Application of deep neural networks in predicting the penetration rate of tunnel boring machines

Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This...

Full description

Saved in:
Bibliographic Details
Published inBulletin of engineering geology and the environment Vol. 78; no. 8; pp. 6347 - 6360
Main Authors Koopialipoor, Mohammadreza, Tootoonchi, Hossein, Jahed Armaghani, Danial, Tonnizam Mohamad, Edy, Hedayat, Ahmadreza
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This study focuses on developing a model based on deep neural networks (DNNs), which is an advanced version of artificial neural networks (ANNs), for prediction of the TBM penetration rate based on the data obtained from the Pahang–Selangor raw water transfer tunnel in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database was developed and compared with the DNN model. Based on the results obtained of the coefficient of determination and root mean square error (RMSE), a significant increase in the performance prediction of the penetration rate is achieved by developing a DNN predictive model. The DNN model demonstrated better performance for penetration rate estimation compared with the ANN model and it can be introduced as a newly developed model in the field of TBM performance assessment.
AbstractList Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This study focuses on developing a model based on deep neural networks (DNNs), which is an advanced version of artificial neural networks (ANNs), for prediction of the TBM penetration rate based on the data obtained from the Pahang–Selangor raw water transfer tunnel in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database was developed and compared with the DNN model. Based on the results obtained of the coefficient of determination and root mean square error (RMSE), a significant increase in the performance prediction of the penetration rate is achieved by developing a DNN predictive model. The DNN model demonstrated better performance for penetration rate estimation compared with the ANN model and it can be introduced as a newly developed model in the field of TBM performance assessment.
Author Hedayat, Ahmadreza
Tootoonchi, Hossein
Jahed Armaghani, Danial
Koopialipoor, Mohammadreza
Tonnizam Mohamad, Edy
Author_xml – sequence: 1
  givenname: Mohammadreza
  surname: Koopialipoor
  fullname: Koopialipoor, Mohammadreza
  email: Mr.koopialipoor@aut.ac.ir
  organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology
– sequence: 2
  givenname: Hossein
  surname: Tootoonchi
  fullname: Tootoonchi, Hossein
  organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology
– sequence: 3
  givenname: Danial
  surname: Jahed Armaghani
  fullname: Jahed Armaghani, Danial
  email: danialarmaghani@gmail.com
  organization: Institute of Research and Development, Duy Tan University
– sequence: 4
  givenname: Edy
  surname: Tonnizam Mohamad
  fullname: Tonnizam Mohamad, Edy
  organization: Centre of Tropical Geoengineering (GEOTROPIK), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia
– sequence: 5
  givenname: Ahmadreza
  surname: Hedayat
  fullname: Hedayat, Ahmadreza
  organization: Department of Civil and Environmental Engineering, Colorado School of Mines
BookMark eNp9kMtOwzAQRS1UJErhB1j5BwJ-xHWyrCpeUiU2sDaOPaEuqWPZqRB_j9MgFiy6mLmWPGd0516ime89IHRDyS0lRN6l3JdlQWidS_CqkGdoTksuilpwOft7s_oCXaa0I3mqYnSO3lchdM7owfUe9y22AAF7OETdZRm--viZsPM4RLDODM5_4GELOED-jBOVBUZ0OHgPHW76OE7ttdk6D-kKnbe6S3D9qwv09nD_un4qNi-Pz-vVpjCspkNRMdnasqwsJ1xIUTeGs5Y1IDUxVoBmDTOWGW0Js0Cyy1q3kgNdVnIJVNR8gappr4l9ShFaZdxwNJh9uk5Rosak1JSUykmpY1JKZpT9Q0N0ex2_T0N8glIY74Wodv0h-nziKeoH93mAEw
CitedBy_id crossref_primary_10_1007_s00366_019_00808_y
crossref_primary_10_1007_s11053_020_09770_9
crossref_primary_10_3390_app9183715
crossref_primary_10_1088_1755_1315_861_7_072044
crossref_primary_10_3390_app11041922
crossref_primary_10_3390_eng4020087
crossref_primary_10_32604_cmes_2023_044467
crossref_primary_10_3390_su12062229
crossref_primary_10_1007_s10064_024_03854_z
crossref_primary_10_1007_s40996_022_00912_y
crossref_primary_10_1680_jsmic_20_00011
crossref_primary_10_3390_su15010199
crossref_primary_10_1007_s00366_019_00868_0
crossref_primary_10_1007_s42452_021_04903_y
crossref_primary_10_1007_s00366_020_01014_x
crossref_primary_10_3390_app11125671
crossref_primary_10_1007_s10706_023_02516_3
crossref_primary_10_3390_buildings12060772
crossref_primary_10_1016_j_tust_2025_106496
crossref_primary_10_1016_j_aei_2024_102924
crossref_primary_10_1016_j_undsp_2020_01_003
crossref_primary_10_1080_17499518_2024_2356543
crossref_primary_10_1007_s00170_022_09652_9
crossref_primary_10_1007_s11709_024_1126_7
crossref_primary_10_1016_j_asoc_2022_108997
crossref_primary_10_1061_IJGNAI_GMENG_7738
crossref_primary_10_1007_s00366_019_00875_1
crossref_primary_10_1007_s13369_019_04239_1
crossref_primary_10_1007_s12205_022_0961_0
crossref_primary_10_1016_j_tust_2021_104183
crossref_primary_10_3390_app13106050
crossref_primary_10_1016_j_autcon_2022_104310
crossref_primary_10_1007_s11053_019_09519_z
crossref_primary_10_1061_AJRUA6_RUENG_1451
crossref_primary_10_1007_s12517_020_05305_x
crossref_primary_10_1016_j_undsp_2020_05_008
crossref_primary_10_1007_s10064_020_01788_w
crossref_primary_10_1007_s00366_020_01136_2
crossref_primary_10_3390_buildings14041173
crossref_primary_10_1080_17480930_2021_1878087
crossref_primary_10_1061_JCEMD4_COENG_14788
crossref_primary_10_1016_j_eswa_2023_122469
crossref_primary_10_1016_j_undsp_2021_04_003
crossref_primary_10_1631_2023_A2200297
crossref_primary_10_1109_ACCESS_2021_3116201
crossref_primary_10_3390_su141912950
crossref_primary_10_1007_s00366_019_00816_y
crossref_primary_10_1080_17480930_2020_1734151
crossref_primary_10_1007_s11440_020_01091_8
crossref_primary_10_1016_j_trgeo_2021_100579
crossref_primary_10_1007_s00603_022_02868_x
crossref_primary_10_1007_s10706_022_02178_7
crossref_primary_10_1007_s12040_024_02376_2
crossref_primary_10_1016_j_autcon_2023_104982
crossref_primary_10_1007_s12517_022_09542_0
crossref_primary_10_3390_ma15103500
crossref_primary_10_1007_s10064_022_03047_6
crossref_primary_10_1016_j_eswa_2023_122118
crossref_primary_10_3390_app10041486
crossref_primary_10_3390_math11204237
crossref_primary_10_3389_fbuil_2024_1373092
crossref_primary_10_1109_ACCESS_2022_3221430
crossref_primary_10_3390_ma15134582
crossref_primary_10_1007_s11053_019_09605_2
crossref_primary_10_1016_j_engappai_2024_108985
crossref_primary_10_1016_j_engfailanal_2025_109463
crossref_primary_10_1016_j_isatra_2021_08_036
crossref_primary_10_1016_j_tust_2023_105372
crossref_primary_10_1016_j_autcon_2022_104532
crossref_primary_10_1016_j_eswa_2023_121118
crossref_primary_10_1016_j_asoc_2022_108686
crossref_primary_10_1007_s10064_023_03095_6
crossref_primary_10_1631_jzus_A2200297
crossref_primary_10_1016_j_iot_2023_100853
crossref_primary_10_1007_s00366_020_01225_2
crossref_primary_10_1007_s10064_021_02134_4
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1016_j_engappai_2020_104015
crossref_primary_10_1016_j_tust_2023_105249
crossref_primary_10_1007_s00366_021_01305_x
crossref_primary_10_32604_cmes_2023_029938
crossref_primary_10_1016_j_trgeo_2022_100819
crossref_primary_10_3233_JIFS_232989
crossref_primary_10_1016_j_jrmge_2021_06_015
crossref_primary_10_1016_j_trgeo_2024_101233
crossref_primary_10_1007_s10064_024_03670_5
crossref_primary_10_1016_j_aei_2020_101232
crossref_primary_10_1061__ASCE_GM_1943_5622_0002064
crossref_primary_10_1016_j_tust_2022_104448
crossref_primary_10_3390_app9245372
crossref_primary_10_1177_1687814021998831
crossref_primary_10_1007_s12665_023_10963_7
crossref_primary_10_1016_j_jrmge_2023_06_010
crossref_primary_10_1186_s40703_024_00228_y
crossref_primary_10_3390_ma13173902
crossref_primary_10_1007_s12205_022_0128_z
crossref_primary_10_1016_j_eng_2023_01_011
crossref_primary_10_1007_s00366_020_00997_x
crossref_primary_10_1016_j_measurement_2019_07_054
crossref_primary_10_3389_feart_2024_1518844
crossref_primary_10_1007_s10064_021_02527_5
crossref_primary_10_1038_s41598_024_59753_6
crossref_primary_10_1038_s41598_020_76569_2
crossref_primary_10_1016_j_aei_2023_102130
crossref_primary_10_3390_app12052410
crossref_primary_10_1007_s10064_020_01834_7
crossref_primary_10_2478_mspe_2023_0017
crossref_primary_10_1007_s00500_024_09840_7
crossref_primary_10_3389_feart_2025_1542291
crossref_primary_10_3390_app10051761
crossref_primary_10_3390_app12115485
crossref_primary_10_1016_j_engappai_2024_108997
crossref_primary_10_1016_j_tust_2022_104794
crossref_primary_10_32604_cmes_2022_017792
crossref_primary_10_1038_s41598_024_65351_3
crossref_primary_10_3390_buildings14030820
crossref_primary_10_1016_j_autcon_2021_103647
crossref_primary_10_1007_s00366_019_00855_5
crossref_primary_10_1007_s00500_023_08233_6
crossref_primary_10_1007_s00366_019_00908_9
crossref_primary_10_1007_s13369_019_04134_9
crossref_primary_10_1007_s11053_020_09697_1
crossref_primary_10_1016_j_undsp_2022_11_002
crossref_primary_10_1108_MLAG_06_2024_0004
Cites_doi 10.1016/j.tust.2007.04.011
10.1016/j.tust.2016.04.002
10.1016/S1365-1609(02)00069-2
10.1016/j.neucom.2003.08.006
10.1016/S0886-7798(00)00055-9
10.1016/S0079-6123(06)65004-8
10.1007/s00366-018-0596-4
10.1007/s00500-018-3253-3
10.1016/j.ijrmms.2014.12.007
10.1016/0148-9062(75)90547-1
10.1504/IJMME.2013.053172
10.1007/s00366-018-0625-3
10.1007/s10064-013-0497-0
10.1016/j.engappai.2009.03.007
10.1007/s00366-017-0526-x
10.1007/s10706-018-0459-1
10.1016/j.tust.2012.02.012
10.1109/TPAMI.2012.269
10.1007/s10064-017-1116-2
10.1007/s12559-016-9404-x
10.1016/j.ijrmms.2008.03.003
10.1162/neco.2006.18.7.1527
10.1016/0148-9062(85)93229-2
10.1007/s10064-014-0687-4
10.1016/j.tust.2016.05.009
10.1016/j.ijrmms.2011.02.013
10.1016/j.enggeo.2007.10.009
10.1016/S0148-9062(99)00007-8
10.1007/BF02832128
10.1016/j.tust.2004.02.128
10.1109/MSP.2012.2205597
10.1126/science.1127647
10.1016/j.ijrmms.2014.09.012
10.1016/j.tust.2016.12.009
10.1002/9783433600122
10.1109/IJCNN.1991.155275
10.1007/s10064-018-1349-8
10.1007/978-3-642-40849-6_40
10.1007/978-3-642-23783-6_41
10.1007/s00366-018-0658-7
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
DBID AAYXX
CITATION
DOI 10.1007/s10064-019-01538-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1435-9537
EndPage 6360
ExternalDocumentID 10_1007_s10064_019_01538_7
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
7XC
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK5
LLZTM
M4Y
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PT4
PT5
PTHSS
PYCSY
QOK
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-827fd448d3035759bc32f2be7a0cd5ea2b2cd2cad02de0dee9af73e16876e1593
IEDL.DBID U2A
ISSN 1435-9529
IngestDate Thu Apr 24 23:04:54 EDT 2025
Tue Jul 01 02:28:30 EDT 2025
Fri Feb 21 02:35:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Penetration rate
Deep neural network
Tunnel boring machine
Artificial neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-827fd448d3035759bc32f2be7a0cd5ea2b2cd2cad02de0dee9af73e16876e1593
PageCount 14
ParticipantIDs crossref_citationtrail_10_1007_s10064_019_01538_7
crossref_primary_10_1007_s10064_019_01538_7
springer_journals_10_1007_s10064_019_01538_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle The official journal of the IAEG
PublicationTitle Bulletin of engineering geology and the environment
PublicationTitleAbbrev Bull Eng Geol Environ
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Gong, Yin, Ma (CR17) 2016; 57
Sanio (CR47) 1985; 22
Simpson (CR54) 1990
Hinton, Deng, Yu (CR25) 2012; 29
Koopialipoor, Jahed Armaghani, Hedayat, Marto, Gordan (CR27) 2018; 23
Koopialipoor, Armaghani, Haghighi (CR26) 2017; 78
Ghasemi, Yagiz, Ataei (CR14) 2014; 73
CR39
CR38
Salimi, Rostami, Moormann (CR46) 2016; 58
CR37
CR36
Grima, Bruines, Verhoef (CR21) 2000; 15
CR35
CR34
CR33
CR31
CR30
Armaghani, Mohamad, Narayanasamy (CR2) 2017; 63
Salakhutdinov, Tenenbaum, Torralba (CR44) 2013; 35
Yagiz, Karahan (CR61) 2011; 48
Hinton, Salakhutdinov (CR23) 2006; 313
CR6
Grima, Babuška (CR20) 1999; 36
Benardos, Kaliampakos (CR4) 2004; 19
CR7
Swingler (CR55) 1996
CR9
Farmer, Glossop (CR11) 1980; 12
CR49
Farrokh, Rostami, Laughton (CR12) 2012; 30
CR42
CR41
CR40
Roxborough, Phillips (CR43) 1975; 12
Zeng, Wang, Zhang (CR63) 2016; 8
Serre, Kreiman, Kouh (CR50) 2007; 165
Wang, Tang, Tamura (CR58) 2004; 56
Mahdevari, Shahriar, Yagiz (CR32) 2014; 72
Sapigni, Berti, Bethaz (CR48) 2002; 39
CR19
CR18
CR15
CR59
Yagiz (CR60) 2008; 23
Armaghani, Faradonbeh, Momeni (CR3) 2018; 34
CR56
Shijing, Bo, Zhibo (CR52) 2006; 11
CR10
CR53
Gong, Zhao (CR16) 2009; 46
CR51
Ghaleini, Koopialipoor, Momenzadeh (CR13) 2019; 35
Hasanipanah, Armaghani, Amnieh (CR22) 2018; 36
Yagiz, Gokceoglu, Sezer (CR62) 2009; 22
Hinton, Osindero, Teh (CR24) 2006; 18
Dreyfus (CR8) 2005
Armaghani, Mohamad, Momeni, Narayanasamy (CR1) 2015; 74
Benato, Oreste (CR5) 2015; 74
Salimi, Esmaeili (CR45) 2013; 4
CR29
Koopialipoor, Fallah, Armaghani, Azizi, Mohamad (CR28) 2018; 35
Vincent, Larochelle, Lajoie (CR57) 2010; 11
Zorlu, Gokceoglu, Ocakoglu (CR64) 2008; 96
HP Sanio (1538_CR47) 1985; 22
X Wang (1538_CR58) 2004; 56
P Vincent (1538_CR57) 2010; 11
Mohammadreza Koopialipoor (1538_CR27) 2018; 23
W Shijing (1538_CR52) 2006; 11
Mohammadreza Koopialipoor (1538_CR28) 2018; 35
M Sapigni (1538_CR48) 2002; 39
E Farrokh (1538_CR12) 2012; 30
N Zeng (1538_CR63) 2016; 8
1538_CR29
K Zorlu (1538_CR64) 2008; 96
G Dreyfus (1538_CR8) 2005
E Ghasemi (1538_CR14) 2014; 73
QM Gong (1538_CR16) 2009; 46
MA Grima (1538_CR21) 2000; 15
M Koopialipoor (1538_CR26) 2017; 78
1538_CR19
1538_CR18
GE Hinton (1538_CR24) 2006; 18
R Salakhutdinov (1538_CR44) 2013; 35
K Swingler (1538_CR55) 1996
1538_CR15
1538_CR59
1538_CR56
1538_CR10
IW Farmer (1538_CR11) 1980; 12
FF Roxborough (1538_CR43) 1975; 12
1538_CR53
1538_CR51
S Yagiz (1538_CR60) 2008; 23
PK Simpson (1538_CR54) 1990
Q Gong (1538_CR17) 2016; 57
MA Grima (1538_CR20) 1999; 36
G Hinton (1538_CR25) 2012; 29
GE Hinton (1538_CR23) 2006; 313
A Salimi (1538_CR46) 2016; 58
DJ Armaghani (1538_CR1) 2015; 74
1538_CR49
DJ Armaghani (1538_CR3) 2018; 34
S Yagiz (1538_CR62) 2009; 22
1538_CR42
1538_CR41
S Mahdevari (1538_CR32) 2014; 72
1538_CR40
EN Ghaleini (1538_CR13) 2019; 35
T Serre (1538_CR50) 2007; 165
S Yagiz (1538_CR61) 2011; 48
A Salimi (1538_CR45) 2013; 4
1538_CR39
DJ Armaghani (1538_CR2) 2017; 63
1538_CR38
1538_CR37
1538_CR36
1538_CR9
1538_CR35
1538_CR34
1538_CR33
AG Benardos (1538_CR4) 2004; 19
M Hasanipanah (1538_CR22) 2018; 36
A Benato (1538_CR5) 2015; 74
1538_CR31
1538_CR6
1538_CR30
1538_CR7
References_xml – year: 1996
  ident: CR55
  publication-title: Applying neural networks: a practical guide
– volume: 23
  start-page: 326
  year: 2008
  end-page: 339
  ident: CR60
  article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2007.04.011
– ident: CR49
– volume: 57
  start-page: 4
  year: 2016
  end-page: 17
  ident: CR17
  article-title: TBM tunnelling under adverse geological conditions: an overview
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.04.002
– volume: 39
  start-page: 771
  year: 2002
  end-page: 788
  ident: CR48
  article-title: TBM performance estimation using rock mass classifications
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00069-2
– ident: CR39
– volume: 56
  start-page: 455
  year: 2004
  end-page: 460
  ident: CR58
  article-title: An improved backpropagation algorithm to avoid the local minima problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.08.006
– ident: CR51
– year: 1990
  ident: CR54
  publication-title: Artificial neural systems: foundations, paradigms, applications, and implementations
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: CR57
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 259
  year: 2000
  end-page: 269
  ident: CR21
  article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/S0886-7798(00)00055-9
– volume: 165
  start-page: 33
  year: 2007
  end-page: 56
  ident: CR50
  article-title: A quantitative theory of immediate visual recognition
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)65004-8
– ident: CR35
– ident: CR29
– volume: 35
  start-page: 243
  issue: 1
  year: 2018
  end-page: 256
  ident: CR28
  article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0596-4
– volume: 23
  start-page: 5913
  issue: 14
  year: 2018
  end-page: 5929
  ident: CR27
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3253-3
– volume: 74
  start-page: 119
  year: 2015
  end-page: 127
  ident: CR5
  article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.12.007
– ident: CR42
– volume: 12
  start-page: 361
  year: 1975
  end-page: 366
  ident: CR43
  article-title: Rock excavation by disc cutter
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(75)90547-1
– volume: 4
  start-page: 249
  year: 2013
  end-page: 264
  ident: CR45
  article-title: Utilising of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition
  publication-title: Int J Min Miner Process Eng
  doi: 10.1504/IJMME.2013.053172
– volume: 35
  start-page: 647
  year: 2019
  end-page: 658
  ident: CR13
  article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– ident: CR19
– volume: 73
  start-page: 23
  year: 2014
  end-page: 35
  ident: CR14
  article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-013-0497-0
– year: 2005
  ident: CR8
  publication-title: Neural networks: methodology and applications
– volume: 22
  start-page: 808
  year: 2009
  end-page: 814
  ident: CR62
  article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.03.007
– ident: CR15
– volume: 34
  start-page: 129
  year: 2018
  end-page: 141
  ident: CR3
  article-title: Performance prediction of tunnel boring machine through developing a gene expression programming equation
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0526-x
– volume: 36
  start-page: 2247
  year: 2018
  end-page: 2260
  ident: CR22
  article-title: A risk-based technique to analyze flyrock results through rock engineering system
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0459-1
– ident: CR9
– volume: 30
  start-page: 110
  year: 2012
  end-page: 123
  ident: CR12
  article-title: Study of various models for estimation of penetration rate of hard rock TBMs
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2012.02.012
– volume: 35
  start-page: 1958
  year: 2013
  end-page: 1971
  ident: CR44
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.269
– ident: CR36
– volume: 78
  start-page: 981
  year: 2017
  end-page: 990
  ident: CR26
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: CR63
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cognit Comput
  doi: 10.1007/s12559-016-9404-x
– volume: 46
  start-page: 8
  year: 2009
  end-page: 18
  ident: CR16
  article-title: Development of a rock mass characteristics model for TBM penetration rate prediction
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.03.003
– volume: 12
  start-page: 22
  year: 1980
  end-page: 25
  ident: CR11
  article-title: Mechanics of disc cutter penetration
  publication-title: Tunnels Tunn
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: CR24
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 22
  start-page: 153
  year: 1985
  end-page: 161
  ident: CR47
  article-title: Prediction of the performance of disc cutters in anisotropic rock
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(85)93229-2
– ident: CR18
– volume: 74
  start-page: 1301
  year: 2015
  end-page: 1319
  ident: CR1
  article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main range granite
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0687-4
– volume: 58
  start-page: 236
  year: 2016
  end-page: 246
  ident: CR46
  article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.05.009
– volume: 48
  start-page: 427
  year: 2011
  end-page: 433
  ident: CR61
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.02.013
– ident: CR37
– ident: CR53
– ident: CR30
– volume: 96
  start-page: 141
  year: 2008
  end-page: 158
  ident: CR64
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– ident: CR10
– ident: CR33
– ident: CR6
– volume: 36
  start-page: 339
  year: 1999
  end-page: 349
  ident: CR20
  article-title: Fuzzy model for the prediction of unconfined compressive strength of rock samples
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S0148-9062(99)00007-8
– ident: CR56
– ident: CR40
– volume: 11
  start-page: 385
  year: 2006
  end-page: 388
  ident: CR52
  article-title: The time and cost prediction of tunnel boring machine in tunnelling
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/BF02832128
– volume: 19
  start-page: 597
  year: 2004
  end-page: 605
  ident: CR4
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2004.02.128
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: CR25
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: CR38
– ident: CR31
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR23
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 72
  start-page: 214
  year: 2014
  end-page: 229
  ident: CR32
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: CR2
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– ident: CR34
– ident: CR7
– ident: CR59
– ident: CR41
– volume: 96
  start-page: 141
  year: 2008
  ident: 1538_CR64
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2007.10.009
– volume: 46
  start-page: 8
  year: 2009
  ident: 1538_CR16
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2008.03.003
– volume: 56
  start-page: 455
  year: 2004
  ident: 1538_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.08.006
– volume: 58
  start-page: 236
  year: 2016
  ident: 1538_CR46
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.05.009
– ident: 1538_CR19
– volume: 23
  start-page: 5913
  issue: 14
  year: 2018
  ident: 1538_CR27
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3253-3
– ident: 1538_CR33
  doi: 10.1002/9783433600122
– ident: 1538_CR15
– ident: 1538_CR35
– ident: 1538_CR31
  doi: 10.1109/IJCNN.1991.155275
– volume: 35
  start-page: 1958
  year: 2013
  ident: 1538_CR44
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.269
– ident: 1538_CR6
– ident: 1538_CR30
  doi: 10.1007/s10064-018-1349-8
– volume: 39
  start-page: 771
  year: 2002
  ident: 1538_CR48
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00069-2
– ident: 1538_CR40
– volume: 19
  start-page: 597
  year: 2004
  ident: 1538_CR4
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2004.02.128
– volume: 18
  start-page: 1527
  year: 2006
  ident: 1538_CR24
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– volume: 12
  start-page: 361
  year: 1975
  ident: 1538_CR43
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(75)90547-1
– ident: 1538_CR49
– ident: 1538_CR18
– volume: 22
  start-page: 808
  year: 2009
  ident: 1538_CR62
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.03.007
– volume: 8
  start-page: 684
  year: 2016
  ident: 1538_CR63
  publication-title: Cognit Comput
  doi: 10.1007/s12559-016-9404-x
– ident: 1538_CR59
– ident: 1538_CR9
– ident: 1538_CR34
– volume-title: Applying neural networks: a practical guide
  year: 1996
  ident: 1538_CR55
– volume: 36
  start-page: 2247
  year: 2018
  ident: 1538_CR22
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0459-1
– ident: 1538_CR38
– volume: 72
  start-page: 214
  year: 2014
  ident: 1538_CR32
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 73
  start-page: 23
  year: 2014
  ident: 1538_CR14
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-013-0497-0
– ident: 1538_CR41
– volume: 57
  start-page: 4
  year: 2016
  ident: 1538_CR17
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.04.002
– ident: 1538_CR51
  doi: 10.1007/978-3-642-40849-6_40
– volume: 15
  start-page: 259
  year: 2000
  ident: 1538_CR21
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/S0886-7798(00)00055-9
– volume: 11
  start-page: 385
  year: 2006
  ident: 1538_CR52
  publication-title: Wuhan Univ J Nat Sci
  doi: 10.1007/BF02832128
– volume-title: Neural networks: methodology and applications
  year: 2005
  ident: 1538_CR8
– volume: 4
  start-page: 249
  year: 2013
  ident: 1538_CR45
  publication-title: Int J Min Miner Process Eng
  doi: 10.1504/IJMME.2013.053172
– volume-title: Artificial neural systems: foundations, paradigms, applications, and implementations
  year: 1990
  ident: 1538_CR54
– volume: 36
  start-page: 339
  year: 1999
  ident: 1538_CR20
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S0148-9062(99)00007-8
– ident: 1538_CR39
  doi: 10.1007/978-3-642-23783-6_41
– volume: 78
  start-page: 981
  year: 2017
  ident: 1538_CR26
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– volume: 35
  start-page: 647
  year: 2019
  ident: 1538_CR13
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0625-3
– ident: 1538_CR10
– volume: 313
  start-page: 504
  year: 2006
  ident: 1538_CR23
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 1538_CR37
– volume: 29
  start-page: 82
  year: 2012
  ident: 1538_CR25
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: 1538_CR56
– ident: 1538_CR42
– volume: 63
  start-page: 29
  year: 2017
  ident: 1538_CR2
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 30
  start-page: 110
  year: 2012
  ident: 1538_CR12
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2012.02.012
– volume: 23
  start-page: 326
  year: 2008
  ident: 1538_CR60
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2007.04.011
– volume: 11
  start-page: 3371
  year: 2010
  ident: 1538_CR57
  publication-title: J Mach Learn Res
– volume: 34
  start-page: 129
  year: 2018
  ident: 1538_CR3
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0526-x
– volume: 74
  start-page: 119
  year: 2015
  ident: 1538_CR5
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.12.007
– ident: 1538_CR29
  doi: 10.1007/s00366-018-0658-7
– ident: 1538_CR53
– volume: 12
  start-page: 22
  year: 1980
  ident: 1538_CR11
  publication-title: Tunnels Tunn
– volume: 35
  start-page: 243
  issue: 1
  year: 2018
  ident: 1538_CR28
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-018-0596-4
– ident: 1538_CR7
– volume: 165
  start-page: 33
  year: 2007
  ident: 1538_CR50
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)65004-8
– volume: 74
  start-page: 1301
  year: 2015
  ident: 1538_CR1
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0687-4
– ident: 1538_CR36
– volume: 48
  start-page: 427
  year: 2011
  ident: 1538_CR61
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.02.013
– volume: 22
  start-page: 153
  year: 1985
  ident: 1538_CR47
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(85)93229-2
SSID ssj0015821
Score 2.5207086
Snippet Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 6347
SubjectTerms Earth and Environmental Science
Earth Sciences
Foundations
Geoecology/Natural Processes
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Nature Conservation
Original Paper
Title Application of deep neural networks in predicting the penetration rate of tunnel boring machines
URI https://link.springer.com/article/10.1007/s10064-019-01538-7
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXADSK1adKuxw4xJhA7MWmcSps4EhJ01db9f5ys3UNCkzj14kSVncS2_PkzIXd-BiIz4DGTKcWECXKWhyJmoQIR9RQGDG5o39soHI7Fy0RO6qaweYN2b0qS7qXeaHZD94mpr8X32Gsa7ZO2tLk7nuIxT1a1A9v66XqKAsliyeO6VebvPbbd0XYt1LmYwTE5qmNDmiyNeUL2oDglhxuMgWfkM1kXnOnUUA1QUstJieuKJaJ7Tr8KWs5sAcZCmilGeLTEF63mx6WWG8IurRYW4kJzh8CjPw5UCfNzMh48vT8OWT0kgSke-xXr8chozLE0-iI7bDNH_RqeQ5R5SkvIeM6V5irTHtfg4V_FmYkC8EN8BgFjmeCCtIppAZeEqtALAoO3umdCoTWmGjFIYZTE7NtIJTrEb3SVqppB3A6y-E7X3MdWvynqN3X6TaMOuV-tKZf8GTulHxoTpPVdmu8Qv_qf-DU54Nb0DoxyQ1rVbAG3GFJUeZe0k0G_P7Lf54_Xp647Ub9ZFcZ2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-KT1uQdvupBsNq9jEUvVtqcWeovJ7iwImoYm_f_ObpM-QAred0KY3Xkx33xDyKObgkg1OEynUjKhvYxlgYhZIEGEkcSEwS7tG46C_kS8T_1pPRRWNmj3piVpPfXGsBuGTyx9Db7HmGm4Tw4wGYgMkGvCu6vegRn9tDNFns9in8f1qMzf39gOR9u9UBtieqfkpM4NaXd5mWdkD_JzcrzBGHhBPrvrhjOdaaoACmo4KVEuXyK6S_qV02JuGjAG0kwxw6MFerSaH5cabggjWi0MxIVmFoFHfyyoEspLMum9jl_6rF6SwCSP3YpFPNQKayyFscgs28xQv5pnEKaOVD6kPONScZkqhytw8K_iVIceuAG6QcBcxrsirXyWQ5tQGTiep9GqIx0IpbDUiMEXWvpYfWtfig5xG10lsmYQN4ssvpM197HRb4L6Tax-k7BDnlYyxZI_Y-fp5-YKktqWyh3Hr_93_IEc9sfDQTJ4G33ckCNunoEFptySVjVfwB2mF1V2b1_TL2gPxlk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ97sGbLk02m6Q5FrXUV_Fgobe42QcImoY2_f_ObtIXSMH7bAizMzszzDffANz4QnNhtEeNkJJyE2Q0i3hCI6l53JaYMLilfW_9qDfgz8NwuDTF79Dus5ZkNdNgWZryslUo01oafMNQimWwxfpYl403YQufY9_a9YB15n0EOwbq5ouCkCYhS-qxmb-_sRqaVvuiLtx092GvzhNJp7rYA9jQ-SHsLrEHHsFnZ9F8JiNDlNYFsfyUeC6v0N0T8pWTYmybMRbeTDDbIwW-bjVXLrE8EfZoObVwF5I5NB75cQBLPTmGQffx475H64UJVLLEL2mbxUZhvaUwLtnFmxnq2rBMx8KTKtSCZUwqJoXymNIe_lUiTBxoP8InUWNeE5xAIx_l-hSIjLwgMOjhbRNxpbDsSHTIjQyxEjeh5E3wZ7pKZc0mbpdafKcLHmSr3xT1mzr9pnETbudniopLY6303ewK0tqvJmvEz_4nfg3b7w_d9PWp_3IOO8xagcOoXECjHE_1JWYaZXbljOkXGz3KlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+neural+networks+in+predicting+the+penetration+rate+of+tunnel+boring+machines&rft.jtitle=Bulletin+of+engineering+geology+and+the+environment&rft.au=Koopialipoor%2C+Mohammadreza&rft.au=Tootoonchi%2C+Hossein&rft.au=Jahed+Armaghani%2C+Danial&rft.au=Tonnizam+Mohamad%2C+Edy&rft.date=2019-12-01&rft.issn=1435-9529&rft.eissn=1435-9537&rft.volume=78&rft.issue=8&rft.spage=6347&rft.epage=6360&rft_id=info:doi/10.1007%2Fs10064-019-01538-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10064_019_01538_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-9529&client=summon