10.1007/BF02646432 – reference: AllenAJIkavskyJLongGGWallaceJSBerndtCCHermanHMicrostructural Characterization of Yttria-stabilized Zirconia Plasma-Sprayed Deposits Using Multiple Small-Angle Neutron ScatteringActa Mater.200149166116751:CAS:528:DC%2BD3MXjtV2htLc%3D10.1016/S1359-6454(00)00393-1 – reference: L. Gyenis, A. Grimaud, O. Betoule, F. Monerie-Moulin, and P. Fauchais, Influence of Temperature Control during Spraying on Hardness and Cohesion of Alumina Coating, in Proceedings of 2nd Plasma-Technic-Symposium, Vol.1, Lucerne, Switzerland, June 5-7, 1991, eds. S. Blum-Sandmeier, H. Eschnauer, P. Huber, A.R. Nicill, pp. 95--101 – reference: PaksereshtAHRahimipourMRVaeziMRSalehiMEffect of Splat Morphology on the Microstructure and Dielectric Properties of Plasma Sprayed Barium Titanate FilmsAppl. Surf. Sci.20153247978061:CAS:528:DC%2BC2cXhvFCns73M10.1016/j.apsusc.2014.11.041 – reference: L. Bianchi,A. Denoirjean, P. Fauchais, O. Postel, Generation of Alumina Plasma Sprayed Coatings on Alumina Substances, In Thermal Spray: Practical Solutions for Engineering Problems, Proceedings of 9th National Thermal Spray Conference & Exposition, C.C. Berndt (ed), ASM International, Materials Park, Ohio-USA, 1996, pp. 749-755 – reference: FauchaisPHeberlainJVRBoulosMIThermal Spray Fundamentals From Powder to Part2014New YorkSpringer10.1007/978-0-387-68991-3 – reference: GuoHBKurodaSMurakamiHMicrostructures and Properties of Plasma-Spayed Segmented Thermal Barrier CoatingsJ. Am. Ceram. Soc.2006894143214391:CAS:528:DC%2BD28Xjs1SrsL4%3D10.1111/j.1551-2916.2005.00912.x – reference: FauchaisPVardelleMVardelleABianchiLPlasma Spray: Study of the Coating GenerationCeram. Int.1996222953031:CAS:528:DyaK28Xkt1ektbc%3D10.1016/0272-8842(95)00106-9 – reference: KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A200436912413710.1016/j.msea.2003.10.2951:CAS:528:DC%2BD2cXhs12itLY%3D – reference: OhmoriALiC-JArataYInfluence of Plasma Spray Conditions on the Structure of Al2O3 CoatingsTrans. Jpn. Weld. Res. Inst.1990192592701:CAS:528:DyaK3MXltFyru7o%3D – reference: KadyrovEKadyrovVGas Dynamical Parameters of Detonation Powder SprayingJ. Thermal Spray Technol.19954328628610.1007/BF02646972 – reference: McPhersonRA Model for the Thermal Conductivity of Plasma Sprayed Ceramic CoatingsThin Solid Films198411289951:CAS:528:DyaL2cXhsVKjs78%3D10.1016/0040-6090(84)90506-6 – reference: TillmannWKhalilOBaumannIInfluence of spray gun parameters on inflight particle’s characteristics, the splat-type distribution, and microstructure of plasma-sprayed YSZ coatingsSurf. Coat. Technol.20214061:CAS:528:DC%2BB3cXis1ais7rO10.1016/j.surfcoat.2020.126705 – reference: T.J. Roseberry, F.W. Boulger, A Plasma Flame Spray Handbook, Report No.MT-043, US, Department of Commerce, National Technical Information Service, Springfield, US, 1977 – reference: TranATTHylandMMShinodaKSampathSInhibition of Molten Droplet Deposition by Substrate Surface HydroxidesSurf. Coat. Technol.2011206128312921:CAS:528:DC%2BC3MXhsVagt7nO10.1016/j.surfcoat.2011.08.041 – reference: LiuHLaverniaEJRangelRHNumerical Simulation of Impingement of Molten Ti, Ni, and W Droplets on a Flat SubstrateJ. Thermal Spray Technol.199323693781:CAS:528:DyaK2cXhslSns7o%3D10.1007/BF02645867 – reference: A. Ohmori, C.-J. Li, and Y. Arata, Structure of Plasma-Sprayed Alumina Coatings Revealed by Using Copper Electroplating, in Thermal Spray Coating, Properties, Processes and Applications, T.F. Bernecki, ed., ASM International, Materials Park, OH, 1992, pp. 105-13 – reference: BrossardSMunroePRTranATTHylandMMStudy of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel SubstratesSurf. Coat. Technol.2010204159916071:CAS:528:DC%2BD1MXhsFahs7%2FJ10.1016/j.surfcoat.2009.10.008 – reference: YangE-JLuoX-TYangG-JLiC-JTakahashiMEpitaxial Grain Growth during 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma SprayingSurf. Coat. Technol.201527437431:CAS:528:DC%2BC2MXnt1elu7o%3D10.1016/j.surfcoat.2015.04.031 – reference: MadejskiJSolidification of Droplets on a Cold SubstrateInt. J. Heat Mass Transf.1976191009101310.1016/0017-9310(76)90183-6 – reference: JungIHBaeKKYangMSIhmSKA Study of the Microstructure of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma SprayingJ. Thermal Spray Technol.2000944634771:CAS:528:DC%2BD3MXjsFOgsw%3D%3D10.1007/BF02608548 – reference: SobolevVVGuilemanyJMDroplet-Substrate Impact Interaction in Thermal SprayingMater. Lett.19962833l33510.1016/0167-577X(96)00071-7 – reference: S. Safai and H. Herman, Plasma-Sprayed Materials, In Ultrarapid Quenching of Liquid Alloys, Treatise on Materials Science and Technology, Vol.20, Ed. H. Herman, 1981, pp.183-214. – reference: LiC-JWangW-ZQuantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings through Visualization of Voids DistributionMater. Sci. Eng A20043861-2101910.1016/S0921-5093(04)00900-1 – reference: McPhersonRThe Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed CoatingsThin Solid Films1981832973101:CAS:528:DyaL3MXmt1eqsLY%3D10.1016/0040-6090(81)90633-7 – reference: LiC-JOhmoriAMcPhersonRThe Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic CoatingsJ. Mater. Sci.19973299710041:CAS:528:DyaK2sXhsVensbY%3D10.1023/A:1018574221589 – reference: MarkocsanNNylenPWigrenJLiXHTricoireAEffect of Thermal Aging on Microstructure and Functional Properties of Zirconia-Base Thermal Barrier CoatingsJ. Therm. Spray Technol.20091822012081:CAS:528:DC%2BD1MXlsF2msLg%3D10.1007/s11666-009-9313-6 – reference: KulkarniAGutleberJSampathSGolandALindquistWBHermanHAllenAJDowdBStudies of the Microstructure and Properties of Dense Ceramic Coatings Produced by High-Velocity Oxygen-Fuel Combustion SprayingMater. Sci. Eng. A2004A3691241371:CAS:528:DC%2BD2cXhs12itLY%3D10.1016/j.msea.2003.10.295 – reference: PlancheMPCostilSVerdyCCoddetCDifferent Spray Processes for Different Al2O3 Coating PropertiesAppl. Phys. A. Mater. Sci. Process.2010996656711:CAS:528:DC%2BC3cXot1Cksr0%3D10.1007/s00339-010-5586-3 – reference: GuoHBKurodaSMurakamiHSegmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow PowdersThin Solid Films2006506-5071361391:CAS:528:DC%2BD28XivVCrs7w%3D10.1016/j.tsf.2005.08.142 – reference: ZhangYGHylandMTranATMatthewsSEffect of Substrates Temperatures on the Spreading Behavior of Plasma Sprayed Ni and Ni-20 wt.% Cr SplatsJ. Thermal Spray Technol.2016251-271811:CAS:528:DC%2BC2MXhtF2mt7vN10.1007/s11666-015-0275-6 – reference: LiLWangXXWeiGVaidyaAZhangHSampathSSubstrate Melting During Thermal Spray Splat QuenchingThin Solid Films20044681131191:CAS:528:DC%2BD2cXnvFGlsbw%3D10.1016/j.tsf.2004.05.073 – reference: TricoireAVardelleMFauchaisPBraillardFMalieABengtssonPMacrocrack Formation in Plasma-Sprayed YSZ TBCs When Spraying Thick PassesHigh Temp. Mater. Process2005940141310.1615/HighTempMatProc.v9.i3.70 – reference: TurunenEVarisTHannulaS-PVaidyaAKulkarniAGutleberJSampathSHermanHOn the Role of Particle State and Deposition Procedure on Mechanical, Tribological and Dielectric Response of High Velocity Oxy-Fuel Sprayed Alumina CoatingsMater. Sci. Eng. A2006A4151111:CAS:528:DC%2BD2MXht1Oitb3N10.1016/j.msea.2005.08.226 – reference: JonesHSplat Cooling and Metastable PhasesRep. Progr. Phys.1973361114251:CAS:528:DyaE2cXltFemtA%3D%3D10.1088/0034-4885/36/11/002 – reference: R.C. Tucker and M.O. Price, The Effect of Angle of Deposition on the Properties of Selected Detonation Gun Coatings, in Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, p 61-71 – reference: YangE-JLiC-JYangG-JLiC-XTakahashiMEffect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 CoatingIOP Conf. Series: Mater. Sci. Eng.2014610120221:CAS:528:DC%2BC2cXhvFKgt77P10.1088/1757-899X/61/1/012022 – reference: TuckerRCStructure Property Relationships in Deposits Produced by Plasma Spray and Detonation Gun TechniquesJ. Vac. Sci. Technol.19741147257341:CAS:528:DyaE2MXitVGgtQ%3D%3D10.1116/1.1312743 – reference: C.-J. Li, Effect of the Surface Adsorbates on the Morphology of Plasma-Sprayed Splats, Tagungsband Conference Proceedings (2005 Int. Thermal Spray Conf.], Ed. E. Lugscheider, May 2-5, Bussel, Switzerland, German Welding Research Institute, 2005, Germany, pp. 311-319 – reference: PershinVLufithaMChandraSMostaghimiJEffect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel CoatingsJ. Therm. Spray Technol.2003123703761:CAS:528:DC%2BD3sXotlGhtLs%3D10.1361/105996303770348249 – reference: J.-L. Li, Splatting Behavior of the Droplet Impinging on Substrate in Plasma Spraying, Ph.D Thesis, Xi’an Jiaotong University, 1999 – reference: JungI-HMoonJ-SSongK-CYangM-SMicrostructure of Yttria Stabilized Zirconia Deposited by Plasma SprayingSurf. Coat. Technol.2004180-1814544571:CAS:528:DC%2BD2cXisVWjtb8%3D10.1016/j.surfcoat.2003.10.129 – reference: ZhangS-LLiC-JLiC-XYangG-JLiuMAtmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel CellsJ. Mater. Chem.2015A 37535755310.1039/C5TA01203A1:CAS:528:DC%2BC2MXjsFWnuro%3D – reference: FukumotoMOhgitaniIYasuiTEffect of Substrate Surface Change on Flattening Behaviour of Thermal Sprayed ParticlesMater. Trans.2004456186918731:CAS:528:DC%2BD2cXlvVanurg%3D10.2320/matertrans.45.1869 – reference: SmithGMSmithASampathSFracture Toughness of Thermal Spray Ceramics: Measurement Techniques and Processing DependenceJ. Thermal Spray Technol.201827107610891:CAS:528:DC%2BC1cXhs1Omt7nK10.1007/s11666-018-0755-6 – reference: LiC-JZhangQ-LYaoS-WYangG-JLiC-XPlasma Spraying of Dense Ceramic Coating with Fully Bonded Lamellae Through Materials Design Based on the Critical Bonding Temperature ConceptJ. Thermal Spray Technol.2019281–2536210.1007/s11666-018-0818-81:CAS:528:DC%2BC1MXmvVeluro%3D – reference: WangY-PGaoJ-TLiJ-HLiC-JLiC-XPreparation of Bulk-Like La0.8Sr0.2Ga0.8Mg0.2O3-d Coatings for Porous Metal-Supported Solid Oxide Fuel Cells via Plasma Spraying at Increased Particle TemperaturesInt. J. Hydrog. Energy20214632655326641:CAS:528:DC%2BB3MXhs12rtb%2FP10.1016/j.ijhydene.2021.07.121 – reference: DebenedettiPGStillingerFHSupercooled Liquids and the Glass TransitionNature20014102592671:CAS:528:DC%2BD3MXitV2js7k%3D10.1038/35065704 – reference: Lahmar-MebdouaYVardelleAFauchaisPGobinDModelling the Nucleation Process in Alumina Lamellae Deposited on a Steel SubstrateInt. J. Therm. Sci.2010495225521:CAS:528:DC%2BD1MXhsFaku7vM10.1016/j.ijthermalsci.2009.09.011 – reference: LiuHChenWPanRShanZQiaoADrewittJWEHennetLJahnSLangstaffDPChassGATaoHYueYGreavesGNFrom Molten Calcium Aluminates through Phase Transitions to Cement PhasesAdv. Sci.2020719022091:CAS:528:DC%2BB3cXisVSisLk%3D10.1002/advs.201902209 – reference: MoreauCGougeonPLamontagneMInfluence of Substrate Preparation on the Flattening and Cooling of Plasma-Sprayed ParticlesJ. Thermal Spray Technol.1995425331:CAS:528:DyaK2MXmtFWrs7s%3D10.1007/BF02648525 – reference: WangYZWuWZhengXBZengYDingMJZhangCGRelationship Between the Microstructure and Thermal Conductivity of Plasma-Sprayed ZrO2 CoatingsJ. Therm Spray Technol.2011206117711821:CAS:528:DC%2BC3MXhsFarsrnE10.1007/s11666-011-9660-y – reference: JadhavADPadtureNPJordanEHGellMMiranzoPFullerERLow-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered MicrostructuresActa Mater.20065412334333491:CAS:528:DC%2BD28Xmt1amsrg%3D10.1016/j.actamat.2006.03.024 – reference: AngellCAStructural Instability and Relaxation in Liquid and Glassy Phases near the Fragile liquid LimitJ. Non-Cryst. Solids19881022052211:CAS:528:DyaL1cXltlemtb0%3D10.1016/0022-3093(88)90133-0 – reference: YaoS-WYangG-JLiC-XLiC-JImproving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding TemperatureJ. Thermal Spray Technol.2018271-225341:CAS:528:DC%2BC2sXhsVGkt7nK10.1007/s11666-017-0633-7 – reference: A. Vardelle, M. Vardelle, R. McPherson, and P. Fauchais, Study of the Influence of Particle Temperature and Velocity Distribution Within a Plasma Jet Coating Formation, in Proceedings of the 9th International Thermal Spraying Conference, Nederland Inst. Voor Lastetechnik, Hague, The Netherlands, 1980, pp. 155-61 – reference: C.-J. Li, H.-L. Liao, P. Gougeon, G. Montavon and C. Coddet, Effect of Reynolds Numbers of Molten Particle on Splat Formation in Plasma Spraying, Thermal Spray: Advancing the Science and Applying the Technology, (Ed.) C. Moreau and B. Marple, Published by ASM international, Materials Park, OH-USA, 2003, pp. 875-882 – reference: TriceRWSuYJMawdsleyJRFaberKTDe Arellano-LopezARWangHPorterWDEffect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZJ. Mater. Sci.20023711235923651:CAS:528:DC%2BD38XkvVeltLY%3D10.1023/A:1015310509520 – reference: WangJLiC-JYangG-JLiC-XEffect of Oxidation on the Bonding Formation of Plasma-sprayed Stainless Steel Splats onto Stainless Steel SubstrateJ. Thermal Spray Technol.2017261-247591:CAS:528:DC%2BC28XitV2msbjM10.1007/s11666-016-0488-3 – reference: LiC-JYangG-JOhmoriA.Akira Ohmori, Relationship between Particle Erosion and Lamellar Microstructure for Plasma Sprayed Alumina CoatingsWear2006260116621171:CAS:528:DC%2BD28XkvFyqsLk%3D10.1016/j.wear.2005.07.006 – reference: HuYLiFLiMBaiHWangWFive-Fold Symmetry as Indicator of Dynamic Arrest in Metallic Glass-Forming LiquidsNat. Commun.2015683101:CAS:528:DC%2BC2MXhsFeitrzI10.1038/ncomms9310 – reference: Ratzer-ScheibeHJSchulzUThe Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier CoatingsSurf. Coat. Technol.2007201187880788810.1016/j.surfcoat.2007.03.0281:CAS:528:DC%2BD2sXlvVagu7Y%3D – reference: LiC-JLiYYangG-JLiC-XEvolution of Lamellar Interface Cracks during Isothermal Cyclic Test of Plasma-Sprayed 8YSZ coating with a columnar structured YSZ interlayerJ. Thermal Spray Technol.2013226137413821:CAS:528:DC%2BC3sXhvVGms7nJ10.1007/s11666-013-9965-0 – reference: McDonaldAMoreauCChandraSThermal Contact Resistance between Plasma-Sprayed Particles and Flat SurfacesInt. J. Heat Mass Transf.200750173717491:CAS:528:DC%2BD2sXitlyqtb8%3D10.1016/j.ijheatmasstransfer.2006.10.022 – reference: Y. Arata, A .Ohmori and C.-J. Li, Study on the Structure of Plasma Sprayed Ceramic Coating by Using Copper Electroplating, in Proceedings of International Symposium on Advanced Thermal Spraying Technology and Allied Coatings (ATTAC'88), Osaka, 13-15 May 1988, Japan High Temperature Society, 1988, pp. 205-210 – reference: LiuTYangE-JYangG-JLiC-XLiC-JThe Interface Bonding Formation during Plasma Spraying of La2Zr2O7 CoatingMater. Res. Innov.20148S4S973S978 – reference: WuJWeiXZPadtureNPKlemensPGGellMGarciaEMiranzoPOsendiMILow-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating ApplicationsJ. Am. Ceram. Soc.20028512303130351:CAS:528:DC%2BD3sXhvVChtQ%3D%3D10.1111/j.1151-2916.2002.tb00574.x – reference: B. Wielage, J. Drozak, Bonding Problems by APS-sprayed Coatings, TS90 Thermal Spray Conference, August 29-31, 1990, Essen, DVS, Dusseldorf, Germany, 1990, pp 243-246. – reference: ArataYOhmoriALiC-JCharacteristics of Metal Electroplating to Plasma Sprayed Ceramic CoatingsTrans. Jpn. Weld. Res. Inst.1987162592651:CAS:528:DyaL1cXkt12jtr4%3D – reference: ZhangWSampathSA Universal Method for Representation of In-Flight Particle Characteristics in Thermal Spray ProcessesJ. Thermal Spray Technol.200982334 – reference: LiC-JZouJHuoH-BYaoJ-TYangG-JMicrostructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten ParticlesJ. Thermal Spray Technol.2016252642721:CAS:528:DC%2BC2MXhsVOqtbfI10.1007/s11666-015-0287-2 – reference: LiC-JOhmoriARelationship between the Structure and Properties of Thermally Sprayed DepositsJ. Therm. Spray Technol.20021133653741:CAS:528:DC%2BD38Xot1GhtrY%3D10.1361/105996302770348754 – reference: LiC-JLiaoHLGougeonPMontavonGCoddetCExperimental Determination of the Relationship between Flattening Degree and Reynolds Number for Spray Molten DropletsSurf. Coat. Technol.20051912-33753831:CAS:528:DC%2BD2cXhtVKqtbjL10.1016/j.surfcoat.2004.04.063 – reference: DallaireSInfluence of Temperature on the Bonding Mechanism of Plasma-Sprayed CoatingsThin Solid Films19829532372441:CAS:528:DyaL38Xmt1WisbY%3D10.1016/0040-6090(82)90016-5 – reference: VardelleMVardelleALegerACFauchaisPGobinDInfluence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying ProcessesJ. Thermal Spray Technol.19954150581:CAS:528:DyaK2MXmtFWrs7Y%3D10.1007/BF02648528 – reference: J.M. Houben and G.G.V. Liempd, Metallurgical Interactions of Mo and Steel During Plasma Spraying, Proceedings of 10th International Thermal Spray Conference, May 4-7, 1983 (Essen, Germany), German Welding Institute, 1983, pp. 66-71 – reference: A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malie, P. Bengtsson, New Concepts for Plasma Sprayed Zirconia TBC for Aeronautic Applications, in: E. Lugscheider (Ed.), Thermal Spray Connects: Explore its Surfacing Potential, Proceedings of the 2005 International Thermal Spray Conference, Basil, Switzerland, 2005, pp. 924-928 – reference: WangW-ZHeYDependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar StructureJ. Thermal Spray Technol.200413342543110.1361/105996304193641:CAS:528:DC%2BD2cXptFSntr8%3D – reference: M.F. Smith, Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 77-85 – reference: SyedAADenoirjeanAHannoyerBFauchaisPDenoirjeanPKhanAALabbeJCInfluence of Substrate Surface Conditions on the Plasma Sprayed Ceramic and Metallic Particles FlatteningSurf. Coat. Technol.2005200231732331:CAS:528:DC%2BD2MXht1GgtrfP10.1016/j.surfcoat.2005.01.014 – reference: VardelleAMoreauCAkedoJAshrafizadehHBerndtCCBerghausJOBoulosMBroganJBourtsalasACDolatabadiADorfmanMEdenTJFauchaisPFisherGGaertnerFGindratMHenneRHylandMIrissouEJordanEHKhorKAKillingerALauYCLiC-JLiLLongtinJMarkocsanNMassetPJMatejicekJMauerGMcDonaldAMostaghimiJSampathSSchillerGShinodaKSmithMFSyedAAThemelisNJTomaFLTrellesJPVassenRVuoristoPThe 2016 Thermal Spray RoadmapJ. Therm. Spray Technol.2016258137614401:CAS:528:DC%2BC28XhvFylsL7F10.1007/s11666-016-0473-x – reference: SevostianovIKachanovMModeling of the Anisotropic Elastic Properties of Plasma-Sprayed Coatings in Relation to Their MicrostructureActa Mater.200048136113701:CAS:528:DC%2BD3cXhvVCktrg%3D10.1016/S1359-6454(99)00384-5 – reference: XingY-ZLiC-XLiC-JLongH-GXieY-XMicrostructure Development of Plasma Sprayed Yttria-Stabilized Zirconia and its Effect on Electrical ConductivitySolid State Ionics20071792714831485 – reference: OhmoriALiC-JQuantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper ElectroplatingThin Solid Films19912012412521:CAS:528:DyaK3MXltFyqsrg%3D10.1016/0040-6090(91)90114-D – reference: KitaharaSA Study of the Bonding Mechanism of Sprayed CoatingsJ. Vac. Sci. Technol.19741147477531:CAS:528:DyaE2MXitVGqtw%3D%3D10.1116/1.1312746 – reference: ChenLYangGJLiC-JHierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic CoatingsJ. Thermal Spray Technol.20162595997010.1007/s11666-016-0420-x1:CAS:528:DC%2BC28XovFWmtL0%3D – reference: D.M. Gray, Y.C. Lau, C.A. Johnson, M.P. Borom, W.A. Nelson, Thermal Barrier Coatings Having an Improved Columnar Microstructure, United States Patent, 5,830,586, Nov. 3, 1988 – reference: C. Moreau, M. Lamontagne and P. Cielo, Influence of the Coating Thickness on the Cooling Rate of Plasma-Sprayed Particles Impinging on a Substrate, in Proceedings of the Fourth National Thermal Spray Conference, Pittsburgh, PA, USA, 4-12 May 1991, ASM International, 1992, pp 237-243 – reference: High-performance Ceramic Coatings: North American Markets and Technologies, BCC Research, Wellesley, MA USA, 2010. Web: www.bccresearch.com – reference: McDonaldALamontagneMChandraSMoreauCPhotographing Impact of Plasma-Sprayed Particles on Metal SubstratesJ. Thermal Spray Technol.2006157087161:CAS:528:DC%2BD2sXptlanug%3D%3D10.1361/105996306X147027 – reference: FauchaisPVardelleMVardelleACoudertJFPlasma Spraying of Ceramic Particles in Argon-Hydrogen D.C. Plasma Jets: Modeling and Measurements of Particles in Flight Correlation with Thermophysical Properties of Sprayed LayersMetall. Trans. B198920B2632761:CAS:528:DyaL1MXksVCjtLs%3D10.1007/BF02825607 – reference: GawneDTGriffithsBJDongGThe influence of Pretreatment on the Adhesion of Ceramic Coatings on SteelTrans. IMF19977562052071:CAS:528:DyaK2sXntlCns7c%3D10.1080/00202967.1997.11871174 – reference: C.-J. Li, A.Ohmori and Y.Harada, 1995, Experimental Investigation of the Morphologies of Plasma Sprayed Copper Splats, Proceedings of 14th International Thermal Spray Conference (14th ITSC), 1995, Japan High Temperature Society, ed. A.Ohmori, pp. 333-339 – reference: WangJLuoX-TLiC-JMaNTakahashiMEffect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr SplatSurf. Coat. Technol.201937136461:CAS:528:DC%2BC1MXjtFOlt74%3D10.1016/j.surfcoat.2019.01.085 – reference: RoyallCPWilliamsSROhtsukaTTanakaHDirect Observation of a Local Structural Mechanism for Dynamic ArrestNat. Mater.200875565611:CAS:528:DC%2BD1cXnslKqsLw%3D10.1038/nmat2219 – reference: JiangXWanYHermanHSampathSRole of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets during Thermal SprayThin Solid Films20013851321411:CAS:528:DC%2BD3MXhvVWqt70%3D10.1016/S0040-6090(01)00769-6 – reference: M. Fukumoto, S. Katoh, and I. Okane, Splat Behavior of Plasma Sprayed Particles on Flat Substrate Surface, in: A. Ohmori (Ed.), Thermal Spraying: Current Status and Future Trends, vol. 1, High Temperature Society of Japan, 1995, pp. 353-358 – reference: F. Ferguen, P. Fauchais, A. Vardelle and D. Gobin, Numerical Investigation of Impact and Solidification YSZ Droplets Plasma-Sprayed onto a Substrate: Effect of Thermal Properties and Roughness, Advanced Ceramics Coatings and Interfaces III, eds. H.T Lin and D.M Zhu, American Ceramic Society, 2009, pp.159-170 – reference: TrapagaGMatthysEFVaenciaJJSzekelyJFluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impacting on Substrate: Comparison of Numerical and Experimental ResultsMetall. Trans. B199223B7017181:CAS:528:DyaK3sXhtVOms74%3D10.1007/BF02656450 – reference: PaulSCipitriaAGolosnoyIOXieLDorfmanMRClyneTWEffects of Impurity Content on the Sintering Characteristics of Plasma-Sprayed ZirconiaJ. Therm. Spray Technol.2007165-67988031:CAS:528:DC%2BD1cXpvVSgtw%3D%3D10.1007/s11666-007-9097-5 – reference: H.D. Steffens, M. Mack and R. Lauterbach, Measurement of Particle Velocities for an Analytical Model of Low Pressure Plasma Jets, in Proceedings of 1st Plasma Technik Symposium, Lucerne, Switzerland, May 18th to 20th, 1988, pp. 67-76 – reference: TanakaYNakashimaMFukumotoMEffect of substrate surface condition on flattening behavior of thermal sprayed ceramic particlesQuarterly J. Japan Weld. Soc.20022031732110.2207/qjjws.20.317In Japanese – reference: HeimannRBGrabmannOZumbrinkTJennissenHPBiometric Processes during in Vitro Leaching of Plasma-Sprayed Hydroxyapatite Coatings for Endo-Prosthetic ApplicationsMater. Siss. U. Werkstofftech2001329139211:CAS:528:DC%2BD38XhsVKmtrY%3D10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H – reference: ShankarNRBerndtCCH, Herman, Failure and Acoustic Emission Response of Plasma Sprayed ZrO2-8 wt% Y2O3 CoatingsCeramic Eng. Sci. Process.198237727921:CAS:528:DyaL3sXksVagtb8%3D10.1002/9780470318782.ch30 – reference: SaravananPSelvarajanVSrivastavaMPRaoDSJoshiSVSundararajaGStudy of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental DesignJ. Therm. Spray Technol.200095055121:CAS:528:DC%2BD3MXjsFOgtQ%3D%3D10.1007/BF02608554 – reference: N. Iwamoto, Y. Makino, N. Umesaki, S. Endo, H. Kobayashi, The Effect of Pretreatments of Metals on Bond Adhesion, in Proceedings of the 10th International Thermal Spray Conference, 80, DVS, Dusseldorf, Germany, 1983, pp. 18-22. – reference: AngelOGWaterdrop Collisions with Solid SurfacesJ. Res. Natl. Bure. Stand.19555428129810.6028/jres.054.033 – reference: MaitreADenoirjeanAFauchaisPLefortPPlasma-Jet Coating of Preoxidized XC38 Steel: Influence of the Nature of the Oxide LayerPhys. Chem. Chem. Phys.20024388738931:CAS:528:DC%2BD38Xltl2jtbY%3D10.1039/b202553a – reference: LiLKharasBZhangHSampathSSuppression of Crystallization during High Velocity Impact Quenching of Alumina Droplets: Observations and CharacterizationMater. Sci. Eng. A2007A45635421:CAS:528:DC%2BD2sXjsVGnt7Y%3D10.1016/j.msea.2006.11.132 – reference: LiC-JYangG-JLiC-XDevelopment of the Particle Interface Bonding in Thermal Spray Coatings: A ReviewJ. Thermal Spray Technol.20132221922061:CAS:528:DC%2BC3sXjtVCntb0%3D10.1007/s11666-012-9864-9 – reference: BranlandNMeillotEFauchaisPVardelleAGitzhoferFBoulosMRelationships between Microstructure and Electrical Properties of RF and DC Plasma-Sprayed Titania CoatingsJ. Thermal Spray Technol.200615153621:CAS:528:DC%2BD28XjsVGns70%3D10.1361/105996306X92596 – reference: BhusalSZhangCBustillosJNautiyalPBoeslBAgarwaAA computational approach for predicting microstructure and mechanical properties of plasma sprayed ceramic coatings from powder to bulkSurf. Coat. Technol.20193741111:CAS:528:DC%2BC1MXhtVygurzE10.1016/j.surfcoat.2019.05.068 – reference: ZhangWWLiGRZhangQYangGJZhangGWMuHMSelf-Enhancing Thermal Insulation Performance of Bimodal-Structured Thermal Barrier CoatingJ. Therm. Spray Technol.20182771064107510.1007/s11666-018-0754-7 – reference: GuoHBVassenRStoverDAtmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack DensitySurf. Coat. Technol.20041863533631:CAS:528:DC%2BD2cXlvFGrsL0%3D10.1016/j.surfcoat.2004.01.002 – reference: BianchiLLegerACVardelleMVardelleAFauchaisPSplat Formation and Cooling of Plasma-Sprayed ZirconiaSurf. Coat. Technol.199730535471:CAS:528:DyaK2sXlsFahur0%3D – reference: TranATTHylandMMShinodaKSampathSInfluence of Substrate Surface Conditions on the Deposition and Spreading of Molten DropletsThin Solid Films2011519244524561:CAS:528:DC%2BC3MXht1Cjsbc%3D10.1016/j.tsf.2010.11.047 – reference: ViswanathanVDwivediGSampathSTroczynskiTEngineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional PerformanceJ. Am. Ceram. Soc.201497277027781:CAS:528:DC%2BC2cXhsVOitrrP10.1111/jace.13033 – reference: LiC-JLiJ-LTransient Contact Pressure during Flattening of Thermal Spray Droplet and its Effect on Splat FormationJ. Therm. Spray Technol.200413222923810.1361/10599630418158 – reference: DuttonRWheelerRRavichandranKSAnKEffect of Heat Treatment on the Thermal Conductivity of Plasma-Sprayed Thermal Barrier CoatingsJ. Therm. Spray Technol.2000922042091:CAS:528:DC%2BD3cXls1Ojsbk%3D10.1361/105996300770349935 – reference: SobolevVVGuilemanyJMNuttingJMiquelJRDevelopment of Substrate-Coating Adhesion in Thermal SprayingInt. Mater. Rev.19974231171361:CAS:528:DyaK1cXkvFSh10.1179/imr.1997.42.3.117 – reference: XingYZLiC-JZhangQLiC-XYangG-JInfluence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia DepositsJ. Am. Ceram. Soc.20089112393139361:CAS:528:DC%2BD1MXosVOm10.1111/j.1551-2916.2008.02775.x – reference: LiC-JOhmoriAArataYOhmoriAEffect of Spray Methods on the Lamellar Structure of Al2O3 CoatingsThermal Spray, Current Status and Future Trends1995JapanJapan High Temperature Society, Osaka501506 – reference: KulkarniASampathSGolandAHermanHComputed Microtomography Studies to Characterize Microstructure-Property Correlations in Thermal Sprayed Alumina DepositsScripta Mater.2000434714761:CAS:528:DC%2BD3cXlvVWgtL0%3D10.1016/S1359-6462(00)00416-4 – reference: Holland-MoritzDSchenkTSimonetVBellissentRConvertPHansenTHerlachDShort-Range Order in Undercooled Metallic LiquidsMater. Sci. Eng. A2004A3759810310.1016/j.msea.2003.10.0561:CAS:528:DC%2BD2cXlvVWmuro%3D – reference: DykhuizenRCReview of Impact and Solidification of Molten Thermal Spray DropletsJ. Therm. Spray Technol.199433513611:CAS:528:DyaK2MXkvVSkur8%3D10.1007/BF02658980 – reference: V. Wilm, H.Herman, Crystallography and Microstructure of Equilibrium and Metastable Phases Resulting from Plasma Spraying of Ceramic Coatings, in Proceedings of 8th International Thermal Spray Conf,, Miami Beach, Florida, American Welding Society, 1976, pp. 236-243 – reference: SyedAADenoirjeanPDenoirjeanALabbeJCFauchaisPInfluence of Substrate Surface Preheating Stage on the Morphology and Flattening of SplatsHigh Temp. Mater. Process.200371952031:CAS:528:DC%2BD2cXnsFSksbk%3D – reference: LiC-JLiJ-LEvaporated-Gas-Induced Splashing Model for Splat Formation during Plasma SprayingSurf. Coat. Technol.2004184113231:CAS:528:DC%2BD2cXks1Whtrs%3D10.1016/j.surfcoat.2003.10.048 – reference: BabuPSRaoDSRaoGVNSundararajanGEffect of Feedstock Size and its Distribution on the Properties of Detonation Sprayed CoatingsJ. Thermal Spray Technol.20071622812901:CAS:528:DC%2BD2sXosF2htLc%3D10.1007/s11666-007-9032-9 – reference: ShibeVChawlaVErosion Studies of D-gun-sprayed WC-12Co, Cr3C2-25%NiCr and Al2O3-13%TiO2 Coatings on ASTM A36 SteelJ. Thermal Spray Technol.201928201520281:CAS:528:DC%2BC1MXitFyrsLrF10.1007/s11666-019-00950-5 – reference: SunLThermal Spray Coatings on Orthopedic Devices: When and How the FDA Reviews Your CoatingsJ. Therm Spray Technol.201827128012901:CAS:528:DC%2BC1cXhslKiu7jL10.1007/s11666-018-0759-2 – reference: XingY-ZLiC-JLiC-XYangG-JInfluence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel CellsJ. Power Sour.2008176131381:CAS:528:DC%2BD2sXhsVGlu7zO10.1016/j.jpowsour.2007.10.031 – reference: YangG-JLiC-XHaoSXingY-ZYangE-JLiC-JCritical Bonding Temperature for the Splat Bonding Formation during Plasma Spraying of Ceramic MaterialsSurf. Coat. Technol.20132358418471:CAS:528:DC%2BC3sXhsFCit73L10.1016/j.surfcoat.2013.09.010 – reference: PaulSCipitriaATsipasSAClyneTWSintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different StabilisersSurf. Coat. Technol.20092038106910741:CAS:528:DC%2BD1cXhsFajtr7I10.1016/j.surfcoat.2008.09.037 – reference: YaoS-WLiC-JTianJ-JYangG-JLiC-XConditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate after High-speed ImpactACTA Mater.20161199251:CAS:528:DC%2BC28XhtlartL%2FI10.1016/j.actamat.2016.07.057 – reference: AllsopRTPittTJHardyJVThe Adhesion of Sprayed MolybdenumMetall.1961631251311:CAS:528:DyaF3MXos1yrtg%3D%3D – reference: W. Funk, F, Goebe, M. Mauz, The Influence of Substrate Temperature on the Bond Strength of Plasma Sprayed Oxide Ceramics, in 1st Plasma Technic Symposium, Vol.1, H. Eschnauer, P. Huber, A.R. Nicoll, S. Sandmeier (Eds), Plasma-Technic AG, Wohlen, Switzerland, pp 59-66. – volume: 20 start-page: 59 year: 2011 ident: 1379_CR76 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-010-9562-4 – volume: A375 start-page: 98 year: 2004 ident: 1379_CR186 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.056 – volume: 275 year: 2011 ident: 1379_CR24 publication-title: J. Phys.: Conf. Series – volume: 519 start-page: 2445 year: 2011 ident: 1379_CR90 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.11.047 – volume: 410 start-page: 259 year: 2001 ident: 1379_CR184 publication-title: Nature doi: 10.1038/35065704 – ident: 1379_CR39 doi: 10.31399/asm.cp.itsc2005p0924 – volume: A369 start-page: 124 year: 2004 ident: 1379_CR166 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.295 – volume: 9 start-page: 175 issue: 2 year: 2000 ident: 1379_CR144 publication-title: J. Therm. Spray Technol. doi: 10.1361/105996300770349890 – volume-title: Plasma Spraying, Moskow Metallurgical Publishing year: 1978 ident: 1379_CR26 – volume: 85 start-page: 3031 issue: 12 year: 2002 ident: 1379_CR149 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2002.tb00574.x – volume: 83 start-page: 297 year: 1981 ident: 1379_CR173 publication-title: Thin Solid Films doi: 10.1016/0040-6090(81)90633-7 – volume: 7 start-page: 556 year: 2008 ident: 1379_CR188 publication-title: Nat. Mater. doi: 10.1038/nmat2219 – ident: 1379_CR121 – volume: 17 start-page: 199 year: 2008 ident: 1379_CR174 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-007-9148-y – volume: 13 start-page: 425 issue: 3 year: 2004 ident: 1379_CR131 publication-title: J. Thermal Spray Technol. doi: 10.1361/10599630419364 – ident: 1379_CR156 – volume: 1 start-page: 317 year: 1992 ident: 1379_CR22 publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02647159 – volume: 32 start-page: 997 year: 1997 ident: 1379_CR132 publication-title: J. Mater. Sci. doi: 10.1023/A:1018574221589 – volume: 200 start-page: 2317 year: 2005 ident: 1379_CR97 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.01.014 – volume: 23B start-page: 701 year: 1992 ident: 1379_CR65 publication-title: Metall. Trans. B doi: 10.1007/BF02656450 – ident: 1379_CR81 doi: 10.1002/9780470456323.ch14 – ident: 1379_CR73 doi: 10.1016/B978-0-12-341820-3.50010-2 – ident: 1379_CR103 – volume: 19 start-page: 476 year: 2005 ident: 1379_CR87 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-009-9439-6 – volume: 75 start-page: 205 issue: 6 year: 1997 ident: 1379_CR101 publication-title: Trans. IMF doi: 10.1080/00202967.1997.11871174 – volume: 22 start-page: 564 year: 2013 ident: 1379_CR117 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-013-9904-0 – volume: A272 start-page: 181 year: 1999 ident: 1379_CR199 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00459-1 – volume: 11 start-page: 365 issue: 3 year: 2002 ident: 1379_CR11 publication-title: J. Therm. Spray Technol. doi: 10.1361/105996302770348754 – volume: 32 start-page: 913 year: 2001 ident: 1379_CR106 publication-title: Mater. Siss. U. Werkstofftech doi: 10.1002/1521-4052(200112)32:12<913::AID-MAWE913>3.0.CO;2-H – volume: 2 start-page: 369 year: 1993 ident: 1379_CR67 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02645867 – volume: 17 start-page: 782 year: 1954 ident: 1379_CR172 publication-title: Inds. Chem. Eng. – volume: 9 start-page: 463 issue: 4 year: 2000 ident: 1379_CR33 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02608548 – volume: 8 start-page: S973 issue: S4 year: 2014 ident: 1379_CR175 publication-title: Mater. Res. Innov. – volume: 235 start-page: 657 year: 2013 ident: 1379_CR59 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.08.044 – volume: 22 start-page: 295 year: 1996 ident: 1379_CR53 publication-title: Ceram. Int. doi: 10.1016/0272-8842(95)00106-9 – ident: 1379_CR17 – volume: 134 start-page: 66 year: 2017 ident: 1379_CR190 publication-title: ACTA Mater. doi: 10.1016/j.actamat.2017.05.052 – volume-title: Japan Thermal Spray Associate, Handbook of Thermal Spray year: 1985 ident: 1379_CR100 – volume: 4 start-page: 59 year: 1995 ident: 1379_CR60 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02648529 – volume: 232 start-page: 207 year: 1999 ident: 1379_CR197 publication-title: Wear doi: 10.1016/S0043-1648(99)00147-7 – volume: 385 start-page: 132 year: 2001 ident: 1379_CR51 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)00769-6 – ident: 1379_CR122 – volume: 184 start-page: 13 issue: 1 year: 2004 ident: 1379_CR52 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2003.10.048 – volume: 95 start-page: 237 issue: 3 year: 1982 ident: 1379_CR19 publication-title: Thin Solid Films doi: 10.1016/0040-6090(82)90016-5 – volume: 202 start-page: 2603 year: 2008 ident: 1379_CR116 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.09.040 – volume: 16 start-page: 839 year: 2007 ident: 1379_CR169 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-007-9081-0 – volume: 4 start-page: 1657 year: 1971 ident: 1379_CR64 publication-title: J. Phys. D doi: 10.1088/0022-3727/4/11/206 – volume: 28 start-page: 2015 year: 2019 ident: 1379_CR28 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-019-00950-5 – volume: 110 start-page: 19 year: 2016 ident: 1379_CR78 publication-title: ACTA Mater. doi: 10.1016/j.actamat.2016.03.020 – volume: 206 start-page: 1283 year: 2011 ident: 1379_CR89 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.08.041 – volume-title: Arc Plasma Technology in Materials Science year: 1972 ident: 1379_CR4 doi: 10.1007/978-3-7091-8293-2 – volume: 29 start-page: 173 issue: 1 year: 2020 ident: 1379_CR79 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-019-00943-4 – volume: 25 start-page: 959 year: 2016 ident: 1379_CR99 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-016-0420-x – volume: 50 start-page: 1737 year: 2007 ident: 1379_CR54 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.10.022 – volume: 46 start-page: 32655 year: 2021 ident: 1379_CR204 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.07.121 – volume: 191 start-page: 375 issue: 2-3 year: 2005 ident: 1379_CR69 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.04.063 – volume: 200 start-page: 49 year: 1991 ident: 1379_CR98 publication-title: Thin Solid Films doi: 10.1016/0040-6090(91)90029-W – ident: 1379_CR15 – volume: 18 start-page: 201 issue: 2 year: 2009 ident: 1379_CR142 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9313-6 – volume: 12 start-page: 9 year: 1970 ident: 1379_CR46 publication-title: Trans. Natl. Res. Inst. Met. – volume: 89 start-page: 97 year: 1997 ident: 1379_CR108 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(96)02923-4 – volume: 204 start-page: 1599 year: 2010 ident: 1379_CR91 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.10.008 – volume: 274 start-page: 37 year: 2015 ident: 1379_CR177 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.04.031 – volume: 25 start-page: 264 year: 2016 ident: 1379_CR119 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-015-0287-2 – ident: 1379_CR114 – volume: 15 start-page: 53 issue: 1 year: 2006 ident: 1379_CR164 publication-title: J. Thermal Spray Technol. doi: 10.1361/105996306X92596 – start-page: 619 volume-title: Materials Science Research, Surface and Interfaces in Ceramic and Ceramic-Metal Systems year: 1980 ident: 1379_CR8 – volume: 4 start-page: 25 year: 1995 ident: 1379_CR56 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02648525 – volume: 3 start-page: 772 year: 1982 ident: 1379_CR109 publication-title: Ceramic Eng. Sci. Process. doi: 10.1002/9780470318782.ch30 – volume: 186 start-page: 353 year: 2004 ident: 1379_CR35 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.01.002 – volume: 36 start-page: 1425 issue: 11 year: 1973 ident: 1379_CR71 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/36/11/002 – ident: 1379_CR49 – volume: 28 start-page: 53 issue: 1–2 year: 2019 ident: 1379_CR178 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-018-0818-8 – volume: 49 start-page: 1661 year: 2001 ident: 1379_CR124 publication-title: Acta Mater. doi: 10.1016/S1359-6454(00)00393-1 – ident: 1379_CR55 – volume: 42 start-page: 853 issue: 1 year: 2016 ident: 1379_CR176 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.09.010 – volume: 12 start-page: 370 year: 2003 ident: 1379_CR25 publication-title: J. Therm. Spray Technol. doi: 10.1361/105996303770348249 – ident: 1379_CR104 – volume: 324 start-page: 797 year: 2015 ident: 1379_CR200 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.11.041 – volume: 119 start-page: 9 year: 2016 ident: 1379_CR44 publication-title: ACTA Mater. doi: 10.1016/j.actamat.2016.07.057 – ident: 1379_CR58 doi: 10.31399/asm.cp.itsc2005p0311 – volume: 25 start-page: 1617 year: 2016 ident: 1379_CR195 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-016-0464-y – volume: 19 start-page: 1009 year: 1976 ident: 1379_CR63 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(76)90183-6 – volume: 36 start-page: 3511 year: 2001 ident: 1379_CR168 publication-title: J. Mater. Sci. doi: 10.1023/A:1017932617123 – ident: 1379_CR171 – ident: 1379_CR57 doi: 10.31399/asm.cp.itsc2003p0875 – volume: 43 start-page: 316 year: 1969 ident: 1379_CR182 publication-title: Russ. J. Chem. – volume: 4 start-page: 50 issue: 1 year: 1995 ident: 1379_CR48 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02648528 – ident: 1379_CR126 – ident: 1379_CR160 – volume: 27 start-page: 1076 year: 2018 ident: 1379_CR170 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-018-0755-6 – volume: 19 start-page: 259 year: 1990 ident: 1379_CR127 publication-title: Trans. Jpn. Weld. Res. Inst. – volume: 17 start-page: 2008 issue: 5-6 year: 2008 ident: 1379_CR92 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-008-9237-6 – volume: 15 start-page: 717 issue: 4 year: 2006 ident: 1379_CR18 publication-title: J. Thermal Spray Technol. doi: 10.1361/105996306X146947 – volume: 7 start-page: 195 year: 2003 ident: 1379_CR96 publication-title: High Temp. Mater. Process. – ident: 1379_CR130 – volume: 406 year: 2021 ident: 1379_CR85 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126705 – volume: 373-374 start-page: 69 year: 2008 ident: 1379_CR88 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.373-374.69 – volume: 14 start-page: 85 year: 2005 ident: 1379_CR86 publication-title: J. Thermal Spray Technol. doi: 10.1361/10599630522422 – volume: 45 start-page: 1869 issue: 6 year: 2004 ident: 1379_CR50 publication-title: Mater. Trans. doi: 10.2320/matertrans.45.1869 – volume: 4 start-page: 41 year: 1995 ident: 1379_CR66 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02648527 – volume: 8 start-page: 34 issue: 23 year: 2009 ident: 1379_CR194 publication-title: J. Thermal Spray Technol. – volume: 30 start-page: 196 year: 2021 ident: 1379_CR179 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-021-01166-2 – volume: 11 start-page: 279 year: 2012 ident: 1379_CR181 publication-title: Nature Mater. doi: 10.1038/nmat3275 – volume: 112 start-page: 89 year: 1984 ident: 1379_CR10 publication-title: Thin Solid Films doi: 10.1016/0040-6090(84)90506-6 – volume: 26 start-page: 47 issue: 1-2 year: 2017 ident: 1379_CR93 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-016-0488-3 – volume: 20B start-page: 263 year: 1989 ident: 1379_CR150 publication-title: Metall. Trans. B doi: 10.1007/BF02825607 – volume: A456 start-page: 35 year: 2007 ident: 1379_CR191 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.11.132 – volume: 49 start-page: 522 year: 2010 ident: 1379_CR80 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.09.011 – volume: 54 start-page: 281 year: 1955 ident: 1379_CR82 publication-title: J. Res. Natl. Bure. Stand. doi: 10.6028/jres.054.033 – volume: 33 start-page: 177 year: 2013 ident: 1379_CR185 publication-title: Prog. Phys – ident: 1379_CR84 – ident: 1379_CR6 – volume: 201 start-page: 241 year: 1991 ident: 1379_CR129 publication-title: Thin Solid Films doi: 10.1016/0040-6090(91)90114-D – volume: 260 start-page: 1166 year: 2006 ident: 1379_CR135 publication-title: Wear doi: 10.1016/j.wear.2005.07.006 – volume: 3 start-page: 351 year: 1994 ident: 1379_CR47 publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02658980 – volume: 140 start-page: 214504 year: 2014 ident: 1379_CR189 publication-title: J. Chem. Phys. doi: 10.1063/1.4880959 – ident: 1379_CR31 – ident: 1379_CR193 – volume: 22 start-page: 192 issue: 2 year: 2013 ident: 1379_CR45 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-012-9864-9 – volume: 99 start-page: 665 year: 2010 ident: 1379_CR155 publication-title: Appl. Phys. A. Mater. Sci. Process. doi: 10.1007/s00339-010-5586-3 – volume: 8 start-page: 851 year: 1973 ident: 1379_CR72 publication-title: J. Mater. Sci. doi: 10.1007/BF02397914 – volume: 178 start-page: 429 year: 2007 ident: 1379_CR115 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.02.011 – volume: 82 start-page: 254 year: 1996 ident: 1379_CR161 publication-title: Surf. Coat. Technol. doi: 10.1016/0257-8972(95)02670-3 – volume: 20 start-page: 1035 year: 2011 ident: 1379_CR165 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-011-9653-x – volume: 92 start-page: 710 issue: 3 year: 2009 ident: 1379_CR140 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.02953.x – volume: 386 start-page: 10 issue: 1-2 year: 2004 ident: 1379_CR120 publication-title: Mater. Sci. Eng A doi: 10.1016/S0921-5093(04)00900-1 – volume: 27 start-page: 1064 issue: 7 year: 2018 ident: 1379_CR148 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-018-0754-7 – volume: 11 start-page: 725 issue: 4 year: 1974 ident: 1379_CR12 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.1312743 – volume: 9 start-page: 401 year: 2005 ident: 1379_CR38 publication-title: High Temp. Mater. Process doi: 10.1615/HighTempMatProc.v9.i3.70 – volume: 374 start-page: 1 year: 2019 ident: 1379_CR61 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.05.068 – volume: 371 start-page: 36 year: 2019 ident: 1379_CR158 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.01.085 – volume: 468 start-page: 113 year: 2004 ident: 1379_CR20 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.05.073 – volume: 102 start-page: 205 year: 1988 ident: 1379_CR183 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(88)90133-0 – volume: 89 start-page: 1432 issue: 4 year: 2006 ident: 1379_CR36 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00912.x – volume: 235 start-page: 841 year: 2013 ident: 1379_CR43 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.09.010 – volume: 5 start-page: 185 issue: 2 year: 1996 ident: 1379_CR153 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02646432 – volume: 4 start-page: 286 issue: 3 year: 1995 ident: 1379_CR27 publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02646972 – volume: 13 start-page: 337 issue: 3 year: 2004 ident: 1379_CR21 publication-title: J. Therm. Spray Technol. doi: 10.1361/10599630419670 – volume: 61 start-page: 012022 year: 2014 ident: 1379_CR196 publication-title: IOP Conf. Series: Mater. Sci. Eng. doi: 10.1088/1757-899X/61/1/012022 – ident: 1379_CR110 doi: 10.1002/1096-9918(200008)30:1<585::AID-SIA844>3.0.CO;2-Y – start-page: 179 volume-title: Plasma Spraying, Theory and Applications year: 1993 ident: 1379_CR133 doi: 10.1142/9789814354479_0007 – volume: 48 start-page: 1361 year: 2000 ident: 1379_CR123 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00384-5 – volume: 20 start-page: 1177 issue: 6 year: 2011 ident: 1379_CR139 publication-title: J. Therm Spray Technol. doi: 10.1007/s11666-011-9660-y – volume: 15 start-page: 708 year: 2006 ident: 1379_CR23 publication-title: J. Thermal Spray Technol. doi: 10.1361/105996306X147027 – volume: 25 start-page: 71 issue: 1-2 year: 2016 ident: 1379_CR95 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-015-0275-6 – volume: 506-507 start-page: 136 year: 2006 ident: 1379_CR37 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.08.142 – volume-title: Handbook of Thermal Spray Technology year: 2004 ident: 1379_CR2 – volume: 11 start-page: 747 issue: 4 year: 1974 ident: 1379_CR16 publication-title: J. Vac. Sci. Technol. doi: 10.1116/1.1312746 – volume: 369 start-page: 124 year: 2004 ident: 1379_CR154 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.295 – volume-title: Plasma Spraying of Metallic and Ceramic Materials year: 1989 ident: 1379_CR7 – ident: 1379_CR105 – ident: 1379_CR157 – volume: 20 start-page: 160 year: 2011 ident: 1379_CR42 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-010-9591-z – volume: 42 start-page: 117 issue: 3 year: 1997 ident: 1379_CR13 publication-title: Int. Mater. Rev. doi: 10.1179/imr.1997.42.3.117 – ident: 1379_CR111 – volume: 25 start-page: 71 issue: 1-2 year: 2016 ident: 1379_CR62 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-015-0275-6 – ident: 1379_CR30 – volume: 176 start-page: 31 issue: 1 year: 2008 ident: 1379_CR40 publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2007.10.031 – ident: 1379_CR102 – volume: 9 start-page: 204 issue: 2 year: 2000 ident: 1379_CR141 publication-title: J. Therm. Spray Technol. doi: 10.1361/105996300770349935 – volume: 22 start-page: 1374 issue: 6 year: 2013 ident: 1379_CR202 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-013-9965-0 – volume: 397 start-page: 40 year: 2001 ident: 1379_CR192 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01361-X – volume: 416 start-page: 127 year: 2021 ident: 1379_CR77 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127159 – volume-title: Thermal Spray Fundamentals From Powder to Part year: 2014 ident: 1379_CR1 doi: 10.1007/978-0-387-68991-3 – ident: 1379_CR113 doi: 10.31399/asm.cp.itsc1996p0749 – volume: 16 start-page: 798 issue: 5-6 year: 2007 ident: 1379_CR146 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-007-9097-5 – ident: 1379_CR152 – volume: 43 start-page: 471 year: 2000 ident: 1379_CR167 publication-title: Scripta Mater. doi: 10.1016/S1359-6462(00)00416-4 – volume: 13 start-page: 229 issue: 2 year: 2004 ident: 1379_CR68 publication-title: J. Therm. Spray Technol. doi: 10.1361/10599630418158 – volume: 54 start-page: 3343 issue: 12 year: 2006 ident: 1379_CR145 publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.03.024 – volume: 179 start-page: 1483 issue: 27 year: 2007 ident: 1379_CR41 publication-title: Solid State Ionics – volume: 6 start-page: 8310 year: 2015 ident: 1379_CR187 publication-title: Nat. Commun. doi: 10.1038/ncomms9310 – volume: 97 start-page: 201 year: 1982 ident: 1379_CR9 publication-title: Thin Solid Films doi: 10.1016/0040-6090(82)90453-9 – ident: 1379_CR128 – volume: 203 start-page: 1069 issue: 8 year: 2009 ident: 1379_CR137 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2008.09.037 – volume-title: The Science and Engineering of Thermal Spray Coatings year: 2008 ident: 1379_CR5 doi: 10.1002/9780470754085 – volume: 27 start-page: 1280 year: 2018 ident: 1379_CR118 publication-title: J. Therm Spray Technol. doi: 10.1007/s11666-018-0759-2 – volume: 57 start-page: 980 issue: 4 year: 2009 ident: 1379_CR136 publication-title: ACTA Mater. doi: 10.1016/j.actamat.2008.10.024 – volume: 37 start-page: 2359 issue: 11 year: 2002 ident: 1379_CR147 publication-title: J. Mater. Sci. doi: 10.1023/A:1015310509520 – ident: 1379_CR151 – volume: 25 start-page: 1376 issue: 8 year: 2016 ident: 1379_CR3 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0473-x – volume: 97 start-page: 2770 year: 2014 ident: 1379_CR203 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13033 – volume: 91 start-page: 3931 issue: 12 year: 2008 ident: 1379_CR134 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02775.x – volume: 4 start-page: 3887 year: 2002 ident: 1379_CR112 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b202553a – volume: 16 start-page: 259 year: 1987 ident: 1379_CR125 publication-title: Trans. Jpn. Weld. Res. Inst. – volume: 201 start-page: 7880 issue: 18 year: 2007 ident: 1379_CR143 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.03.028 – volume: 305 start-page: 35 year: 1997 ident: 1379_CR70 publication-title: Surf. Coat. Technol. – volume: 180-181 start-page: 454 year: 2004 ident: 1379_CR34 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2003.10.129 – volume: A415 start-page: 1 year: 2006 ident: 1379_CR29 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.08.226 – volume: 27 start-page: 25 issue: 1-2 year: 2018 ident: 1379_CR198 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-017-0633-7 – volume: 91 start-page: 2636 issue: 8 year: 2008 ident: 1379_CR138 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02476.x – volume: 1 start-page: 807 year: 1990 ident: 1379_CR74 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/1/8/023 – volume: 63 start-page: 125 year: 1961 ident: 1379_CR14 publication-title: Metall. – start-page: 501 volume-title: Thermal Spray, Current Status and Future Trends year: 1995 ident: 1379_CR163 – volume: 50 start-page: 213 issue: 3 year: 1992 ident: 1379_CR32 publication-title: Surface Coat. Technol. doi: 10.1016/0257-8972(92)90004-T – volume: 28 start-page: 33l year: 1996 ident: 1379_CR83 publication-title: Mater. Lett. doi: 10.1016/0167-577X(96)00071-7 – volume: 7 start-page: 1902209 year: 2020 ident: 1379_CR180 publication-title: Adv. Sci. doi: 10.1002/advs.201902209 – volume: A 3 start-page: 7535 year: 2015 ident: 1379_CR201 publication-title: J. Mater. Chem. doi: 10.1039/C5TA01203A – ident: 1379_CR107 doi: 10.31399/asm.cp.itsc2004p0157 – volume: 9 start-page: 505 year: 2000 ident: 1379_CR159 publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02608554 – volume: 16 start-page: 281 issue: 2 year: 2007 ident: 1379_CR162 publication-title: J. Thermal Spray Technol. doi: 10.1007/s11666-007-9032-9 – ident: 1379_CR75 – volume: 20 start-page: 317 year: 2002 ident: 1379_CR94 publication-title: Quarterly J. Japan Weld. Soc. doi: 10.2207/qjjws.20.317 |
SSID | ssj0005625 |
Score | 2.5375886 |
SecondaryResourceType | review_article |
Snippet | Thermal spraying is the most important coating technology for depositing advanced ceramic coatings which have been widely applied to different industrial... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 780 |
SubjectTerms | Analytical Chemistry Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Machines Manufacturing Materials Science Processes Review Surfaces and Interfaces Thin Films Tribology |
Title | The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review |
URI | https://link.springer.com/article/10.1007/s11666-022-01379-z |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDBZbe9kOY0_WPYoPu22GJK6TeLe0NCsr9LIVulNIbOdU2tLHpb9-Uh7rCqOwU0ii-CDJkYz0fQJ4CjDoiqyTceK24Z1AWK487fLcGOVIipFZ0SA78gfjzvtETipQ2Krudq9LksWfegd2owoXp-5zoslTfHsMTYlnd_LrsRftGjv8YtQqJQ4c3cupoDJ_r7EfjvZroUWIic_hrMoNWVQa8wKO7OwSTn8xBl7BEM3KaBQw3rG4Bh6yEmzI8CU-mbKPxTIl-BKb56xnlzRynvXmKXU4r15ZxMqCwDWM4_5nb8CreQhce8pd81Bm0ujUiND6obHaOtrVmB5og6cco1KFuwkTCEdqEVgqgPpS-S7KZoLGpAfiBhqz-czeApOhsNameSAkMa4LlQuT4pKYjyntB0EL3Fotia7IwmlmxTTZ0RyTKhNUZVKoMtm24Pnnm0VJlXFQ-qXWdlJtm9UB8bv_id_DiVdYmVpsHqCxXm7sI2YP66wNzSjudkd0ffsa9tuF83wDFT-8Og |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED61MLQd-q5Knx66tUYJjpO4G0JQWihLQaJTlNjOUgQIwsKv7zmPUqoKiTHJ2bLO59xZ9913AA8eOl0WORE13DbU8ZimoiZtGislLG58ZJQCZHtue-C8DfkwLwqbF2j3IiWZ_qlXxW4mw0UN-tzQ5Am63IWyg3dwXoJy_eWz01xBO9y02aoJHSgamJUXy_w_y7pDWs-Gpk6mdQSDYnkZtuSrukiiqlz-YW7cdv3HcJhHnaSemckJ7OjxKRz84iI8gw4aDDFNhvGJtIqSRpKVMRL8iG9G5GM6C01hFJnEpKFnppk9aUxCg52eP5M6yVIN5zBoNfuNNs07LVBZE3ZCfR5xJUPFfO36SkttSVti4CEV3p-UCAWeUwxNLC6Zp01q1eXCtVE2YqYBu8cuoDSejPUlEO4zrXUYe4wbLncmYqZCnBIjPSFdz6uAXag7kDkNuemGMQpWBMpGUQEqKkgVFSwr8PgzZpqRcGyUfio2IMgP5HyD-NV24vew1-6_d4Pua69zDfu1dD8NkOcGSslsoW8xRkmiu9wkvwHYvtlb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ97sGbLm2y3STrrVRDtVIELfQWkt3NqaSljZf-emfysC2I4DHJZA8zu5kJ833fANz5mHRF0kk4advwji8sV652eGqMakvKkUkBkB16_VHndSzHayz-Au1etyRLTgOpNGV5a2bS1or4Rt0uTkh0ksxTfLkNO_g5dgjUNXK7K5CHV4xdpSKC41ZrV7SZ39fYTE2bfdEi3YSHcFDViaxbBvYItmx2DPtr6oEnMMAQMxoLjFcsrEmIrCQeMnyIdybsYzaPicrEpinr2TmNn2e9aUxo58Uj67KyOXAKo_D5s9fn1WwErl3l5DyQiTQ6NiKwXmCstm3taCwVtME_HqNihScLi4m21MK31Az1pPIctE0EjUz3xRk0smlmz4HJQFhr49QXktTXhUqFiXFJrM2U9ny_CU7tlkhXwuE0v2ISrSSPyZURujIqXBktm3D_886slM340_qh9nZUHaHFH-YX_zO_hd33pzB6exkOLmHPLQJOyJsraOTzL3uNRUWe3BT75huahsBZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bonding+Formation+during+Thermal+Spraying+of+Ceramic+Coatings%3A+A+Review&rft.jtitle=Journal+of+thermal+spray+technology&rft.au=Li%2C+Chang-Jiu&rft.au=Luo%2C+Xiao-Tao&rft.au=Yao%2C+Shu-Wei&rft.au=Li%2C+Guang-Rong&rft.date=2022-04-01&rft.issn=1059-9630&rft.eissn=1544-1016&rft.volume=31&rft.issue=4&rft.spage=780&rft.epage=817&rft_id=info:doi/10.1007%2Fs11666-022-01379-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11666_022_01379_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9630&client=summon |