Probabilistic Prediction of Regional Wind Power Based on Spatiotemporal Quantile Regression

Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industry applications Vol. 56; no. 6; pp. 6117 - 6127
Main Authors Yu, Yixiao, Han, Xueshan, Yang, Ming, Yang, Jiajun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0093-9994
1939-9367
DOI10.1109/TIA.2020.2992945

Cover

Abstract Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and nonlinearity. So that addressing the massive data and extracting the representative features became the crucial issues to construct an effective regional wind power prediction model. This article proposes a spatiotemporal quantile regression (QR) algorithm to perform the short-term nonparametric probabilistic prediction of regional wind power, incorporating the advantages of the hybrid neural network (HNN) and QR. In the approach, the high-dimensional input data are reorganized into a feature graph that is ready for feature extraction by the HNN. Therefore, the advantages of HNN can be utilized to extract the representative features and construct nonlinear regression models. Meanwhile, by following the QR rules, the model obtains quantiles and perform probabilistic prediction. By properly addressing the explanatory variable selection issue, the approach provides a specific solution for regional wind power probabilistic prediction with the massive input data. The test results in a region with ten wind farms demonstrate the effectiveness of the proposed approach.
AbstractList Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and nonlinearity. So that addressing the massive data and extracting the representative features became the crucial issues to construct an effective regional wind power prediction model. This article proposes a spatiotemporal quantile regression (QR) algorithm to perform the short-term nonparametric probabilistic prediction of regional wind power, incorporating the advantages of the hybrid neural network (HNN) and QR. In the approach, the high-dimensional input data are reorganized into a feature graph that is ready for feature extraction by the HNN. Therefore, the advantages of HNN can be utilized to extract the representative features and construct nonlinear regression models. Meanwhile, by following the QR rules, the model obtains quantiles and perform probabilistic prediction. By properly addressing the explanatory variable selection issue, the approach provides a specific solution for regional wind power probabilistic prediction with the massive input data. The test results in a region with ten wind farms demonstrate the effectiveness of the proposed approach.
Author Yang, Ming
Yu, Yixiao
Yang, Jiajun
Han, Xueshan
Author_xml – sequence: 1
  givenname: Yixiao
  surname: Yu
  fullname: Yu, Yixiao
  email: 201734290@mail.sdu.edu.cn
  organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China
– sequence: 2
  givenname: Xueshan
  orcidid: 0000-0002-5869-0898
  surname: Han
  fullname: Han, Xueshan
  email: xshan@sdu.edu.cn
  organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-0020-8683
  surname: Yang
  fullname: Yang, Ming
  email: myang@sdu.edu.cn
  organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China
– sequence: 4
  givenname: Jiajun
  surname: Yang
  fullname: Yang, Jiajun
  email: yangjj201714179@163.com
  organization: State Grid Shaanxi Electric Power Company Economic Research Institute, Xi'an, China
BookMark eNp9kE1Lw0AQhhdRsK3eBS8Bz6mzX0n2WIsfhYJVKx48hM1mIlvSbN1NEf-9W1o8ePA0A_M8w8w7JMed65CQCwpjSkFdL2eTMQMGY6YUU0IekQFVXKWKZ_kxGQAoniqlxCkZhrACoEJSMSDvC-8qXdnWht6aZOGxtqa3rktckzzjR-x0m7zZrk4W7gt9cqMD1kmcv2x05Hpcb5yPyNNWd71tcSd5DCGKZ-Sk0W3A80Mdkde72-X0IZ0_3s-mk3lqmKJ9WogGAJksWEG1kZSD5AKaqjIMRS0zlnFJNa8xNxooqrwRHI0BKVFUeVbxEbna791497nF0Jcrt_Xx7lAyIXOVcw48UtmeMt6F4LEpje13L3S917YtKZS7IMsYZLkLsjwEGUX4I268XWv__Z9yuVcsIv7iCoqCqYL_AHgRgDA
CODEN ITIACR
CitedBy_id crossref_primary_10_1016_j_ijepes_2021_107502
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1109_TIA_2021_3127145
crossref_primary_10_3389_fenrg_2022_1043867
crossref_primary_10_1109_TSTE_2024_3435936
crossref_primary_10_3390_en18030652
crossref_primary_10_1007_s11804_025_00683_8
crossref_primary_10_1002_ese3_1652
crossref_primary_10_1016_j_rser_2022_112700
crossref_primary_10_1002_we_2909
crossref_primary_10_3390_en14165083
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_1016_j_energy_2022_126420
crossref_primary_10_1007_s12145_023_01044_1
crossref_primary_10_1016_j_enconman_2022_115540
crossref_primary_10_1109_ACCESS_2024_3435051
crossref_primary_10_1109_ACCESS_2022_3171610
crossref_primary_10_3390_ijgi11100509
crossref_primary_10_1049_rpg2_12330
crossref_primary_10_1016_j_apenergy_2024_122900
crossref_primary_10_1109_TSTE_2023_3327497
crossref_primary_10_1016_j_iswa_2023_200248
crossref_primary_10_1109_ACCESS_2023_3302701
crossref_primary_10_1109_TII_2021_3097716
crossref_primary_10_1016_j_ijepes_2020_106464
crossref_primary_10_1016_j_energy_2023_129496
crossref_primary_10_1016_j_apenergy_2022_120601
crossref_primary_10_1109_TIA_2020_3028558
crossref_primary_10_1109_TIA_2023_3284776
crossref_primary_10_1016_j_seta_2024_103968
crossref_primary_10_1109_OJSP_2023_3344395
crossref_primary_10_1016_j_apenergy_2025_125580
crossref_primary_10_1016_j_rineng_2024_103626
crossref_primary_10_1016_j_knosys_2023_111061
crossref_primary_10_3390_en15217831
crossref_primary_10_1007_s11831_024_10182_8
crossref_primary_10_3390_en15239202
crossref_primary_10_1007_s10462_024_10728_z
crossref_primary_10_1016_j_egyr_2022_06_025
crossref_primary_10_1049_enc2_12094
crossref_primary_10_1016_j_egyai_2024_100336
crossref_primary_10_1109_TIA_2022_3146224
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_1109_TASC_2021_3091116
crossref_primary_10_1007_s10489_023_04599_0
crossref_primary_10_1016_j_energy_2024_131966
crossref_primary_10_1061_JENMDT_EMENG_6992
crossref_primary_10_1109_TNSE_2024_3420771
crossref_primary_10_1109_TSTE_2021_3086851
crossref_primary_10_1109_TPWRS_2023_3294839
crossref_primary_10_1109_TIA_2023_3296065
crossref_primary_10_1049_gtd2_13142
crossref_primary_10_1016_j_seta_2023_103246
crossref_primary_10_3390_su151410757
crossref_primary_10_1016_j_renene_2022_08_142
crossref_primary_10_1016_j_ijepes_2022_108385
crossref_primary_10_1007_s43236_021_00302_z
crossref_primary_10_1016_j_apenergy_2024_122719
crossref_primary_10_1016_j_energy_2022_125208
crossref_primary_10_1109_TIA_2021_3086077
crossref_primary_10_1109_TIA_2021_3106887
crossref_primary_10_1109_TSTE_2022_3148718
Cites_doi 10.1109/TSTE.2019.2912270
10.1109/IAS.2019.8911916
10.1109/TPWRS.2014.2299801
10.1109/KSE.2017.8119429
10.1109/TIA.2013.2265292
10.1016/j.apenergy.2012.04.001
10.1109/TIA.2019.2934706
10.1016/j.cageo.2010.07.005
10.1109/TSG.2015.2424078
10.1109/TPWRS.2013.2287871
10.1080/01621459.2011.643745
10.1109/TNNLS.2013.2276053
10.1109/TSTE.2015.2472963
10.1016/j.rser.2008.02.002
10.1016/j.renene.2008.09.006
10.1002/we.401
10.18653/v1/P16-2037
10.1109/TPWRS.2016.2625101
10.3390/s18072220
10.1109/TSG.2017.2686012
10.1109/TNNLS.2016.2582924
10.1080/01621459.1998.10474104
10.1142/S0218488598000094
10.1016/j.csda.2007.06.027
10.1109/TPWRS.2017.2690297
10.1109/TSTE.2018.2831238
10.1002/we.180
10.3115/v1/P14-1062
10.1109/TIA.2017.2782207
10.1109/TPWRS.2015.2393880
10.1257/jep.15.4.143
10.1016/j.enconman.2016.01.023
10.1016/j.renene.2016.12.071
10.1109/60.556376
10.1109/TSG.2013.2282300
10.1109/TSTE.2012.2200302
10.1016/j.renene.2009.12.011
10.1109/TPWRS.2008.922526
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIA.2020.2992945
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 6127
ExternalDocumentID 10_1109_TIA_2020_2992945
9088298
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB0904200
– fundername: Eponymous Complement S&T Program of State-Grid Corporation of China
  grantid: SGLNDKOOKJJS1800266
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-84f00e258281ac51305340fbbc2e4d5626351a3de7ca01e97f43ecc055e4b76b3
IEDL.DBID RIE
ISSN 0093-9994
IngestDate Mon Jun 30 10:21:50 EDT 2025
Tue Jul 01 01:05:48 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Wed Aug 27 02:29:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-84f00e258281ac51305340fbbc2e4d5626351a3de7ca01e97f43ecc055e4b76b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0020-8683
0000-0002-5869-0898
PQID 2457973303
PQPubID 85463
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIA_2020_2992945
ieee_primary_9088298
crossref_primary_10_1109_TIA_2020_2992945
proquest_journals_2457973303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
mikolov (ref39) 0
ref1
ref17
ref38
ref16
ref19
ref18
(ref2) 2017
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
bae (ref31) 2016
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
sundermeyer (ref41) 2012
ref40
References_xml – ident: ref13
  doi: 10.1109/TSTE.2019.2912270
– ident: ref33
  doi: 10.1109/IAS.2019.8911916
– ident: ref22
  doi: 10.1109/TPWRS.2014.2299801
– ident: ref29
  doi: 10.1109/KSE.2017.8119429
– ident: ref12
  doi: 10.1109/TIA.2013.2265292
– ident: ref6
  doi: 10.1016/j.apenergy.2012.04.001
– ident: ref10
  doi: 10.1109/TIA.2019.2934706
– ident: ref42
  doi: 10.1016/j.cageo.2010.07.005
– ident: ref16
  doi: 10.1109/TSG.2015.2424078
– ident: ref15
  doi: 10.1109/TPWRS.2013.2287871
– ident: ref18
  doi: 10.1080/01621459.2011.643745
– ident: ref14
  doi: 10.1109/TNNLS.2013.2276053
– start-page: 1
  year: 2012
  ident: ref41
  article-title: LSTM neural networks for language modeling
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– ident: ref11
  doi: 10.1109/TSTE.2015.2472963
– ident: ref4
  doi: 10.1016/j.rser.2008.02.002
– ident: ref5
  doi: 10.1016/j.renene.2008.09.006
– ident: ref35
  doi: 10.1002/we.401
– ident: ref30
  doi: 10.18653/v1/P16-2037
– ident: ref25
  doi: 10.1109/TPWRS.2016.2625101
– ident: ref32
  doi: 10.3390/s18072220
– start-page: 1
  year: 2016
  ident: ref31
  article-title: Acoustic scene classification using parallel combination of LSTM and CNN
  publication-title: Proc of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop
– ident: ref28
  doi: 10.1109/TSG.2017.2686012
– ident: ref38
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref26
  doi: 10.1080/01621459.1998.10474104
– ident: ref40
  doi: 10.1142/S0218488598000094
– ident: ref24
  doi: 10.1016/j.csda.2007.06.027
– ident: ref27
  doi: 10.1109/TPWRS.2017.2690297
– ident: ref9
  doi: 10.1109/TSTE.2018.2831238
– ident: ref23
  doi: 10.1002/we.180
– start-page: 1045
  year: 0
  ident: ref39
  article-title: Recurrent neural network-based language model
  publication-title: Proc Conf Int Speech Commun Assoc
– ident: ref37
  doi: 10.3115/v1/P14-1062
– ident: ref1
  doi: 10.1109/TIA.2017.2782207
– ident: ref20
  doi: 10.1109/TPWRS.2015.2393880
– ident: ref36
  doi: 10.1257/jep.15.4.143
– ident: ref21
  doi: 10.1016/j.enconman.2016.01.023
– ident: ref8
  doi: 10.1016/j.renene.2016.12.071
– ident: ref7
  doi: 10.1109/60.556376
– year: 2017
  ident: ref2
  article-title: Global wind report 2016-Annual market update
– ident: ref34
  doi: 10.1109/TSG.2013.2282300
– ident: ref19
  doi: 10.1109/TSTE.2012.2200302
– ident: ref3
  doi: 10.1016/j.renene.2009.12.011
– ident: ref17
  doi: 10.1109/TPWRS.2008.922526
SSID ssj0014514
Score 2.5756001
Snippet Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6117
SubjectTerms Convolutional neural network (CNN)
Correlation
Feature extraction
hybrid neural network (HNN)
long short-term memory (LSTM) network
Neural networks
Nonlinearity
Power systems
Prediction models
Predictive models
Probabilistic logic
probabilistic prediction
QR algorithms
Quantiles
regional wind power prediction
Regression models
spatiotemporal quantile regression (SQR)
Statistical analysis
Wind farms
Wind power
Wind power generation
Title Probabilistic Prediction of Regional Wind Power Based on Spatiotemporal Quantile Regression
URI https://ieeexplore.ieee.org/document/9088298
https://www.proquest.com/docview/2457973303
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDl4Et81mk25zVFFUUOoLBQ_L5uXB0kptL_56Z7LbIiribWGTEPIlmZnMzDcA-6Z0RuaOJx2pRCJDXiZGc56UNtg0bevgItJX1-3zB3n5pJ5m4HCaC-O9j8Fnvkmf0ZfvBnZMT2UtiskRujMLs7jNqlytqcdA1jzeaKEnqPTIiUuS69b9xREagoI38eoVmhKXvoigWFPlx0UcpcvZElxN5lUFlbw2xyPTtB_fKBv_O_FlWKzVTHZU7YsVmPH9VVj4Qj64Bs_dIZ5lio0lqmbWHZLLhmBig8Bu_Ut8I2SPaLOzLpVSY8co8BzD_3cxCrsmteqxmzGig5cLdaqiavvr8HB2en9yntSlFhIrdDpCpALnXpAPLS2tQsGmMsmDMVZ46VSkrEnLzPncljz1Og8yQ_C5Ul6avG2yDZjrD_p-ExgR0IW0bOvUZajtWG3yTknpsEJz5YJrQGuy-oWtecipHEaviPYI1wXiVRBeRY1XAw6mPd4qDo4_2q7R8k_b1SvfgJ0JwEV9SN8LIVWu8wyF-NbvvbZhnsauUg93YG40HPtd1EFGZi9uvk_1adfg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQcgJZWhKcPXCqxiddrZ-MjIFCgBIU2qEg9rNavHogSFJILv54Z7yZCpULcVlpbtvzZnhnPzDcAh6Z0RuaOJx2pRCJDXiZGc56UNtg0bevgItK963b3Vl7eqbslOFrkwnjvY_CZb9Jn9OW7sZ3RU1mLYnKE7nyAFZT7UlXZWgufgayZvNFGT1DtkXOnJNetwcUxmoKCN_HyFZpSl14IoVhV5dVVHOXL-Tr05jOrwkrum7Opadqnf0gb3zv1DVirFU12XO2Mz7DkR19g9QX94Cb86U_wNFN0LJE1s_6EnDYEFBsH9tP_ja-E7Dda7axPxdTYCYo8x_D_rxiHXdNaDdnNDPHB64U6VXG1o69we342OO0mdbGFxAqdThGrwLkX5EVLS6tQtKlM8mCMFV46FUlr0jJzPrclT73Og8wQfq6UlyZvm-wbLI_GI78FjCjoQlq2deoy1HesNnmnpIRYoblywTWgNV_9wtZM5FQQY1hEi4TrAvEqCK-ixqsB3xc9HioWjjfabtLyL9rVK9-A3TnARX1MHwshVa7zDMX49v97HcDH7qB3VVxdXP_YgU80TpWIuAvL08nM76FGMjX7cSM-A22v2y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Prediction+of+Regional+Wind+Power+Based+on+Spatiotemporal+Quantile+Regression&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Yu%2C+Yixiao&rft.au=Han%2C+Xueshan&rft.au=Yang%2C+Ming&rft.au=Yang%2C+Jiajun&rft.date=2020-11-01&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=56&rft.issue=6&rft.spage=6117&rft.epage=6127&rft_id=info:doi/10.1109%2FTIA.2020.2992945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIA_2020_2992945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon