Probabilistic Prediction of Regional Wind Power Based on Spatiotemporal Quantile Regression
Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and...
Saved in:
Published in | IEEE transactions on industry applications Vol. 56; no. 6; pp. 6117 - 6127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0093-9994 1939-9367 |
DOI | 10.1109/TIA.2020.2992945 |
Cover
Abstract | Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and nonlinearity. So that addressing the massive data and extracting the representative features became the crucial issues to construct an effective regional wind power prediction model. This article proposes a spatiotemporal quantile regression (QR) algorithm to perform the short-term nonparametric probabilistic prediction of regional wind power, incorporating the advantages of the hybrid neural network (HNN) and QR. In the approach, the high-dimensional input data are reorganized into a feature graph that is ready for feature extraction by the HNN. Therefore, the advantages of HNN can be utilized to extract the representative features and construct nonlinear regression models. Meanwhile, by following the QR rules, the model obtains quantiles and perform probabilistic prediction. By properly addressing the explanatory variable selection issue, the approach provides a specific solution for regional wind power probabilistic prediction with the massive input data. The test results in a region with ten wind farms demonstrate the effectiveness of the proposed approach. |
---|---|
AbstractList | Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the specific region. The regional wind power prediction involves more data that implicate abundant information on spatiotemporal correlations and nonlinearity. So that addressing the massive data and extracting the representative features became the crucial issues to construct an effective regional wind power prediction model. This article proposes a spatiotemporal quantile regression (QR) algorithm to perform the short-term nonparametric probabilistic prediction of regional wind power, incorporating the advantages of the hybrid neural network (HNN) and QR. In the approach, the high-dimensional input data are reorganized into a feature graph that is ready for feature extraction by the HNN. Therefore, the advantages of HNN can be utilized to extract the representative features and construct nonlinear regression models. Meanwhile, by following the QR rules, the model obtains quantiles and perform probabilistic prediction. By properly addressing the explanatory variable selection issue, the approach provides a specific solution for regional wind power probabilistic prediction with the massive input data. The test results in a region with ten wind farms demonstrate the effectiveness of the proposed approach. |
Author | Yang, Ming Yu, Yixiao Yang, Jiajun Han, Xueshan |
Author_xml | – sequence: 1 givenname: Yixiao surname: Yu fullname: Yu, Yixiao email: 201734290@mail.sdu.edu.cn organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China – sequence: 2 givenname: Xueshan orcidid: 0000-0002-5869-0898 surname: Han fullname: Han, Xueshan email: xshan@sdu.edu.cn organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China – sequence: 3 givenname: Ming orcidid: 0000-0002-0020-8683 surname: Yang fullname: Yang, Ming email: myang@sdu.edu.cn organization: Key Laboratory of Power System Intelligent Dispatch and Control, Shandong University, Jinan, China – sequence: 4 givenname: Jiajun surname: Yang fullname: Yang, Jiajun email: yangjj201714179@163.com organization: State Grid Shaanxi Electric Power Company Economic Research Institute, Xi'an, China |
