Experimental study on hygric properties of salt-contaminated red sandstone in coastal building envelope
Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial....
Saved in:
Published in | Case Studies in Construction Materials Vol. 22; p. e04447 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models.
•Comprehensive hygric properties of salt-contaminated red sandstone were test.•Salt significantly affects sorption/desorption isotherm and vapor permeability coefficient.•The effect of salt on the capillary absorption coefficient and drying flow rate is limited.•The effect mechanism of salt on hygric properties of red sandstone is revealed. |
---|---|
AbstractList | Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models. Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models. •Comprehensive hygric properties of salt-contaminated red sandstone were test.•Salt significantly affects sorption/desorption isotherm and vapor permeability coefficient.•The effect of salt on the capillary absorption coefficient and drying flow rate is limited.•The effect mechanism of salt on hygric properties of red sandstone is revealed. |
ArticleNumber | e04447 |
Author | Wang, Junsong Li, Chuanrui Zhang, Yu Meng, Qinglin |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0009-0003-2786-3877 surname: Zhang fullname: Zhang, Yu organization: School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China – sequence: 2 givenname: Qinglin surname: Meng fullname: Meng, Qinglin organization: School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China – sequence: 3 givenname: Chuanrui surname: Li fullname: Li, Chuanrui organization: School of Architecture, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong 510641, China – sequence: 4 givenname: Junsong orcidid: 0000-0002-2401-5771 surname: Wang fullname: Wang, Junsong email: 20209036@scut.edu.cn organization: School of Architecture, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong 510641, China |
BookMark | eNp9kEtLAzEUhYMo-OofcJU_MDXPzgy4EfEFghtdhzvJTU2ZJiUZxf57UyviysUllyTn45xzSg5jikjIBWdzzvjicjW3xa7nggk9R6aUag_IiRBcNZr1-vDPfkxmpawYY6LTi060J2R5-7nBHNYYJxhpmd7dlqZI37bLHCzd5FRfp4CFJk8LjFNjU_25DhEmdDTXKRBdmaojGiK1CcoONLyH0YW4pBg_cKyQc3LkYSw4-znPyOvd7cvNQ_P0fP94c_3UWNHzqem4EgPDhW57kL31qKV2ciF6GPQwKO-YlW3Xt1qBk77lrdJWSi4HxpSwEuQZedxzXYKV2dRkkLcmQTDfFykvDdRAdkSjq4ghCgAQSgvWCc91z2TrubMeusoSe5bNqZSM_pfHmdk1b1Zm17zZNW_2zVfR1V6ENeVHwGyKDRgtupDRTtVG-E_-BfIWj7s |
Cites_doi | 10.1617/s11527-023-02158-0 10.1016/j.conbuildmat.2021.124436 10.1006/jcis.2000.6951 10.1016/j.ces.2014.01.023 10.1617/s11527-022-02067-8 10.1007/s11242-015-0461-5 10.1007/s11242-013-0211-5 10.1617/s11527-015-0557-y 10.1016/j.conbuildmat.2021.124746 10.1016/j.conbuildmat.2023.130412 10.1016/j.applthermaleng.2020.116505 10.1016/j.scitotenv.2020.137687 10.1016/j.chemer.2008.02.001 10.1016/j.conbuildmat.2009.10.031 10.1016/j.scitotenv.2020.140899 10.1007/BF02481633 10.1063/1.4825664 10.1016/j.conbuildmat.2009.05.001 10.1177/1744259112473947 10.1016/j.buildenv.2014.11.036 10.1016/j.buildenv.2022.109680 10.1016/j.culher.2007.06.001 10.1126/science.113.2944.620 10.1016/j.egypro.2015.11.161 10.5194/acp-6-1777-2006 10.1016/j.buildenv.2022.109006 10.1007/s12665-020-09335-2 10.1007/s12665-012-2003-6 10.1016/j.jclepro.2017.07.193 10.1063/1.555641 10.1007/s00339-013-7982-y 10.1016/S0730-725X(03)00161-9 10.1016/j.porgcoat.2018.04.010 10.1038/ncomms5823 10.1016/j.ijheatmasstransfer.2010.10.004 10.1177/1744259107088003 10.1063/1.4994485 10.1617/s11527-018-1180-5 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.cscm.2025.e04447 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-5095 |
ExternalDocumentID | oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8 10_1016_j_cscm_2025_e04447 S2214509525002451 |
GroupedDBID | 0R~ 4.4 457 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IXB KQ8 M41 M~E OK1 RIG ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c291t-8142b0e6579a39cfe535d3629ab5bb4fd0c3789754ad3f71745c3313b0042c3a3 |
IEDL.DBID | DOA |
ISSN | 2214-5095 |
IngestDate | Wed Aug 27 01:25:50 EDT 2025 Thu Jul 10 08:38:20 EDT 2025 Sat Aug 09 17:30:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous building materials Mechanism of salt effect Hygric properties Moisture transfer Moisture storage |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-8142b0e6579a39cfe535d3629ab5bb4fd0c3789754ad3f71745c3313b0042c3a3 |
ORCID | 0009-0003-2786-3877 0000-0002-2401-5771 |
OpenAccessLink | https://doaj.org/article/5b000ee2aaa2452082f159037f1dcfa8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8 crossref_primary_10_1016_j_cscm_2025_e04447 elsevier_sciencedirect_doi_10_1016_j_cscm_2025_e04447 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Case Studies in Construction Materials |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Gherardi, Goidanich, Toniolo (bib62) 2018; 121 P. L, H. H, K. K (bib7) 2003; 21 Lubelli, Aguilar, Beck, De Kock, Desarnaud, Franzoni, Gulotta, Ioannou, Kamat, Menendez, Rörig-Dalgaard, Sassoni (bib40) 2022; 9 Boyce (bib1) 1951; 113 ISO, Hygrothermal performance of building materials and products — Determination of water absorption coefficient by partial immersion, 2002. D'Altri, de Miranda, Beck, De Kock, Derluyn (bib25) 2021; 304 Zhmud, Tiberg, Hallstensson (bib60) 2000; 228 J. Grunewald, Diffusiver und konvektiver Stoff:und Energietransport in kapillarporösen Baustoffen, TU Dresden, 1997. Koronthalyova, Bagel (bib34) 2015; 78 Flatt, Caruso, Sanchez, Scherer (bib6) 2014; 5 Marcin, Wojciechowski (bib56) 2009; 23 Li, Meng, Tulliani, Giordano, Li, Zhao, Ren (bib32) 2023; 64 Zhou, Li, Feng, Janssen (bib37) 2022; 225 Li, Li, Meng, Liu, Mao, Xie, Liu (bib9) 2021; 186 Brito, Diaz (bib36) 2013; 100 Rivas, Alvarez, Mosquera, Alejano, Taboada (bib65) 2010; 24 He, Li, Meng, Ren, Li, Wu (bib28) 2023; 370 Lubelli, van Hees (bib64) 2007; 8 Lubelli, Cnudde, Diaz-Goncalves, Franzoni, van Hees, Ioannou, Menendez, Nunes, Siedel, Stefanidou, Verges-Belmin, Viles (bib41) 2018; 51 Lubelli, Aguilar, Beck, De Kock, Desarnaud, Franzoni, Gulotta, Ioannou, Kamat, Menendez, Rörig-Dalgaard, Sassoni (bib29) 2022; 55 Castellazzi, de Miranda, Grementieri, Molari, Ubertini (bib18) 2015; 49 Koronthalyova, Bagel, Kuliffayova, Ifka (bib31) 2015; 107 IEA, Catalogue of Material Properties, Condensation and Energy, IEA, 1991. Calia, Lettieri, Masieri, Pal, Licciulli, Arima (bib63) 2017; 165 J.R. Rumble, CRC Handbook of Chemistry and Physics, 102 ed., CRC Press2021-2022. Bonnet, Perrin (bib26) 1999; 32 Jaroš, Vertaľ, Slávik (bib38) 2023; 66 Morillas, de Mendonca Filho, Derluyn, Maguregui, Gregoire, Madariaga (bib5) 2020; 721 ISO, Hygrothermal performance of building materials and products — Determination of water vapour transmission properties — Cup method, 2016. C.E.d. Normalisation, conservation of cultural heritage: test methods: determination of drying properties, 2013. ISO, Hygrothermal performance of building materials and products — Determination of hygroscopic sorption properties, 2021. K. K, L. J, N. N, v.R. D, T. F, Summary report from Task 3 of MEWS Project at the Institute for Research in Construction:hygrothermal properties of several building materials, National Research Council of Canada. Institute for Research in Construction, 2002. ASTM, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates, 2015. Zhao, Feng, Grunewald, Meissner, Wang (bib55) 2022; 216 Derluyn, Griffa, Mannes, Jerjen, Dewanckele, Vontobel, Sheppard, Derome, Cnudde, Lehmann, Carmeliet (bib54) 2013; 36 RILEM, Accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization, 2016. ASTM, Standard Test Methods for Water Vapor Transmission of Materials, 2016. D. Bednarska, M. Koniorczyk, The influence of water and salt content on the thermal conductivity coefficient of red clay brick, 2017. P. A.-S, Transport and crystallization of dissolved salts in cracked porous building materials, KU Leuven university, 2007. E. Standard, Natural stone test methods--Determination of resistance to salt crystallisation, 2020. Franzen, Mirwald (bib30) 2009; 69 K.i. V, M.r. J, C.e. R, Computational model of coupled heat, moisture and salt transport in multi-layered building structures: Implementation of the deterministic physical model and example of application, 2013, pp. 968-971. C.B. Nielsen, Salts in porous building materials, Technical University of Denmark, 1991. D. H, Salt transport and crystallization in porous limestone:neutron-X-ray imaging and poromechanical modeling, ETH Zurich, 2012. Kosior-Kazberuk, Ezerskiy (bib11) 2011; 54 Bai, Xie, Liu, Xie (bib27) 2021; 305 K. J, K.H. E, C.R. J, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the Temperature Range 20-150 “C cand the Pressure Range 0.1–35 MPa, Journal of Physical and Chemical Reference Data 10(1) (1981) 71-87. Jiang, Xie, Lam, He, Yue, Wang, Huang, Kang, Yu, Wu (bib2) 2006; 6 ISO, Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature, 2000. Morillas, Maguregui, Gallego-Cartagena, Marcaida, Carral, Madariaga (bib3) 2020; 745 N. A, Modeling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials, Syracuse University, 2007. Gupta, Huinink, Prat, Pel, Kopinga (bib35) 2014; 109 K. M, G. D, Heat and moisture transport in porous building materials containing salt, Journal of Building Physics 31(4) (2008) 279-300. O. D, A. M, H. S, I. C, W. S, U. T, Measurement of salt solution uptake by ceramic brick using γ-ray projection, Measurement of salt solution uptake by ceramic brick using γ-ray projection, 2013, pp. 529-532. Ruffolo, Russa, Aloise, Belfiore, Macchia, Pezzino, Crisci (bib44) 2013; 114 Yan, Duan, Sun (bib8) 2021; 80 K.M. K, Material properties, Heat, Air and Moisture Transfer in Insulated Envelope Parts, IEA, 1996. Vázquez, Luque, Alonso, Grossi (bib4) 2012; 69 Lubelli, Rörig-Daalgard, Aguilar, Aškrabić, Beck, Bläuer, Cnudde, D’Altri, Derluyn, Desarnaud, Diaz Gonçalves, Flatt, Franzoni, Godts, Gulotta, van Hees, Ioannou, Kamat, De Kock, Menendez, de Miranda, Nunes, Sassoni, Shahidzadeh, Siedel, Slížková, Stefanidou, Theodoridou, Veiga, Vergès-Belmin (bib24) 2023; 56 R.T. 25-PEM, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Materials and Structures 13(75) (1980). ASTM, Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials, 2023. K.H. M, Simultaneous heat and moisture transport in building components:One- and two-dimensional calculation using simple parameters, Fraunhofer IRB Verlag Suttgart, 1995. Feng, Janssen, Feng, Meng (bib66) 2015; 85 R. Carsten, H. Hugo, J. Hans, IEA Annex 41 Whole Building Heat, Air and Moisture Response, Nordic Building Physics Conference, 2008. M.K. Kumaran, J.C. Lackey, N. Normandin, F. Tariku, Dv Reenen, ASHRAE Research Project 1018-RP, ASHRAE, 2002. ASTM, Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion, 2019. Zhou (10.1016/j.cscm.2025.e04447_bib37) 2022; 225 Derluyn (10.1016/j.cscm.2025.e04447_bib54) 2013; 36 Bonnet (10.1016/j.cscm.2025.e04447_bib26) 1999; 32 P. L, H. H, K. K (10.1016/j.cscm.2025.e04447_bib7) 2003; 21 10.1016/j.cscm.2025.e04447_bib39 Yan (10.1016/j.cscm.2025.e04447_bib8) 2021; 80 He (10.1016/j.cscm.2025.e04447_bib28) 2023; 370 10.1016/j.cscm.2025.e04447_bib33 Koronthalyova (10.1016/j.cscm.2025.e04447_bib34) 2015; 78 Zhmud (10.1016/j.cscm.2025.e04447_bib60) 2000; 228 Brito (10.1016/j.cscm.2025.e04447_bib36) 2013; 100 Bai (10.1016/j.cscm.2025.e04447_bib27) 2021; 305 Zhao (10.1016/j.cscm.2025.e04447_bib55) 2022; 216 Kosior-Kazberuk (10.1016/j.cscm.2025.e04447_bib11) 2011; 54 Jiang (10.1016/j.cscm.2025.e04447_bib2) 2006; 6 Ruffolo (10.1016/j.cscm.2025.e04447_bib44) 2013; 114 Vázquez (10.1016/j.cscm.2025.e04447_bib4) 2012; 69 10.1016/j.cscm.2025.e04447_bib21 Lubelli (10.1016/j.cscm.2025.e04447_bib24) 2023; 56 10.1016/j.cscm.2025.e04447_bib22 10.1016/j.cscm.2025.e04447_bib20 Morillas (10.1016/j.cscm.2025.e04447_bib3) 2020; 745 10.1016/j.cscm.2025.e04447_bib23 Calia (10.1016/j.cscm.2025.e04447_bib63) 2017; 165 D'Altri (10.1016/j.cscm.2025.e04447_bib25) 2021; 304 Jaroš (10.1016/j.cscm.2025.e04447_bib38) 2023; 66 10.1016/j.cscm.2025.e04447_bib61 Rivas (10.1016/j.cscm.2025.e04447_bib65) 2010; 24 Li (10.1016/j.cscm.2025.e04447_bib9) 2021; 186 Gherardi (10.1016/j.cscm.2025.e04447_bib62) 2018; 121 Lubelli (10.1016/j.cscm.2025.e04447_bib64) 2007; 8 10.1016/j.cscm.2025.e04447_bib19 Gupta (10.1016/j.cscm.2025.e04447_bib35) 2014; 109 10.1016/j.cscm.2025.e04447_bib16 10.1016/j.cscm.2025.e04447_bib17 Franzen (10.1016/j.cscm.2025.e04447_bib30) 2009; 69 Castellazzi (10.1016/j.cscm.2025.e04447_bib18) 2015; 49 10.1016/j.cscm.2025.e04447_bib10 Li (10.1016/j.cscm.2025.e04447_bib32) 2023; 64 10.1016/j.cscm.2025.e04447_bib52 10.1016/j.cscm.2025.e04447_bib53 10.1016/j.cscm.2025.e04447_bib14 Koronthalyova (10.1016/j.cscm.2025.e04447_bib31) 2015; 107 10.1016/j.cscm.2025.e04447_bib58 10.1016/j.cscm.2025.e04447_bib15 10.1016/j.cscm.2025.e04447_bib59 Boyce (10.1016/j.cscm.2025.e04447_bib1) 1951; 113 10.1016/j.cscm.2025.e04447_bib12 Feng (10.1016/j.cscm.2025.e04447_bib66) 2015; 85 Morillas (10.1016/j.cscm.2025.e04447_bib5) 2020; 721 10.1016/j.cscm.2025.e04447_bib13 10.1016/j.cscm.2025.e04447_bib57 Lubelli (10.1016/j.cscm.2025.e04447_bib29) 2022; 55 10.1016/j.cscm.2025.e04447_bib50 10.1016/j.cscm.2025.e04447_bib51 Lubelli (10.1016/j.cscm.2025.e04447_bib41) 2018; 51 Flatt (10.1016/j.cscm.2025.e04447_bib6) 2014; 5 Marcin (10.1016/j.cscm.2025.e04447_bib56) 2009; 23 Lubelli (10.1016/j.cscm.2025.e04447_bib40) 2022; 9 10.1016/j.cscm.2025.e04447_bib49 10.1016/j.cscm.2025.e04447_bib43 10.1016/j.cscm.2025.e04447_bib42 10.1016/j.cscm.2025.e04447_bib47 10.1016/j.cscm.2025.e04447_bib48 10.1016/j.cscm.2025.e04447_bib45 10.1016/j.cscm.2025.e04447_bib46 |
References_xml | – reference: RILEM, Accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization, 2016. – volume: 5 start-page: 4823 year: 2014 ident: bib6 article-title: Chemo-mechanics of salt damage in stone publication-title: Nat. Commun. – volume: 69 start-page: 1237 year: 2012 end-page: 1248 ident: bib4 article-title: Surface changes on crystalline stones due to salt crystallisation publication-title: Environ. Earth Sci. – volume: 100 start-page: 193 year: 2013 end-page: 210 ident: bib36 article-title: Gonçalves, drying kinetics of porous stones in the presence of NaCl and NaNO3: experimental assessment of the factors affecting liquid and vapour transport publication-title: Transp. Porous Media – reference: ISO, Hygrothermal performance of building materials and products — Determination of water vapour transmission properties — Cup method, 2016. – volume: 8 start-page: 223 year: 2007 end-page: 234 ident: bib64 article-title: Effectiveness of crystallization inhibitors in preventing salt damage in building materials publication-title: J. Cult. Herit. – volume: 304 year: 2021 ident: bib25 article-title: Towards a more effective and reliable salt crystallisation test for porous building materials: predictive modelling of sodium chloride salt distribution publication-title: Constr. Build. Mater. – reference: R.T. 25-PEM, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Materials and Structures 13(75) (1980). – reference: P. A.-S, Transport and crystallization of dissolved salts in cracked porous building materials, KU Leuven university, 2007. – volume: 114 start-page: 753 year: 2013 end-page: 758 ident: bib44 article-title: Efficacy of nanolime in restoration procedures of salt weathered limestone rock publication-title: Appl. Phys. A – reference: ASTM, Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion, 2019. – volume: 113 start-page: 620 year: 1951 end-page: 621 ident: bib1 article-title: Source of atmospheric salts publication-title: Science – volume: 107 start-page: 667 year: 2015 end-page: 682 ident: bib31 article-title: Effect of presence of salt on hygric performance of ceramic bricks publication-title: Transp. Porous Media – reference: IEA, Catalogue of Material Properties, Condensation and Energy, IEA, 1991. – reference: J.R. Rumble, CRC Handbook of Chemistry and Physics, 102 ed., CRC Press2021-2022. – volume: 121 start-page: 13 year: 2018 end-page: 22 ident: bib62 article-title: Improvements in marble protection by means of innovative photocatalytic nanocomposites publication-title: Prog. Org. Coat. – volume: 216 year: 2022 ident: bib55 article-title: Drying characteristics of two capillary porous building materials: calcium silicate and ceramic brick publication-title: Build. Environ. – volume: 51 year: 2018 ident: bib41 article-title: Towards a more effective and reliable salt crystallization test for porous building materials: state of the art publication-title: Mater. Struct. – volume: 55 year: 2022 ident: bib29 article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation publication-title: Mater. Struct. – reference: K.H. M, Simultaneous heat and moisture transport in building components:One- and two-dimensional calculation using simple parameters, Fraunhofer IRB Verlag Suttgart, 1995. – reference: D. H, Salt transport and crystallization in porous limestone:neutron-X-ray imaging and poromechanical modeling, ETH Zurich, 2012. – volume: 49 start-page: 1039 year: 2015 end-page: 1063 ident: bib18 article-title: Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration publication-title: Mater. Struct. – volume: 78 start-page: 1401 year: 2015 end-page: 1406 ident: bib34 article-title: Moisture transport in salt free and salt contaminated ceramic bricks publication-title: Energy Procedia – reference: C.B. Nielsen, Salts in porous building materials, Technical University of Denmark, 1991. – volume: 228 start-page: 263 year: 2000 end-page: 269 ident: bib60 article-title: Dynamics of capillary rise publication-title: J. Colloid Interface Sci. – volume: 370 year: 2023 ident: bib28 article-title: Experimental investigation of the effect of salt on the hygroscopic properties of autoclaved aerated concrete publication-title: Constr. Build. Mater. – reference: ASTM, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates, 2015. – volume: 721 year: 2020 ident: bib5 article-title: Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials publication-title: Sci. Total Environ. – reference: N. A, Modeling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials, Syracuse University, 2007. – reference: ASTM, Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials, 2023. – reference: ISO, Hygrothermal performance of building materials and products — Determination of hygroscopic sorption properties, 2021. – volume: 64 year: 2023 ident: bib32 article-title: Salt migration and capillary absorption characteristics of cement mortar partially immersed in NaCl solution publication-title: J. Build. Eng. – volume: 23 start-page: 2988 year: 2009 end-page: 2996 ident: bib56 article-title: Influence of salt on desorption isotherm and hygral state of cement mortar – modelling using neural networks publication-title: Constr. Build. Mater. – reference: C.E.d. Normalisation, conservation of cultural heritage: test methods: determination of drying properties, 2013. – volume: 225 year: 2022 ident: bib37 article-title: Hygric properties of porous building materials (VIII): influence of reduced air pressure publication-title: Build. Environ. – reference: K.i. V, M.r. J, C.e. R, Computational model of coupled heat, moisture and salt transport in multi-layered building structures: Implementation of the deterministic physical model and example of application, 2013, pp. 968-971. – reference: K. J, K.H. E, C.R. J, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the Temperature Range 20-150 “C cand the Pressure Range 0.1–35 MPa, Journal of Physical and Chemical Reference Data 10(1) (1981) 71-87. – reference: ISO, Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature, 2000. – volume: 69 start-page: 91 year: 2009 end-page: 98 ident: bib30 article-title: Moisture sorption behaviour of salt mixtures in porous stone publication-title: Geochemistry – volume: 109 start-page: 204 year: 2014 end-page: 211 ident: bib35 article-title: Paradoxical drying of a fired-clay brick due to salt crystallization publication-title: Chem. Eng. Sci. – reference: K. M, G. D, Heat and moisture transport in porous building materials containing salt, Journal of Building Physics 31(4) (2008) 279-300. – reference: ISO, Hygrothermal performance of building materials and products — Determination of water absorption coefficient by partial immersion, 2002. – volume: 21 start-page: 317 year: 2003 end-page: 320 ident: bib7 article-title: Salt transport and crystallization in porous building materials publication-title: Magn. Reson Imaging – reference: E. Standard, Natural stone test methods--Determination of resistance to salt crystallisation, 2020. – volume: 85 start-page: 160 year: 2015 end-page: 172 ident: bib66 article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility publication-title: Build. Environ. – volume: 305 year: 2021 ident: bib27 article-title: Effect of salt on hygroscopic properties of cement mortar publication-title: Constr. Build. Mater. – volume: 66 year: 2023 ident: bib38 article-title: Hygric and thermal properties of Slovak building sandstones publication-title: J. Build. Eng. – reference: D. Bednarska, M. Koniorczyk, The influence of water and salt content on the thermal conductivity coefficient of red clay brick, 2017. – reference: R. Carsten, H. Hugo, J. Hans, IEA Annex 41 Whole Building Heat, Air and Moisture Response, Nordic Building Physics Conference, 2008. – volume: 56 year: 2023 ident: bib24 article-title: Recommendation of RILEM TC 271-ASC: new accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization publication-title: Mater. Struct. – reference: O. D, A. M, H. S, I. C, W. S, U. T, Measurement of salt solution uptake by ceramic brick using γ-ray projection, Measurement of salt solution uptake by ceramic brick using γ-ray projection, 2013, pp. 529-532. – reference: M.K. Kumaran, J.C. Lackey, N. Normandin, F. Tariku, Dv Reenen, ASHRAE Research Project 1018-RP, ASHRAE, 2002. – volume: 24 start-page: 766 year: 2010 end-page: 776 ident: bib65 article-title: Crystallization modifiers applied in granite desalination: the role of the stone pore structure publication-title: Constr. Build. Mater. – volume: 32 start-page: 492 year: 1999 end-page: 499 ident: bib26 article-title: Chloride influence on equilibrium properties of mortars publication-title: Mater. Struct. – volume: 165 start-page: 1036 year: 2017 end-page: 1047 ident: bib63 article-title: Limestones coated with photocatalytic TiO 2 to enhance building surface with self-cleaning and depolluting abilities publication-title: J. Clean. Prod. – volume: 54 start-page: 86 year: 2011 end-page: 91 ident: bib11 article-title: Mathematical modelling of thermal conductivity process in salt-contaminated wall materials publication-title: Int. J. Heat. Mass Transf. – reference: K.M. K, Material properties, Heat, Air and Moisture Transfer in Insulated Envelope Parts, IEA, 1996. – reference: J. Grunewald, Diffusiver und konvektiver Stoff:und Energietransport in kapillarporösen Baustoffen, TU Dresden, 1997. – volume: 6 start-page: 1777 year: 2006 end-page: 1813 ident: bib2 article-title: Analysis and quantification of the diversities of aerosol life cycles within AeroCom publication-title: Atmos. Chem. Phys. – volume: 745 year: 2020 ident: bib3 article-title: The influence of marine environment on the conservation state of Built Heritage: an overview study publication-title: Sci. Total Environ. – reference: ASTM, Standard Test Methods for Water Vapor Transmission of Materials, 2016. – volume: 186 year: 2021 ident: bib9 article-title: Effect of moisture on the thermal performance of exterior walls in the tropical islands of the South China Sea publication-title: Appl. Therm. Eng. – volume: 9 start-page: 238 year: 2022 ident: bib40 article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation publication-title: Mater. Struct. – volume: 80 year: 2021 ident: bib8 article-title: Influences of water and salt contents on the thermal conductivity of loess publication-title: Environ. Earth Sci. – reference: K. K, L. J, N. N, v.R. D, T. F, Summary report from Task 3 of MEWS Project at the Institute for Research in Construction:hygrothermal properties of several building materials, National Research Council of Canada. Institute for Research in Construction, 2002. – volume: 36 start-page: 353 year: 2013 end-page: 374 ident: bib54 article-title: Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography publication-title: J. Build. Phys. – volume: 56 issue: 5 year: 2023 ident: 10.1016/j.cscm.2025.e04447_bib24 article-title: Recommendation of RILEM TC 271-ASC: new accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization publication-title: Mater. Struct. doi: 10.1617/s11527-023-02158-0 – ident: 10.1016/j.cscm.2025.e04447_bib58 – volume: 304 year: 2021 ident: 10.1016/j.cscm.2025.e04447_bib25 article-title: Towards a more effective and reliable salt crystallisation test for porous building materials: predictive modelling of sodium chloride salt distribution publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124436 – volume: 228 start-page: 263 issue: 2 year: 2000 ident: 10.1016/j.cscm.2025.e04447_bib60 article-title: Dynamics of capillary rise publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.6951 – ident: 10.1016/j.cscm.2025.e04447_bib16 – volume: 109 start-page: 204 year: 2014 ident: 10.1016/j.cscm.2025.e04447_bib35 article-title: Paradoxical drying of a fired-clay brick due to salt crystallization publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.01.023 – volume: 55 issue: 9 year: 2022 ident: 10.1016/j.cscm.2025.e04447_bib29 article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation publication-title: Mater. Struct. doi: 10.1617/s11527-022-02067-8 – ident: 10.1016/j.cscm.2025.e04447_bib50 – ident: 10.1016/j.cscm.2025.e04447_bib39 – volume: 9 start-page: 238 issue: 55 year: 2022 ident: 10.1016/j.cscm.2025.e04447_bib40 article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation publication-title: Mater. Struct. doi: 10.1617/s11527-022-02067-8 – volume: 107 start-page: 667 issue: 3 year: 2015 ident: 10.1016/j.cscm.2025.e04447_bib31 article-title: Effect of presence of salt on hygric performance of ceramic bricks publication-title: Transp. Porous Media doi: 10.1007/s11242-015-0461-5 – ident: 10.1016/j.cscm.2025.e04447_bib22 – volume: 100 start-page: 193 issue: 2 year: 2013 ident: 10.1016/j.cscm.2025.e04447_bib36 article-title: Gonçalves, drying kinetics of porous stones in the presence of NaCl and NaNO3: experimental assessment of the factors affecting liquid and vapour transport publication-title: Transp. Porous Media doi: 10.1007/s11242-013-0211-5 – volume: 49 start-page: 1039 issue: 3 year: 2015 ident: 10.1016/j.cscm.2025.e04447_bib18 article-title: Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration publication-title: Mater. Struct. doi: 10.1617/s11527-015-0557-y – ident: 10.1016/j.cscm.2025.e04447_bib49 – ident: 10.1016/j.cscm.2025.e04447_bib45 – volume: 305 year: 2021 ident: 10.1016/j.cscm.2025.e04447_bib27 article-title: Effect of salt on hygroscopic properties of cement mortar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124746 – volume: 370 year: 2023 ident: 10.1016/j.cscm.2025.e04447_bib28 article-title: Experimental investigation of the effect of salt on the hygroscopic properties of autoclaved aerated concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.130412 – ident: 10.1016/j.cscm.2025.e04447_bib53 – ident: 10.1016/j.cscm.2025.e04447_bib15 – ident: 10.1016/j.cscm.2025.e04447_bib19 – volume: 186 year: 2021 ident: 10.1016/j.cscm.2025.e04447_bib9 article-title: Effect of moisture on the thermal performance of exterior walls in the tropical islands of the South China Sea publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116505 – ident: 10.1016/j.cscm.2025.e04447_bib57 – volume: 721 year: 2020 ident: 10.1016/j.cscm.2025.e04447_bib5 article-title: Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137687 – volume: 69 start-page: 91 issue: 1 year: 2009 ident: 10.1016/j.cscm.2025.e04447_bib30 article-title: Moisture sorption behaviour of salt mixtures in porous stone publication-title: Geochemistry doi: 10.1016/j.chemer.2008.02.001 – volume: 24 start-page: 766 issue: 5 year: 2010 ident: 10.1016/j.cscm.2025.e04447_bib65 article-title: Crystallization modifiers applied in granite desalination: the role of the stone pore structure publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.10.031 – ident: 10.1016/j.cscm.2025.e04447_bib21 – volume: 745 year: 2020 ident: 10.1016/j.cscm.2025.e04447_bib3 article-title: The influence of marine environment on the conservation state of Built Heritage: an overview study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140899 – volume: 64 year: 2023 ident: 10.1016/j.cscm.2025.e04447_bib32 article-title: Salt migration and capillary absorption characteristics of cement mortar partially immersed in NaCl solution publication-title: J. Build. Eng. – ident: 10.1016/j.cscm.2025.e04447_bib42 – volume: 32 start-page: 492 issue: 221 year: 1999 ident: 10.1016/j.cscm.2025.e04447_bib26 article-title: Chloride influence on equilibrium properties of mortars publication-title: Mater. Struct. doi: 10.1007/BF02481633 – ident: 10.1016/j.cscm.2025.e04447_bib17 doi: 10.1063/1.4825664 – ident: 10.1016/j.cscm.2025.e04447_bib46 – volume: 23 start-page: 2988 issue: 9 year: 2009 ident: 10.1016/j.cscm.2025.e04447_bib56 article-title: Influence of salt on desorption isotherm and hygral state of cement mortar – modelling using neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.05.001 – volume: 36 start-page: 353 issue: 4 year: 2013 ident: 10.1016/j.cscm.2025.e04447_bib54 article-title: Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography publication-title: J. Build. Phys. doi: 10.1177/1744259112473947 – ident: 10.1016/j.cscm.2025.e04447_bib14 – ident: 10.1016/j.cscm.2025.e04447_bib33 – volume: 85 start-page: 160 year: 2015 ident: 10.1016/j.cscm.2025.e04447_bib66 article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.11.036 – volume: 225 year: 2022 ident: 10.1016/j.cscm.2025.e04447_bib37 article-title: Hygric properties of porous building materials (VIII): influence of reduced air pressure publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109680 – ident: 10.1016/j.cscm.2025.e04447_bib52 – volume: 8 start-page: 223 issue: 3 year: 2007 ident: 10.1016/j.cscm.2025.e04447_bib64 article-title: Effectiveness of crystallization inhibitors in preventing salt damage in building materials publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2007.06.001 – ident: 10.1016/j.cscm.2025.e04447_bib47 – volume: 113 start-page: 620 year: 1951 ident: 10.1016/j.cscm.2025.e04447_bib1 article-title: Source of atmospheric salts publication-title: Science doi: 10.1126/science.113.2944.620 – volume: 78 start-page: 1401 year: 2015 ident: 10.1016/j.cscm.2025.e04447_bib34 article-title: Moisture transport in salt free and salt contaminated ceramic bricks publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.161 – ident: 10.1016/j.cscm.2025.e04447_bib20 – volume: 6 start-page: 1777 year: 2006 ident: 10.1016/j.cscm.2025.e04447_bib2 article-title: Analysis and quantification of the diversities of aerosol life cycles within AeroCom publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-1777-2006 – volume: 66 year: 2023 ident: 10.1016/j.cscm.2025.e04447_bib38 article-title: Hygric and thermal properties of Slovak building sandstones publication-title: J. Build. Eng. – volume: 216 year: 2022 ident: 10.1016/j.cscm.2025.e04447_bib55 article-title: Drying characteristics of two capillary porous building materials: calcium silicate and ceramic brick publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109006 – volume: 80 issue: 2 year: 2021 ident: 10.1016/j.cscm.2025.e04447_bib8 article-title: Influences of water and salt contents on the thermal conductivity of loess publication-title: Environ. Earth Sci. doi: 10.1007/s12665-020-09335-2 – volume: 69 start-page: 1237 issue: 4 year: 2012 ident: 10.1016/j.cscm.2025.e04447_bib4 article-title: Surface changes on crystalline stones due to salt crystallisation publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-2003-6 – ident: 10.1016/j.cscm.2025.e04447_bib43 – volume: 165 start-page: 1036 year: 2017 ident: 10.1016/j.cscm.2025.e04447_bib63 article-title: Limestones coated with photocatalytic TiO 2 to enhance building surface with self-cleaning and depolluting abilities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.07.193 – ident: 10.1016/j.cscm.2025.e04447_bib59 – ident: 10.1016/j.cscm.2025.e04447_bib13 – ident: 10.1016/j.cscm.2025.e04447_bib61 doi: 10.1063/1.555641 – volume: 114 start-page: 753 issue: 3 year: 2013 ident: 10.1016/j.cscm.2025.e04447_bib44 article-title: Efficacy of nanolime in restoration procedures of salt weathered limestone rock publication-title: Appl. Phys. A doi: 10.1007/s00339-013-7982-y – volume: 21 start-page: 317 issue: 3-4 year: 2003 ident: 10.1016/j.cscm.2025.e04447_bib7 article-title: Salt transport and crystallization in porous building materials publication-title: Magn. Reson Imaging doi: 10.1016/S0730-725X(03)00161-9 – ident: 10.1016/j.cscm.2025.e04447_bib51 – ident: 10.1016/j.cscm.2025.e04447_bib23 – volume: 121 start-page: 13 year: 2018 ident: 10.1016/j.cscm.2025.e04447_bib62 article-title: Improvements in marble protection by means of innovative photocatalytic nanocomposites publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2018.04.010 – volume: 5 start-page: 4823 year: 2014 ident: 10.1016/j.cscm.2025.e04447_bib6 article-title: Chemo-mechanics of salt damage in stone publication-title: Nat. Commun. doi: 10.1038/ncomms5823 – volume: 54 start-page: 86 issue: 1-3 year: 2011 ident: 10.1016/j.cscm.2025.e04447_bib11 article-title: Mathematical modelling of thermal conductivity process in salt-contaminated wall materials publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.10.004 – ident: 10.1016/j.cscm.2025.e04447_bib10 doi: 10.1177/1744259107088003 – ident: 10.1016/j.cscm.2025.e04447_bib12 doi: 10.1063/1.4994485 – volume: 51 issue: 2 year: 2018 ident: 10.1016/j.cscm.2025.e04447_bib41 article-title: Towards a more effective and reliable salt crystallization test for porous building materials: state of the art publication-title: Mater. Struct. doi: 10.1617/s11527-018-1180-5 – ident: 10.1016/j.cscm.2025.e04447_bib48 |
SSID | ssj0002856827 |
Score | 2.3078363 |
Snippet | Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | e04447 |
SubjectTerms | Hygric properties Mechanism of salt effect Moisture storage Moisture transfer Porous building materials |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTiwIBIjykgc2FNrEdmqPtGpVIcEClbpFjh-lCKVVEgb-PXdOWrULA0OGWH5En5172HefCblnRqfKpj6CuRURl15GuQAvJRe5ckYbw0JW2strOpvz54VYdMh4mwuDYZWt7G9kepDWbUm_RbO_Wa36bwmSbIOFAEoczw_RBWJchiS-xWi3z5JIkcpwcyvWj7BBmzvThHmZymBCeiIeHVKnDQ_0U6Dx31NTe6pnekKOW5uRPjWfdUo6rjgjy8keNz8NLLF0XdCPnyVINrrBPfYSyVLp2tNKf9URBqVrDHwBG5OW8FSY5Ytc3HRVULPWFXaUt9dkU1eEaCJ3TubTyft4FrW3JkQmUXGNe3pJPnCpGCrNlPFOMGFBTSkN-Ofc2wHir4aCa8s8eHNcGMZiFv5fwzS7IN0Cxr4kNLbSx9BE5Vbw1CjFLbfGejaQCkp1jzxssco2DTlGto0a-8wQ2QyRzRpke2SEcO5qIrF1KFiXy6yd2UygVeJcorXGM2EwUDwYXAM29LE1XsseEdvJyA7WCXS1-mPwq3-2uyZH-NYE6N6Qbl1-u1swQ-r8LqyzX9I03Es priority: 102 providerName: Elsevier |
Title | Experimental study on hygric properties of salt-contaminated red sandstone in coastal building envelope |
URI | https://dx.doi.org/10.1016/j.cscm.2025.e04447 https://doaj.org/article/5b000ee2aaa2452082f159037f1dcfa8 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG7MvHgxGjXOH0sP3gwKlAI9bmbLdNGDcXE3UvpjbjFsGXjwv_e9wgxe9OIBDgRa8j3gey3f-0rIFVMyFjq2HsSWe1FqUy_nMErJeS6MkkoxV5X2-BSPp9HDjM9aS32hJqy2B66Bu-VIU8aEUkr8SQiMZYGBfZbYQCsrXZkvcF5rMLV0U0Y8TsOkqZKpBV2qVFh6HvIbgyZpyQ8mcob9LUJqkczogOw32SHt13d1SHZMcUTmw5YLP3V-sHRV0LfPOXzD6Bpn0zdoi0pXlpbyvfJQfi5R4gLZJN3AVmI9L7pu00VB1UqW2FDeLIhNTeF0Q-aYTEfDl7ux16yP4KlQBBXO3oW5b2KeCMmEsoYzroGQhASk88hqH5EWCY-kZhbGbRFXjAXMvamKSXZCOgX0fUpooFMbwCUi1zyKlRCRjrTSlvmpgKOyS663WGXr2gYj2-rDlhkimyGyWY1slwwQzu8z0cLaHYDAZk1gs78C2yV8G4ysyQZqloemFr90fvYfnZ-TPWyy1uVekE61-TCXkH1UeY_s9ifPr5Oee-Bgfz8bfAHyDNyb |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBIECUpwc2FNrEcRKPFFG1PLpApW6W40cpQmmVloF_z52TVGVhYMji5JzozvF9tu--I-SaaZUIk7gAbMuDOHNZkHNYpeQ8F1YrrZnPSnsZJYNx_Djhkxa5b3JhMKyynvurOd3P1nVLp9ZmZzGbdV4jJNkGhABOHM8PYQm0DWggxfoNw0lvvdESZTzJfOlWFAhQok6eqeK89FJjRnrEby1yp6W_HJTn8d_wUxu-p79P9mrQSO-q7zogLVsckunDBjk_9TSxdF7Q9-8pTG10gZvsJbKl0rmjS_W5CjAqXWHkC4BMWsK1xDRfJOOms4LquVpiR3ldJ5vawocT2SMy7j-83Q-CumxCoCMRrnBTL8q7NuGpUExoZznjBvyUUGCAPHamiwYQKY-VYQ6WczHXjIXM_8CaKXZMtgp49wmhoclcCCIiNzxOtBCxiY02jnUzAa2qTW4aXclFxY4hm7CxD4malahZWWm2TXqozvWTyGztG-blVNamlRxhibWRUgoPhQGhOEBcXZa60GinsjbhjTHkr4ECXc3-ePnpP-WuyM7g7eVZPg9HT2dkF-9U0brnZGtVftkLwCSr_NKPuR_uhd9q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+hygric+properties+of+salt-contaminated+red+sandstone+in+coastal+building+envelope&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Yu+Zhang&rft.au=Qinglin+Meng&rft.au=Chuanrui+Li&rft.au=Junsong+Wang&rft.date=2025-07-01&rft.pub=Elsevier&rft.eissn=2214-5095&rft.volume=22&rft.spage=e04447&rft_id=info:doi/10.1016%2Fj.cscm.2025.e04447&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon |