Application of deep neural networks in predicting the penetration rate of tunnel boring machines
Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This...
Saved in:
Published in | Bulletin of engineering geology and the environment Vol. 78; no. 8; pp. 6347 - 6360 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This study focuses on developing a model based on deep neural networks (DNNs), which is an advanced version of artificial neural networks (ANNs), for prediction of the TBM penetration rate based on the data obtained from the Pahang–Selangor raw water transfer tunnel in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database was developed and compared with the DNN model. Based on the results obtained of the coefficient of determination and root mean square error (RMSE), a significant increase in the performance prediction of the penetration rate is achieved by developing a DNN predictive model. The DNN model demonstrated better performance for penetration rate estimation compared with the ANN model and it can be introduced as a newly developed model in the field of TBM performance assessment. |
---|---|
AbstractList | Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the prediction of the penetration rate of TBMs. This study focuses on developing a model based on deep neural networks (DNNs), which is an advanced version of artificial neural networks (ANNs), for prediction of the TBM penetration rate based on the data obtained from the Pahang–Selangor raw water transfer tunnel in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database was developed and compared with the DNN model. Based on the results obtained of the coefficient of determination and root mean square error (RMSE), a significant increase in the performance prediction of the penetration rate is achieved by developing a DNN predictive model. The DNN model demonstrated better performance for penetration rate estimation compared with the ANN model and it can be introduced as a newly developed model in the field of TBM performance assessment. |
Author | Hedayat, Ahmadreza Tootoonchi, Hossein Jahed Armaghani, Danial Koopialipoor, Mohammadreza Tonnizam Mohamad, Edy |
Author_xml | – sequence: 1 givenname: Mohammadreza surname: Koopialipoor fullname: Koopialipoor, Mohammadreza email: Mr.koopialipoor@aut.ac.ir organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology – sequence: 2 givenname: Hossein surname: Tootoonchi fullname: Tootoonchi, Hossein organization: Faculty of Civil and Environmental Engineering, Amirkabir University of Technology – sequence: 3 givenname: Danial surname: Jahed Armaghani fullname: Jahed Armaghani, Danial email: danialarmaghani@gmail.com organization: Institute of Research and Development, Duy Tan University – sequence: 4 givenname: Edy surname: Tonnizam Mohamad fullname: Tonnizam Mohamad, Edy organization: Centre of Tropical Geoengineering (GEOTROPIK), School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia – sequence: 5 givenname: Ahmadreza surname: Hedayat fullname: Hedayat, Ahmadreza organization: Department of Civil and Environmental Engineering, Colorado School of Mines |
BookMark | eNp9kMtOwzAQRS1UJErhB1j5BwJ-xHWyrCpeUiU2sDaOPaEuqWPZqRB_j9MgFiy6mLmWPGd0516ime89IHRDyS0lRN6l3JdlQWidS_CqkGdoTksuilpwOft7s_oCXaa0I3mqYnSO3lchdM7owfUe9y22AAF7OETdZRm--viZsPM4RLDODM5_4GELOED-jBOVBUZ0OHgPHW76OE7ttdk6D-kKnbe6S3D9qwv09nD_un4qNi-Pz-vVpjCspkNRMdnasqwsJ1xIUTeGs5Y1IDUxVoBmDTOWGW0Js0Cyy1q3kgNdVnIJVNR8gappr4l9ShFaZdxwNJh9uk5Rosak1JSUykmpY1JKZpT9Q0N0ex2_T0N8glIY74Wodv0h-nziKeoH93mAEw |
CitedBy_id | crossref_primary_10_1007_s00366_019_00808_y crossref_primary_10_1007_s11053_020_09770_9 crossref_primary_10_3390_app9183715 crossref_primary_10_1088_1755_1315_861_7_072044 crossref_primary_10_3390_app11041922 crossref_primary_10_3390_eng4020087 crossref_primary_10_32604_cmes_2023_044467 crossref_primary_10_3390_su12062229 crossref_primary_10_1007_s10064_024_03854_z crossref_primary_10_1007_s40996_022_00912_y crossref_primary_10_1680_jsmic_20_00011 crossref_primary_10_3390_su15010199 crossref_primary_10_1007_s00366_019_00868_0 crossref_primary_10_1007_s42452_021_04903_y crossref_primary_10_1007_s00366_020_01014_x crossref_primary_10_3390_app11125671 crossref_primary_10_1007_s10706_023_02516_3 crossref_primary_10_3390_buildings12060772 crossref_primary_10_1016_j_tust_2025_106496 crossref_primary_10_1016_j_aei_2024_102924 crossref_primary_10_1016_j_undsp_2020_01_003 crossref_primary_10_1080_17499518_2024_2356543 crossref_primary_10_1007_s00170_022_09652_9 crossref_primary_10_1007_s11709_024_1126_7 crossref_primary_10_1016_j_asoc_2022_108997 crossref_primary_10_1061_IJGNAI_GMENG_7738 crossref_primary_10_1007_s00366_019_00875_1 crossref_primary_10_1007_s13369_019_04239_1 crossref_primary_10_1007_s12205_022_0961_0 crossref_primary_10_1016_j_tust_2021_104183 crossref_primary_10_3390_app13106050 crossref_primary_10_1016_j_autcon_2022_104310 crossref_primary_10_1007_s11053_019_09519_z crossref_primary_10_1061_AJRUA6_RUENG_1451 crossref_primary_10_1007_s12517_020_05305_x crossref_primary_10_1016_j_undsp_2020_05_008 crossref_primary_10_1007_s10064_020_01788_w crossref_primary_10_1007_s00366_020_01136_2 crossref_primary_10_3390_buildings14041173 crossref_primary_10_1080_17480930_2021_1878087 crossref_primary_10_1061_JCEMD4_COENG_14788 crossref_primary_10_1016_j_eswa_2023_122469 crossref_primary_10_1016_j_undsp_2021_04_003 crossref_primary_10_1631_2023_A2200297 crossref_primary_10_1109_ACCESS_2021_3116201 crossref_primary_10_3390_su141912950 crossref_primary_10_1007_s00366_019_00816_y crossref_primary_10_1080_17480930_2020_1734151 crossref_primary_10_1007_s11440_020_01091_8 crossref_primary_10_1016_j_trgeo_2021_100579 crossref_primary_10_1007_s00603_022_02868_x crossref_primary_10_1007_s10706_022_02178_7 crossref_primary_10_1007_s12040_024_02376_2 crossref_primary_10_1016_j_autcon_2023_104982 crossref_primary_10_1007_s12517_022_09542_0 crossref_primary_10_3390_ma15103500 crossref_primary_10_1007_s10064_022_03047_6 crossref_primary_10_1016_j_eswa_2023_122118 crossref_primary_10_3390_app10041486 crossref_primary_10_3390_math11204237 crossref_primary_10_3389_fbuil_2024_1373092 crossref_primary_10_1109_ACCESS_2022_3221430 crossref_primary_10_3390_ma15134582 crossref_primary_10_1007_s11053_019_09605_2 crossref_primary_10_1016_j_engappai_2024_108985 crossref_primary_10_1016_j_engfailanal_2025_109463 crossref_primary_10_1016_j_isatra_2021_08_036 crossref_primary_10_1016_j_tust_2023_105372 crossref_primary_10_1016_j_autcon_2022_104532 crossref_primary_10_1016_j_eswa_2023_121118 crossref_primary_10_1016_j_asoc_2022_108686 crossref_primary_10_1007_s10064_023_03095_6 crossref_primary_10_1631_jzus_A2200297 crossref_primary_10_1016_j_iot_2023_100853 crossref_primary_10_1007_s00366_020_01225_2 crossref_primary_10_1007_s10064_021_02134_4 crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1016_j_engappai_2020_104015 crossref_primary_10_1016_j_tust_2023_105249 crossref_primary_10_1007_s00366_021_01305_x crossref_primary_10_32604_cmes_2023_029938 crossref_primary_10_1016_j_trgeo_2022_100819 crossref_primary_10_3233_JIFS_232989 crossref_primary_10_1016_j_jrmge_2021_06_015 crossref_primary_10_1016_j_trgeo_2024_101233 crossref_primary_10_1007_s10064_024_03670_5 crossref_primary_10_1016_j_aei_2020_101232 crossref_primary_10_1061__ASCE_GM_1943_5622_0002064 crossref_primary_10_1016_j_tust_2022_104448 crossref_primary_10_3390_app9245372 crossref_primary_10_1177_1687814021998831 crossref_primary_10_1007_s12665_023_10963_7 crossref_primary_10_1016_j_jrmge_2023_06_010 crossref_primary_10_1186_s40703_024_00228_y crossref_primary_10_3390_ma13173902 crossref_primary_10_1007_s12205_022_0128_z crossref_primary_10_1016_j_eng_2023_01_011 crossref_primary_10_1007_s00366_020_00997_x crossref_primary_10_1016_j_measurement_2019_07_054 crossref_primary_10_3389_feart_2024_1518844 crossref_primary_10_1007_s10064_021_02527_5 crossref_primary_10_1038_s41598_024_59753_6 crossref_primary_10_1038_s41598_020_76569_2 crossref_primary_10_1016_j_aei_2023_102130 crossref_primary_10_3390_app12052410 crossref_primary_10_1007_s10064_020_01834_7 crossref_primary_10_2478_mspe_2023_0017 crossref_primary_10_1007_s00500_024_09840_7 crossref_primary_10_3389_feart_2025_1542291 crossref_primary_10_3390_app10051761 crossref_primary_10_3390_app12115485 crossref_primary_10_1016_j_engappai_2024_108997 crossref_primary_10_1016_j_tust_2022_104794 crossref_primary_10_32604_cmes_2022_017792 crossref_primary_10_1038_s41598_024_65351_3 crossref_primary_10_3390_buildings14030820 crossref_primary_10_1016_j_autcon_2021_103647 crossref_primary_10_1007_s00366_019_00855_5 crossref_primary_10_1007_s00500_023_08233_6 crossref_primary_10_1007_s00366_019_00908_9 crossref_primary_10_1007_s13369_019_04134_9 crossref_primary_10_1007_s11053_020_09697_1 crossref_primary_10_1016_j_undsp_2022_11_002 crossref_primary_10_1108_MLAG_06_2024_0004 |
Cites_doi | 10.1016/j.tust.2007.04.011 10.1016/j.tust.2016.04.002 10.1016/S1365-1609(02)00069-2 10.1016/j.neucom.2003.08.006 10.1016/S0886-7798(00)00055-9 10.1016/S0079-6123(06)65004-8 10.1007/s00366-018-0596-4 10.1007/s00500-018-3253-3 10.1016/j.ijrmms.2014.12.007 10.1016/0148-9062(75)90547-1 10.1504/IJMME.2013.053172 10.1007/s00366-018-0625-3 10.1007/s10064-013-0497-0 10.1016/j.engappai.2009.03.007 10.1007/s00366-017-0526-x 10.1007/s10706-018-0459-1 10.1016/j.tust.2012.02.012 10.1109/TPAMI.2012.269 10.1007/s10064-017-1116-2 10.1007/s12559-016-9404-x 10.1016/j.ijrmms.2008.03.003 10.1162/neco.2006.18.7.1527 10.1016/0148-9062(85)93229-2 10.1007/s10064-014-0687-4 10.1016/j.tust.2016.05.009 10.1016/j.ijrmms.2011.02.013 10.1016/j.enggeo.2007.10.009 10.1016/S0148-9062(99)00007-8 10.1007/BF02832128 10.1016/j.tust.2004.02.128 10.1109/MSP.2012.2205597 10.1126/science.1127647 10.1016/j.ijrmms.2014.09.012 10.1016/j.tust.2016.12.009 10.1002/9783433600122 10.1109/IJCNN.1991.155275 10.1007/s10064-018-1349-8 10.1007/978-3-642-40849-6_40 10.1007/978-3-642-23783-6_41 10.1007/s00366-018-0658-7 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10064-019-01538-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1435-9537 |
EndPage | 6360 |
ExternalDocumentID | 10_1007_s10064_019_01538_7 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 7XC 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK5 LLZTM M4Y M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PT4 PT5 PTHSS PYCSY QOK QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-827fd448d3035759bc32f2be7a0cd5ea2b2cd2cad02de0dee9af73e16876e1593 |
IEDL.DBID | U2A |
ISSN | 1435-9529 |
IngestDate | Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 02:28:30 EDT 2025 Fri Feb 21 02:35:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Penetration rate Deep neural network Tunnel boring machine Artificial neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-827fd448d3035759bc32f2be7a0cd5ea2b2cd2cad02de0dee9af73e16876e1593 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1007_s10064_019_01538_7 crossref_primary_10_1007_s10064_019_01538_7 springer_journals_10_1007_s10064_019_01538_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | The official journal of the IAEG |
PublicationTitle | Bulletin of engineering geology and the environment |
PublicationTitleAbbrev | Bull Eng Geol Environ |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Gong, Yin, Ma (CR17) 2016; 57 Sanio (CR47) 1985; 22 Simpson (CR54) 1990 Hinton, Deng, Yu (CR25) 2012; 29 Koopialipoor, Jahed Armaghani, Hedayat, Marto, Gordan (CR27) 2018; 23 Koopialipoor, Armaghani, Haghighi (CR26) 2017; 78 Ghasemi, Yagiz, Ataei (CR14) 2014; 73 CR39 CR38 Salimi, Rostami, Moormann (CR46) 2016; 58 CR37 CR36 Grima, Bruines, Verhoef (CR21) 2000; 15 CR35 CR34 CR33 CR31 CR30 Armaghani, Mohamad, Narayanasamy (CR2) 2017; 63 Salakhutdinov, Tenenbaum, Torralba (CR44) 2013; 35 Yagiz, Karahan (CR61) 2011; 48 Hinton, Salakhutdinov (CR23) 2006; 313 CR6 Grima, Babuška (CR20) 1999; 36 Benardos, Kaliampakos (CR4) 2004; 19 CR7 Swingler (CR55) 1996 CR9 Farmer, Glossop (CR11) 1980; 12 CR49 Farrokh, Rostami, Laughton (CR12) 2012; 30 CR42 CR41 CR40 Roxborough, Phillips (CR43) 1975; 12 Zeng, Wang, Zhang (CR63) 2016; 8 Serre, Kreiman, Kouh (CR50) 2007; 165 Wang, Tang, Tamura (CR58) 2004; 56 Mahdevari, Shahriar, Yagiz (CR32) 2014; 72 Sapigni, Berti, Bethaz (CR48) 2002; 39 CR19 CR18 CR15 CR59 Yagiz (CR60) 2008; 23 Armaghani, Faradonbeh, Momeni (CR3) 2018; 34 CR56 Shijing, Bo, Zhibo (CR52) 2006; 11 CR10 CR53 Gong, Zhao (CR16) 2009; 46 CR51 Ghaleini, Koopialipoor, Momenzadeh (CR13) 2019; 35 Hasanipanah, Armaghani, Amnieh (CR22) 2018; 36 Yagiz, Gokceoglu, Sezer (CR62) 2009; 22 Hinton, Osindero, Teh (CR24) 2006; 18 Dreyfus (CR8) 2005 Armaghani, Mohamad, Momeni, Narayanasamy (CR1) 2015; 74 Benato, Oreste (CR5) 2015; 74 Salimi, Esmaeili (CR45) 2013; 4 CR29 Koopialipoor, Fallah, Armaghani, Azizi, Mohamad (CR28) 2018; 35 Vincent, Larochelle, Lajoie (CR57) 2010; 11 Zorlu, Gokceoglu, Ocakoglu (CR64) 2008; 96 HP Sanio (1538_CR47) 1985; 22 X Wang (1538_CR58) 2004; 56 P Vincent (1538_CR57) 2010; 11 Mohammadreza Koopialipoor (1538_CR27) 2018; 23 W Shijing (1538_CR52) 2006; 11 Mohammadreza Koopialipoor (1538_CR28) 2018; 35 M Sapigni (1538_CR48) 2002; 39 E Farrokh (1538_CR12) 2012; 30 N Zeng (1538_CR63) 2016; 8 1538_CR29 K Zorlu (1538_CR64) 2008; 96 G Dreyfus (1538_CR8) 2005 E Ghasemi (1538_CR14) 2014; 73 QM Gong (1538_CR16) 2009; 46 MA Grima (1538_CR21) 2000; 15 M Koopialipoor (1538_CR26) 2017; 78 1538_CR19 1538_CR18 GE Hinton (1538_CR24) 2006; 18 R Salakhutdinov (1538_CR44) 2013; 35 K Swingler (1538_CR55) 1996 1538_CR15 1538_CR59 1538_CR56 1538_CR10 IW Farmer (1538_CR11) 1980; 12 FF Roxborough (1538_CR43) 1975; 12 1538_CR53 1538_CR51 S Yagiz (1538_CR60) 2008; 23 PK Simpson (1538_CR54) 1990 Q Gong (1538_CR17) 2016; 57 MA Grima (1538_CR20) 1999; 36 G Hinton (1538_CR25) 2012; 29 GE Hinton (1538_CR23) 2006; 313 A Salimi (1538_CR46) 2016; 58 DJ Armaghani (1538_CR1) 2015; 74 1538_CR49 DJ Armaghani (1538_CR3) 2018; 34 S Yagiz (1538_CR62) 2009; 22 1538_CR42 1538_CR41 S Mahdevari (1538_CR32) 2014; 72 1538_CR40 EN Ghaleini (1538_CR13) 2019; 35 T Serre (1538_CR50) 2007; 165 S Yagiz (1538_CR61) 2011; 48 A Salimi (1538_CR45) 2013; 4 1538_CR39 DJ Armaghani (1538_CR2) 2017; 63 1538_CR38 1538_CR37 1538_CR36 1538_CR9 1538_CR35 1538_CR34 1538_CR33 AG Benardos (1538_CR4) 2004; 19 M Hasanipanah (1538_CR22) 2018; 36 A Benato (1538_CR5) 2015; 74 1538_CR31 1538_CR6 1538_CR30 1538_CR7 |
References_xml | – year: 1996 ident: CR55 publication-title: Applying neural networks: a practical guide – volume: 23 start-page: 326 year: 2008 end-page: 339 ident: CR60 article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2007.04.011 – ident: CR49 – volume: 57 start-page: 4 year: 2016 end-page: 17 ident: CR17 article-title: TBM tunnelling under adverse geological conditions: an overview publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.04.002 – volume: 39 start-page: 771 year: 2002 end-page: 788 ident: CR48 article-title: TBM performance estimation using rock mass classifications publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00069-2 – ident: CR39 – volume: 56 start-page: 455 year: 2004 end-page: 460 ident: CR58 article-title: An improved backpropagation algorithm to avoid the local minima problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.08.006 – ident: CR51 – year: 1990 ident: CR54 publication-title: Artificial neural systems: foundations, paradigms, applications, and implementations – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: CR57 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 15 start-page: 259 year: 2000 end-page: 269 ident: CR21 article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods publication-title: Tunn Undergr Sp Technol doi: 10.1016/S0886-7798(00)00055-9 – volume: 165 start-page: 33 year: 2007 end-page: 56 ident: CR50 article-title: A quantitative theory of immediate visual recognition publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)65004-8 – ident: CR35 – ident: CR29 – volume: 35 start-page: 243 issue: 1 year: 2018 end-page: 256 ident: CR28 article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting publication-title: Engineering with Computers doi: 10.1007/s00366-018-0596-4 – volume: 23 start-page: 5913 issue: 14 year: 2018 end-page: 5929 ident: CR27 article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions publication-title: Soft Computing doi: 10.1007/s00500-018-3253-3 – volume: 74 start-page: 119 year: 2015 end-page: 127 ident: CR5 article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.12.007 – ident: CR42 – volume: 12 start-page: 361 year: 1975 end-page: 366 ident: CR43 article-title: Rock excavation by disc cutter publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(75)90547-1 – volume: 4 start-page: 249 year: 2013 end-page: 264 ident: CR45 article-title: Utilising of linear and non-linear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition publication-title: Int J Min Miner Process Eng doi: 10.1504/IJMME.2013.053172 – volume: 35 start-page: 647 year: 2019 end-page: 658 ident: CR13 article-title: A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – ident: CR19 – volume: 73 start-page: 23 year: 2014 end-page: 35 ident: CR14 article-title: Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-013-0497-0 – year: 2005 ident: CR8 publication-title: Neural networks: methodology and applications – volume: 22 start-page: 808 year: 2009 end-page: 814 ident: CR62 article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.03.007 – ident: CR15 – volume: 34 start-page: 129 year: 2018 end-page: 141 ident: CR3 article-title: Performance prediction of tunnel boring machine through developing a gene expression programming equation publication-title: Eng Comput doi: 10.1007/s00366-017-0526-x – volume: 36 start-page: 2247 year: 2018 end-page: 2260 ident: CR22 article-title: A risk-based technique to analyze flyrock results through rock engineering system publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0459-1 – ident: CR9 – volume: 30 start-page: 110 year: 2012 end-page: 123 ident: CR12 article-title: Study of various models for estimation of penetration rate of hard rock TBMs publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2012.02.012 – volume: 35 start-page: 1958 year: 2013 end-page: 1971 ident: CR44 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.269 – ident: CR36 – volume: 78 start-page: 981 year: 2017 end-page: 990 ident: CR26 article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – volume: 8 start-page: 684 year: 2016 end-page: 692 ident: CR63 article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip publication-title: Cognit Comput doi: 10.1007/s12559-016-9404-x – volume: 46 start-page: 8 year: 2009 end-page: 18 ident: CR16 article-title: Development of a rock mass characteristics model for TBM penetration rate prediction publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.03.003 – volume: 12 start-page: 22 year: 1980 end-page: 25 ident: CR11 article-title: Mechanics of disc cutter penetration publication-title: Tunnels Tunn – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: CR24 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 22 start-page: 153 year: 1985 end-page: 161 ident: CR47 article-title: Prediction of the performance of disc cutters in anisotropic rock publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(85)93229-2 – ident: CR18 – volume: 74 start-page: 1301 year: 2015 end-page: 1319 ident: CR1 article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main range granite publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0687-4 – volume: 58 start-page: 236 year: 2016 end-page: 246 ident: CR46 article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.05.009 – volume: 48 start-page: 427 year: 2011 end-page: 433 ident: CR61 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.02.013 – ident: CR37 – ident: CR53 – ident: CR30 – volume: 96 start-page: 141 year: 2008 end-page: 158 ident: CR64 article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models publication-title: Eng Geol doi: 10.1016/j.enggeo.2007.10.009 – ident: CR10 – ident: CR33 – ident: CR6 – volume: 36 start-page: 339 year: 1999 end-page: 349 ident: CR20 article-title: Fuzzy model for the prediction of unconfined compressive strength of rock samples publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(99)00007-8 – ident: CR56 – ident: CR40 – volume: 11 start-page: 385 year: 2006 end-page: 388 ident: CR52 article-title: The time and cost prediction of tunnel boring machine in tunnelling publication-title: Wuhan Univ J Nat Sci doi: 10.1007/BF02832128 – volume: 19 start-page: 597 year: 2004 end-page: 605 ident: CR4 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2004.02.128 – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: CR25 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – ident: CR38 – ident: CR31 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR23 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 72 start-page: 214 year: 2014 end-page: 229 ident: CR32 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 63 start-page: 29 year: 2017 end-page: 43 ident: CR2 article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.12.009 – ident: CR34 – ident: CR7 – ident: CR59 – ident: CR41 – volume: 96 start-page: 141 year: 2008 ident: 1538_CR64 publication-title: Eng Geol doi: 10.1016/j.enggeo.2007.10.009 – volume: 46 start-page: 8 year: 2009 ident: 1538_CR16 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2008.03.003 – volume: 56 start-page: 455 year: 2004 ident: 1538_CR58 publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.08.006 – volume: 58 start-page: 236 year: 2016 ident: 1538_CR46 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.05.009 – ident: 1538_CR19 – volume: 23 start-page: 5913 issue: 14 year: 2018 ident: 1538_CR27 publication-title: Soft Computing doi: 10.1007/s00500-018-3253-3 – ident: 1538_CR33 doi: 10.1002/9783433600122 – ident: 1538_CR15 – ident: 1538_CR35 – ident: 1538_CR31 doi: 10.1109/IJCNN.1991.155275 – volume: 35 start-page: 1958 year: 2013 ident: 1538_CR44 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.269 – ident: 1538_CR6 – ident: 1538_CR30 doi: 10.1007/s10064-018-1349-8 – volume: 39 start-page: 771 year: 2002 ident: 1538_CR48 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00069-2 – ident: 1538_CR40 – volume: 19 start-page: 597 year: 2004 ident: 1538_CR4 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2004.02.128 – volume: 18 start-page: 1527 year: 2006 ident: 1538_CR24 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 12 start-page: 361 year: 1975 ident: 1538_CR43 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(75)90547-1 – ident: 1538_CR49 – ident: 1538_CR18 – volume: 22 start-page: 808 year: 2009 ident: 1538_CR62 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.03.007 – volume: 8 start-page: 684 year: 2016 ident: 1538_CR63 publication-title: Cognit Comput doi: 10.1007/s12559-016-9404-x – ident: 1538_CR59 – ident: 1538_CR9 – ident: 1538_CR34 – volume-title: Applying neural networks: a practical guide year: 1996 ident: 1538_CR55 – volume: 36 start-page: 2247 year: 2018 ident: 1538_CR22 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0459-1 – ident: 1538_CR38 – volume: 72 start-page: 214 year: 2014 ident: 1538_CR32 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 73 start-page: 23 year: 2014 ident: 1538_CR14 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-013-0497-0 – ident: 1538_CR41 – volume: 57 start-page: 4 year: 2016 ident: 1538_CR17 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.04.002 – ident: 1538_CR51 doi: 10.1007/978-3-642-40849-6_40 – volume: 15 start-page: 259 year: 2000 ident: 1538_CR21 publication-title: Tunn Undergr Sp Technol doi: 10.1016/S0886-7798(00)00055-9 – volume: 11 start-page: 385 year: 2006 ident: 1538_CR52 publication-title: Wuhan Univ J Nat Sci doi: 10.1007/BF02832128 – volume-title: Neural networks: methodology and applications year: 2005 ident: 1538_CR8 – volume: 4 start-page: 249 year: 2013 ident: 1538_CR45 publication-title: Int J Min Miner Process Eng doi: 10.1504/IJMME.2013.053172 – volume-title: Artificial neural systems: foundations, paradigms, applications, and implementations year: 1990 ident: 1538_CR54 – volume: 36 start-page: 339 year: 1999 ident: 1538_CR20 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(99)00007-8 – ident: 1538_CR39 doi: 10.1007/978-3-642-23783-6_41 – volume: 78 start-page: 981 year: 2017 ident: 1538_CR26 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1116-2 – volume: 35 start-page: 647 year: 2019 ident: 1538_CR13 publication-title: Eng Comput doi: 10.1007/s00366-018-0625-3 – ident: 1538_CR10 – volume: 313 start-page: 504 year: 2006 ident: 1538_CR23 publication-title: Science doi: 10.1126/science.1127647 – ident: 1538_CR37 – volume: 29 start-page: 82 year: 2012 ident: 1538_CR25 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – ident: 1538_CR56 – ident: 1538_CR42 – volume: 63 start-page: 29 year: 2017 ident: 1538_CR2 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2016.12.009 – volume: 30 start-page: 110 year: 2012 ident: 1538_CR12 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2012.02.012 – volume: 23 start-page: 326 year: 2008 ident: 1538_CR60 publication-title: Tunn Undergr Sp Technol doi: 10.1016/j.tust.2007.04.011 – volume: 11 start-page: 3371 year: 2010 ident: 1538_CR57 publication-title: J Mach Learn Res – volume: 34 start-page: 129 year: 2018 ident: 1538_CR3 publication-title: Eng Comput doi: 10.1007/s00366-017-0526-x – volume: 74 start-page: 119 year: 2015 ident: 1538_CR5 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.12.007 – ident: 1538_CR29 doi: 10.1007/s00366-018-0658-7 – ident: 1538_CR53 – volume: 12 start-page: 22 year: 1980 ident: 1538_CR11 publication-title: Tunnels Tunn – volume: 35 start-page: 243 issue: 1 year: 2018 ident: 1538_CR28 publication-title: Engineering with Computers doi: 10.1007/s00366-018-0596-4 – ident: 1538_CR7 – volume: 165 start-page: 33 year: 2007 ident: 1538_CR50 publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)65004-8 – volume: 74 start-page: 1301 year: 2015 ident: 1538_CR1 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-014-0687-4 – ident: 1538_CR36 – volume: 48 start-page: 427 year: 2011 ident: 1538_CR61 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.02.013 – volume: 22 start-page: 153 year: 1985 ident: 1538_CR47 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(85)93229-2 |
SSID | ssj0015821 |
Score | 2.5207086 |
Snippet | Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and reliable cost estimation and... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6347 |
SubjectTerms | Earth and Environmental Science Earth Sciences Foundations Geoecology/Natural Processes Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Nature Conservation Original Paper |
Title | Application of deep neural networks in predicting the penetration rate of tunnel boring machines |
URI | https://link.springer.com/article/10.1007/s10064-019-01538-7 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RTjMeXADSK1adKuxw4xJhA7MWmcSps4EhJ01db9f5ys3UNCkzj14kSVncS2_PkzIXd-BiIz4DGTKcWECXKWhyJmoQIR9RQGDG5o39soHI7Fy0RO6qaweYN2b0qS7qXeaHZD94mpr8X32Gsa7ZO2tLk7nuIxT1a1A9v66XqKAsliyeO6VebvPbbd0XYt1LmYwTE5qmNDmiyNeUL2oDglhxuMgWfkM1kXnOnUUA1QUstJieuKJaJ7Tr8KWs5sAcZCmilGeLTEF63mx6WWG8IurRYW4kJzh8CjPw5UCfNzMh48vT8OWT0kgSke-xXr8chozLE0-iI7bDNH_RqeQ5R5SkvIeM6V5irTHtfg4V_FmYkC8EN8BgFjmeCCtIppAZeEqtALAoO3umdCoTWmGjFIYZTE7NtIJTrEb3SVqppB3A6y-E7X3MdWvynqN3X6TaMOuV-tKZf8GTulHxoTpPVdmu8Qv_qf-DU54Nb0DoxyQ1rVbAG3GFJUeZe0k0G_P7Lf54_Xp647Ub9ZFcZ2 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSD-KT1uQdvupBsNq9jEUvVtqcWeovJ7iwImoYm_f_ObpM-QAred0KY3Xkx33xDyKObgkg1OEynUjKhvYxlgYhZIEGEkcSEwS7tG46C_kS8T_1pPRRWNmj3piVpPfXGsBuGTyx9Db7HmGm4Tw4wGYgMkGvCu6vegRn9tDNFns9in8f1qMzf39gOR9u9UBtieqfkpM4NaXd5mWdkD_JzcrzBGHhBPrvrhjOdaaoACmo4KVEuXyK6S_qV02JuGjAG0kwxw6MFerSaH5cabggjWi0MxIVmFoFHfyyoEspLMum9jl_6rF6SwCSP3YpFPNQKayyFscgs28xQv5pnEKaOVD6kPONScZkqhytw8K_iVIceuAG6QcBcxrsirXyWQ5tQGTiep9GqIx0IpbDUiMEXWvpYfWtfig5xG10lsmYQN4ssvpM197HRb4L6Tax-k7BDnlYyxZI_Y-fp5-YKktqWyh3Hr_93_IEc9sfDQTJ4G33ckCNunoEFptySVjVfwB2mF1V2b1_TL2gPxlk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ97sGbLk02m6Q5FrXUV_Fgobe42QcImoY2_f_ObtIXSMH7bAizMzszzDffANz4QnNhtEeNkJJyE2Q0i3hCI6l53JaYMLilfW_9qDfgz8NwuDTF79Dus5ZkNdNgWZryslUo01oafMNQimWwxfpYl403YQufY9_a9YB15n0EOwbq5ouCkCYhS-qxmb-_sRqaVvuiLtx092GvzhNJp7rYA9jQ-SHsLrEHHsFnZ9F8JiNDlNYFsfyUeC6v0N0T8pWTYmybMRbeTDDbIwW-bjVXLrE8EfZoObVwF5I5NB75cQBLPTmGQffx475H64UJVLLEL2mbxUZhvaUwLtnFmxnq2rBMx8KTKtSCZUwqJoXymNIe_lUiTBxoP8InUWNeE5xAIx_l-hSIjLwgMOjhbRNxpbDsSHTIjQyxEjeh5E3wZ7pKZc0mbpdafKcLHmSr3xT1mzr9pnETbudniopLY6303ewK0tqvJmvEz_4nfg3b7w_d9PWp_3IOO8xagcOoXECjHE_1JWYaZXbljOkXGz3KlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+deep+neural+networks+in+predicting+the+penetration+rate+of+tunnel+boring+machines&rft.jtitle=Bulletin+of+engineering+geology+and+the+environment&rft.au=Koopialipoor%2C+Mohammadreza&rft.au=Tootoonchi%2C+Hossein&rft.au=Jahed+Armaghani%2C+Danial&rft.au=Tonnizam+Mohamad%2C+Edy&rft.date=2019-12-01&rft.issn=1435-9529&rft.eissn=1435-9537&rft.volume=78&rft.issue=8&rft.spage=6347&rft.epage=6360&rft_id=info:doi/10.1007%2Fs10064-019-01538-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10064_019_01538_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1435-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1435-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1435-9529&client=summon |