BookMark | eNp9kE1Lw0AQhhdRsK3eBS8Bz6mzX0n2WIsfhYJVKx48hM1mIlvSbN1NEf-9W1o8ePA0A_M8w8w7JMed65CQCwpjSkFdL2eTMQMGY6YUU0IekQFVXKWKZ_kxGQAoniqlxCkZhrACoEJSMSDvC-8qXdnWht6aZOGxtqa3rktckzzjR-x0m7zZrk4W7gt9cqMD1kmcv2x05Hpcb5yPyNNWd71tcSd5DCGKZ-Sk0W3A80Mdkde72-X0IZ0_3s-mk3lqmKJ9WogGAJksWEG1kZSD5AKaqjIMRS0zlnFJNa8xNxooqrwRHI0BKVFUeVbxEbna791497nF0Jcrt_Xx7lAyIXOVcw48UtmeMt6F4LEpje13L3S917YtKZS7IMsYZLkLsjwEGUX4I268XWv__Z9yuVcsIv7iCoqCqYL_AHgRgDA |
CODEN | ITIACR |
CitedBy_id | crossref_primary_10_1016_j_ijepes_2021_107502 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1109_TIA_2021_3127145 crossref_primary_10_3389_fenrg_2022_1043867 crossref_primary_10_1109_TSTE_2024_3435936 crossref_primary_10_3390_en18030652 crossref_primary_10_1007_s11804_025_00683_8 crossref_primary_10_1002_ese3_1652 crossref_primary_10_1016_j_rser_2022_112700 crossref_primary_10_1002_we_2909 crossref_primary_10_3390_en14165083 crossref_primary_10_1016_j_apm_2021_07_024 crossref_primary_10_1016_j_energy_2022_126420 crossref_primary_10_1007_s12145_023_01044_1 crossref_primary_10_1016_j_enconman_2022_115540 crossref_primary_10_1109_ACCESS_2024_3435051 crossref_primary_10_1109_ACCESS_2022_3171610 crossref_primary_10_3390_ijgi11100509 crossref_primary_10_1049_rpg2_12330 crossref_primary_10_1016_j_apenergy_2024_122900 crossref_primary_10_1109_TSTE_2023_3327497 crossref_primary_10_1016_j_iswa_2023_200248 crossref_primary_10_1109_ACCESS_2023_3302701 crossref_primary_10_1109_TII_2021_3097716 crossref_primary_10_1016_j_ijepes_2020_106464 crossref_primary_10_1016_j_energy_2023_129496 crossref_primary_10_1016_j_apenergy_2022_120601 crossref_primary_10_1109_TIA_2020_3028558 crossref_primary_10_1109_TIA_2023_3284776 crossref_primary_10_1016_j_seta_2024_103968 crossref_primary_10_1109_OJSP_2023_3344395 crossref_primary_10_1016_j_apenergy_2025_125580 crossref_primary_10_1016_j_rineng_2024_103626 crossref_primary_10_1016_j_knosys_2023_111061 crossref_primary_10_3390_en15217831 crossref_primary_10_1007_s11831_024_10182_8 crossref_primary_10_3390_en15239202 crossref_primary_10_1007_s10462_024_10728_z crossref_primary_10_1016_j_egyr_2022_06_025 crossref_primary_10_1049_enc2_12094 crossref_primary_10_1016_j_egyai_2024_100336 crossref_primary_10_1109_TIA_2022_3146224 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_1109_TASC_2021_3091116 crossref_primary_10_1007_s10489_023_04599_0 crossref_primary_10_1016_j_energy_2024_131966 crossref_primary_10_1061_JENMDT_EMENG_6992 crossref_primary_10_1109_TNSE_2024_3420771 crossref_primary_10_1109_TSTE_2021_3086851 crossref_primary_10_1109_TPWRS_2023_3294839 crossref_primary_10_1109_TIA_2023_3296065 crossref_primary_10_1049_gtd2_13142 crossref_primary_10_1016_j_seta_2023_103246 crossref_primary_10_3390_su151410757 crossref_primary_10_1016_j_renene_2022_08_142 crossref_primary_10_1016_j_ijepes_2022_108385 crossref_primary_10_1007_s43236_021_00302_z crossref_primary_10_1016_j_apenergy_2024_122719 crossref_primary_10_1016_j_energy_2022_125208 crossref_primary_10_1109_TIA_2021_3086077 crossref_primary_10_1109_TIA_2021_3106887 crossref_primary_10_1109_TSTE_2022_3148718 |
Cites_doi | 10.1109/TSTE.2019.2912270 10.1109/IAS.2019.8911916 10.1109/TPWRS.2014.2299801 10.1109/KSE.2017.8119429 10.1109/TIA.2013.2265292 10.1016/j.apenergy.2012.04.001 10.1109/TIA.2019.2934706 10.1016/j.cageo.2010.07.005 10.1109/TSG.2015.2424078 10.1109/TPWRS.2013.2287871 10.1080/01621459.2011.643745 10.1109/TNNLS.2013.2276053 10.1109/TSTE.2015.2472963 10.1016/j.rser.2008.02.002 10.1016/j.renene.2008.09.006 10.1002/we.401 10.18653/v1/P16-2037 10.1109/TPWRS.2016.2625101 10.3390/s18072220 10.1109/TSG.2017.2686012 10.1109/TNNLS.2016.2582924 10.1080/01621459.1998.10474104 10.1142/S0218488598000094 10.1016/j.csda.2007.06.027 10.1109/TPWRS.2017.2690297 10.1109/TSTE.2018.2831238 10.1002/we.180 10.3115/v1/P14-1062 10.1109/TIA.2017.2782207 10.1109/TPWRS.2015.2393880 10.1257/jep.15.4.143 10.1016/j.enconman.2016.01.023 10.1016/j.renene.2016.12.071 10.1109/60.556376 10.1109/TSG.2013.2282300 10.1109/TSTE.2012.2200302 10.1016/j.renene.2009.12.011 10.1109/TPWRS.2008.922526 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIA.2020.2992945 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9367 |
EndPage | 6127 |
ExternalDocumentID | 10_1109_TIA_2020_2992945 9088298 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFB0904200 – fundername: Eponymous Complement S&T Program of State-Grid Corporation of China grantid: SGLNDKOOKJJS1800266 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-84f00e258281ac51305340fbbc2e4d5626351a3de7ca01e97f43ecc055e4b76b3 |
IEDL.DBID | RIE |
ISSN | 0093-9994 |
IngestDate | Mon Jun 30 10:21:50 EDT 2025 Tue Jul 01 01:05:48 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Wed Aug 27 02:29:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-84f00e258281ac51305340fbbc2e4d5626351a3de7ca01e97f43ecc055e4b76b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0020-8683 0000-0002-5869-0898 |
PQID | 2457973303 |
PQPubID | 85463 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TIA_2020_2992945 ieee_primary_9088298 crossref_primary_10_1109_TIA_2020_2992945 proquest_journals_2457973303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industry applications |
PublicationTitleAbbrev | TIA |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 mikolov (ref39) 0 ref1 ref17 ref38 ref16 ref19 ref18 (ref2) 2017 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 bae (ref31) 2016 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 sundermeyer (ref41) 2012 ref40 |
References_xml | – ident: ref13 doi: 10.1109/TSTE.2019.2912270 – ident: ref33 doi: 10.1109/IAS.2019.8911916 – ident: ref22 doi: 10.1109/TPWRS.2014.2299801 – ident: ref29 doi: 10.1109/KSE.2017.8119429 – ident: ref12 doi: 10.1109/TIA.2013.2265292 – ident: ref6 doi: 10.1016/j.apenergy.2012.04.001 – ident: ref10 doi: 10.1109/TIA.2019.2934706 – ident: ref42 doi: 10.1016/j.cageo.2010.07.005 – ident: ref16 doi: 10.1109/TSG.2015.2424078 – ident: ref15 doi: 10.1109/TPWRS.2013.2287871 – ident: ref18 doi: 10.1080/01621459.2011.643745 – ident: ref14 doi: 10.1109/TNNLS.2013.2276053 – start-page: 1 year: 2012 ident: ref41 article-title: LSTM neural networks for language modeling publication-title: Proc Annu Conf Int Speech Commun Assoc – ident: ref11 doi: 10.1109/TSTE.2015.2472963 – ident: ref4 doi: 10.1016/j.rser.2008.02.002 – ident: ref5 doi: 10.1016/j.renene.2008.09.006 – ident: ref35 doi: 10.1002/we.401 – ident: ref30 doi: 10.18653/v1/P16-2037 – ident: ref25 doi: 10.1109/TPWRS.2016.2625101 – ident: ref32 doi: 10.3390/s18072220 – start-page: 1 year: 2016 ident: ref31 article-title: Acoustic scene classification using parallel combination of LSTM and CNN publication-title: Proc of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop – ident: ref28 doi: 10.1109/TSG.2017.2686012 – ident: ref38 doi: 10.1109/TNNLS.2016.2582924 – ident: ref26 doi: 10.1080/01621459.1998.10474104 – ident: ref40 doi: 10.1142/S0218488598000094 – ident: ref24 doi: 10.1016/j.csda.2007.06.027 – ident: ref27 doi: 10.1109/TPWRS.2017.2690297 – ident: ref9 doi: 10.1109/TSTE.2018.2831238 – ident: ref23 doi: 10.1002/we.180 – start-page: 1045 year: 0 ident: ref39 article-title: Recurrent neural network-based language model publication-title: Proc Conf Int Speech Commun Assoc – ident: ref37 doi: 10.3115/v1/P14-1062 – ident: ref1 doi: 10.1109/TIA.2017.2782207 – ident: ref20 doi: 10.1109/TPWRS.2015.2393880 – ident: ref36 doi: 10.1257/jep.15.4.143 – ident: ref21 doi: 10.1016/j.enconman.2016.01.023 – ident: ref8 doi: 10.1016/j.renene.2016.12.071 – ident: ref7 doi: 10.1109/60.556376 – year: 2017 ident: ref2 article-title: Global wind report 2016-Annual market update – ident: ref34 doi: 10.1109/TSG.2013.2282300 – ident: ref19 doi: 10.1109/TSTE.2012.2200302 – ident: ref3 doi: 10.1016/j.renene.2009.12.011 – ident: ref17 doi: 10.1109/TPWRS.2008.922526 |
SSID | ssj0014514 |
Score | 2.5756001 |
Snippet | Different from power prediction for a single wind farm, the regional wind power prediction is to predict the total power of multiple wind farms located in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6117 |
SubjectTerms | Convolutional neural network (CNN) Correlation Feature extraction hybrid neural network (HNN) long short-term memory (LSTM) network Neural networks Nonlinearity Power systems Prediction models Predictive models Probabilistic logic probabilistic prediction QR algorithms Quantiles regional wind power prediction Regression models spatiotemporal quantile regression (SQR) Statistical analysis Wind farms Wind power Wind power generation |
Title | Probabilistic Prediction of Regional Wind Power Based on Spatiotemporal Quantile Regression |
URI | https://ieeexplore.ieee.org/document/9088298 https://www.proquest.com/docview/2457973303 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDl4Et81mk25zVFFUUOoLBQ_L5uXB0kptL_56Z7LbIiribWGTEPIlmZnMzDcA-6Z0RuaOJx2pRCJDXiZGc56UNtg0bevgItJX1-3zB3n5pJ5m4HCaC-O9j8Fnvkmf0ZfvBnZMT2UtiskRujMLs7jNqlytqcdA1jzeaKEnqPTIiUuS69b9xREagoI38eoVmhKXvoigWFPlx0UcpcvZElxN5lUFlbw2xyPTtB_fKBv_O_FlWKzVTHZU7YsVmPH9VVj4Qj64Bs_dIZ5lio0lqmbWHZLLhmBig8Bu_Ut8I2SPaLOzLpVSY8co8BzD_3cxCrsmteqxmzGig5cLdaqiavvr8HB2en9yntSlFhIrdDpCpALnXpAPLS2tQsGmMsmDMVZ46VSkrEnLzPncljz1Og8yQ_C5Ul6avG2yDZjrD_p-ExgR0IW0bOvUZajtWG3yTknpsEJz5YJrQGuy-oWtecipHEaviPYI1wXiVRBeRY1XAw6mPd4qDo4_2q7R8k_b1SvfgJ0JwEV9SN8LIVWu8wyF-NbvvbZhnsauUg93YG40HPtd1EFGZi9uvk_1adfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQcgJZWhKcPXCqxiddrZ-MjIFCgBIU2qEg9rNavHogSFJILv54Z7yZCpULcVlpbtvzZnhnPzDcAh6Z0RuaOJx2pRCJDXiZGc56UNtg0bevgItK963b3Vl7eqbslOFrkwnjvY_CZb9Jn9OW7sZ3RU1mLYnKE7nyAFZT7UlXZWgufgayZvNFGT1DtkXOnJNetwcUxmoKCN_HyFZpSl14IoVhV5dVVHOXL-Tr05jOrwkrum7Opadqnf0gb3zv1DVirFU12XO2Mz7DkR19g9QX94Cb86U_wNFN0LJE1s_6EnDYEFBsH9tP_ja-E7Dda7axPxdTYCYo8x_D_rxiHXdNaDdnNDPHB64U6VXG1o69we342OO0mdbGFxAqdThGrwLkX5EVLS6tQtKlM8mCMFV46FUlr0jJzPrclT73Og8wQfq6UlyZvm-wbLI_GI78FjCjoQlq2deoy1HesNnmnpIRYoblywTWgNV_9wtZM5FQQY1hEi4TrAvEqCK-ixqsB3xc9HioWjjfabtLyL9rVK9-A3TnARX1MHwshVa7zDMX49v97HcDH7qB3VVxdXP_YgU80TpWIuAvL08nM76FGMjX7cSM-A22v2y0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Prediction+of+Regional+Wind+Power+Based+on+Spatiotemporal+Quantile+Regression&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Yu%2C+Yixiao&rft.au=Han%2C+Xueshan&rft.au=Yang%2C+Ming&rft.au=Yang%2C+Jiajun&rft.date=2020-11-01&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=56&rft.issue=6&rft.spage=6117&rft.epage=6127&rft_id=info:doi/10.1109%2FTIA.2020.2992945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIA_2020_2992945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |