Experimental study on hygric properties of salt-contaminated red sandstone in coastal building envelope

Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial....

Full description

Saved in:
Bibliographic Details
Published inCase Studies in Construction Materials Vol. 22; p. e04447
Main Authors Zhang, Yu, Meng, Qinglin, Li, Chuanrui, Wang, Junsong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models. •Comprehensive hygric properties of salt-contaminated red sandstone were test.•Salt significantly affects sorption/desorption isotherm and vapor permeability coefficient.•The effect of salt on the capillary absorption coefficient and drying flow rate is limited.•The effect mechanism of salt on hygric properties of red sandstone is revealed.
AbstractList Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models.
Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these structures are often composed of porous materials, understanding the hygrothermal properties of such materials under saline conditions is crucial. This study investigates the hygric properties of salt-free and salt-contaminated red sandstones through a comparative analysis. Equilibrium sorption and desorption test, vapor permeability test, capillary absorption test, and drying test were employed to determine hygric property parameters. Results reveal that salt has a limited effect on capillary absorption coefficient and drying flow rate. However, salt had a greater effect on the equilibrium moisture content, with a maximum increase of 428.52 % for hygroscopicity and 485.34 % for exothermicity. In addition, the effect of salt on vapor permeability coefficient was classified as inhibition and facilitation. In the low RH range (RH < 75 %), salt inhibited vapor transmission with a maximum inhibition of 80.95 %; in the high RH range (RH > 75 %), salt promoted vapor transmission with a maximum promotion of 292.75 %. Lastly, the mechanisms underlying the effect of salt on the hygric properties of porous materials are elucidated through a series of microscopic experiments, which was attributed to the properties of salt (hygroscopic deliquescence and weathering crystallization). Due to the difference of relative humidity, salt affected the moisture content, porosity, contact angle, surface tension and viscosity of red sandstone, thereby influencing the hygric properties of porous materials. The findings of this study can provide essential hygrothermal parameters for the development of coupled heat, moisture, and salt transport models. •Comprehensive hygric properties of salt-contaminated red sandstone were test.•Salt significantly affects sorption/desorption isotherm and vapor permeability coefficient.•The effect of salt on the capillary absorption coefficient and drying flow rate is limited.•The effect mechanism of salt on hygric properties of red sandstone is revealed.
ArticleNumber e04447
Author Wang, Junsong
Li, Chuanrui
Zhang, Yu
Meng, Qinglin
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0009-0003-2786-3877
  surname: Zhang
  fullname: Zhang, Yu
  organization: School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Qinglin
  surname: Meng
  fullname: Meng, Qinglin
  organization: School of Architecture and Urban Planning, Chongqing University, Chongqing 400045, China
– sequence: 3
  givenname: Chuanrui
  surname: Li
  fullname: Li, Chuanrui
  organization: School of Architecture, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong 510641, China
– sequence: 4
  givenname: Junsong
  orcidid: 0000-0002-2401-5771
  surname: Wang
  fullname: Wang, Junsong
  email: 20209036@scut.edu.cn
  organization: School of Architecture, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong 510641, China
BookMark eNp9kEtLAzEUhYMo-OofcJU_MDXPzgy4EfEFghtdhzvJTU2ZJiUZxf57UyviysUllyTn45xzSg5jikjIBWdzzvjicjW3xa7nggk9R6aUag_IiRBcNZr1-vDPfkxmpawYY6LTi060J2R5-7nBHNYYJxhpmd7dlqZI37bLHCzd5FRfp4CFJk8LjFNjU_25DhEmdDTXKRBdmaojGiK1CcoONLyH0YW4pBg_cKyQc3LkYSw4-znPyOvd7cvNQ_P0fP94c_3UWNHzqem4EgPDhW57kL31qKV2ciF6GPQwKO-YlW3Xt1qBk77lrdJWSi4HxpSwEuQZedxzXYKV2dRkkLcmQTDfFykvDdRAdkSjq4ghCgAQSgvWCc91z2TrubMeusoSe5bNqZSM_pfHmdk1b1Zm17zZNW_2zVfR1V6ENeVHwGyKDRgtupDRTtVG-E_-BfIWj7s
Cites_doi 10.1617/s11527-023-02158-0
10.1016/j.conbuildmat.2021.124436
10.1006/jcis.2000.6951
10.1016/j.ces.2014.01.023
10.1617/s11527-022-02067-8
10.1007/s11242-015-0461-5
10.1007/s11242-013-0211-5
10.1617/s11527-015-0557-y
10.1016/j.conbuildmat.2021.124746
10.1016/j.conbuildmat.2023.130412
10.1016/j.applthermaleng.2020.116505
10.1016/j.scitotenv.2020.137687
10.1016/j.chemer.2008.02.001
10.1016/j.conbuildmat.2009.10.031
10.1016/j.scitotenv.2020.140899
10.1007/BF02481633
10.1063/1.4825664
10.1016/j.conbuildmat.2009.05.001
10.1177/1744259112473947
10.1016/j.buildenv.2014.11.036
10.1016/j.buildenv.2022.109680
10.1016/j.culher.2007.06.001
10.1126/science.113.2944.620
10.1016/j.egypro.2015.11.161
10.5194/acp-6-1777-2006
10.1016/j.buildenv.2022.109006
10.1007/s12665-020-09335-2
10.1007/s12665-012-2003-6
10.1016/j.jclepro.2017.07.193
10.1063/1.555641
10.1007/s00339-013-7982-y
10.1016/S0730-725X(03)00161-9
10.1016/j.porgcoat.2018.04.010
10.1038/ncomms5823
10.1016/j.ijheatmasstransfer.2010.10.004
10.1177/1744259107088003
10.1063/1.4994485
10.1617/s11527-018-1180-5
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.cscm.2025.e04447
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2214-5095
ExternalDocumentID oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8
10_1016_j_cscm_2025_e04447
S2214509525002451
GroupedDBID 0R~
4.4
457
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IXB
KQ8
M41
M~E
OK1
RIG
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c291t-8142b0e6579a39cfe535d3629ab5bb4fd0c3789754ad3f71745c3313b0042c3a3
IEDL.DBID DOA
ISSN 2214-5095
IngestDate Wed Aug 27 01:25:50 EDT 2025
Thu Jul 10 08:38:20 EDT 2025
Sat Aug 09 17:30:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Porous building materials
Mechanism of salt effect
Hygric properties
Moisture transfer
Moisture storage
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8142b0e6579a39cfe535d3629ab5bb4fd0c3789754ad3f71745c3313b0042c3a3
ORCID 0009-0003-2786-3877
0000-0002-2401-5771
OpenAccessLink https://doaj.org/article/5b000ee2aaa2452082f159037f1dcfa8
ParticipantIDs doaj_primary_oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8
crossref_primary_10_1016_j_cscm_2025_e04447
elsevier_sciencedirect_doi_10_1016_j_cscm_2025_e04447
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Case Studies in Construction Materials
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gherardi, Goidanich, Toniolo (bib62) 2018; 121
P. L, H. H, K. K (bib7) 2003; 21
Lubelli, Aguilar, Beck, De Kock, Desarnaud, Franzoni, Gulotta, Ioannou, Kamat, Menendez, Rörig-Dalgaard, Sassoni (bib40) 2022; 9
Boyce (bib1) 1951; 113
ISO, Hygrothermal performance of building materials and products — Determination of water absorption coefficient by partial immersion, 2002.
D'Altri, de Miranda, Beck, De Kock, Derluyn (bib25) 2021; 304
Zhmud, Tiberg, Hallstensson (bib60) 2000; 228
J. Grunewald, Diffusiver und konvektiver Stoff:und Energietransport in kapillarporösen Baustoffen, TU Dresden, 1997.
Koronthalyova, Bagel (bib34) 2015; 78
Flatt, Caruso, Sanchez, Scherer (bib6) 2014; 5
Marcin, Wojciechowski (bib56) 2009; 23
Li, Meng, Tulliani, Giordano, Li, Zhao, Ren (bib32) 2023; 64
Zhou, Li, Feng, Janssen (bib37) 2022; 225
Li, Li, Meng, Liu, Mao, Xie, Liu (bib9) 2021; 186
Brito, Diaz (bib36) 2013; 100
Rivas, Alvarez, Mosquera, Alejano, Taboada (bib65) 2010; 24
He, Li, Meng, Ren, Li, Wu (bib28) 2023; 370
Lubelli, van Hees (bib64) 2007; 8
Lubelli, Cnudde, Diaz-Goncalves, Franzoni, van Hees, Ioannou, Menendez, Nunes, Siedel, Stefanidou, Verges-Belmin, Viles (bib41) 2018; 51
Lubelli, Aguilar, Beck, De Kock, Desarnaud, Franzoni, Gulotta, Ioannou, Kamat, Menendez, Rörig-Dalgaard, Sassoni (bib29) 2022; 55
Castellazzi, de Miranda, Grementieri, Molari, Ubertini (bib18) 2015; 49
Koronthalyova, Bagel, Kuliffayova, Ifka (bib31) 2015; 107
IEA, Catalogue of Material Properties, Condensation and Energy, IEA, 1991.
Calia, Lettieri, Masieri, Pal, Licciulli, Arima (bib63) 2017; 165
J.R. Rumble, CRC Handbook of Chemistry and Physics, 102 ed., CRC Press2021-2022.
Bonnet, Perrin (bib26) 1999; 32
Jaroš, Vertaľ, Slávik (bib38) 2023; 66
Morillas, de Mendonca Filho, Derluyn, Maguregui, Gregoire, Madariaga (bib5) 2020; 721
ISO, Hygrothermal performance of building materials and products — Determination of water vapour transmission properties — Cup method, 2016.
C.E.d. Normalisation, conservation of cultural heritage: test methods: determination of drying properties, 2013.
ISO, Hygrothermal performance of building materials and products — Determination of hygroscopic sorption properties, 2021.
K. K, L. J, N. N, v.R. D, T. F, Summary report from Task 3 of MEWS Project at the Institute for Research in Construction:hygrothermal properties of several building materials, National Research Council of Canada. Institute for Research in Construction, 2002.
ASTM, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates, 2015.
Zhao, Feng, Grunewald, Meissner, Wang (bib55) 2022; 216
Derluyn, Griffa, Mannes, Jerjen, Dewanckele, Vontobel, Sheppard, Derome, Cnudde, Lehmann, Carmeliet (bib54) 2013; 36
RILEM, Accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization, 2016.
ASTM, Standard Test Methods for Water Vapor Transmission of Materials, 2016.
D. Bednarska, M. Koniorczyk, The influence of water and salt content on the thermal conductivity coefficient of red clay brick, 2017.
P. A.-S, Transport and crystallization of dissolved salts in cracked porous building materials, KU Leuven university, 2007.
E. Standard, Natural stone test methods--Determination of resistance to salt crystallisation, 2020.
Franzen, Mirwald (bib30) 2009; 69
K.i. V, M.r. J, C.e. R, Computational model of coupled heat, moisture and salt transport in multi-layered building structures: Implementation of the deterministic physical model and example of application, 2013, pp. 968-971.
C.B. Nielsen, Salts in porous building materials, Technical University of Denmark, 1991.
D. H, Salt transport and crystallization in porous limestone:neutron-X-ray imaging and poromechanical modeling, ETH Zurich, 2012.
Kosior-Kazberuk, Ezerskiy (bib11) 2011; 54
Bai, Xie, Liu, Xie (bib27) 2021; 305
K. J, K.H. E, C.R. J, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the Temperature Range 20-150 “C cand the Pressure Range 0.1–35 MPa, Journal of Physical and Chemical Reference Data 10(1) (1981) 71-87.
Jiang, Xie, Lam, He, Yue, Wang, Huang, Kang, Yu, Wu (bib2) 2006; 6
ISO, Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature, 2000.
Morillas, Maguregui, Gallego-Cartagena, Marcaida, Carral, Madariaga (bib3) 2020; 745
N. A, Modeling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials, Syracuse University, 2007.
Gupta, Huinink, Prat, Pel, Kopinga (bib35) 2014; 109
K. M, G. D, Heat and moisture transport in porous building materials containing salt, Journal of Building Physics 31(4) (2008) 279-300.
O. D, A. M, H. S, I. C, W. S, U. T, Measurement of salt solution uptake by ceramic brick using γ-ray projection, Measurement of salt solution uptake by ceramic brick using γ-ray projection, 2013, pp. 529-532.
Ruffolo, Russa, Aloise, Belfiore, Macchia, Pezzino, Crisci (bib44) 2013; 114
Yan, Duan, Sun (bib8) 2021; 80
K.M. K, Material properties, Heat, Air and Moisture Transfer in Insulated Envelope Parts, IEA, 1996.
Vázquez, Luque, Alonso, Grossi (bib4) 2012; 69
Lubelli, Rörig-Daalgard, Aguilar, Aškrabić, Beck, Bläuer, Cnudde, D’Altri, Derluyn, Desarnaud, Diaz Gonçalves, Flatt, Franzoni, Godts, Gulotta, van Hees, Ioannou, Kamat, De Kock, Menendez, de Miranda, Nunes, Sassoni, Shahidzadeh, Siedel, Slížková, Stefanidou, Theodoridou, Veiga, Vergès-Belmin (bib24) 2023; 56
R.T. 25-PEM, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Materials and Structures 13(75) (1980).
ASTM, Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials, 2023.
K.H. M, Simultaneous heat and moisture transport in building components:One- and two-dimensional calculation using simple parameters, Fraunhofer IRB Verlag Suttgart, 1995.
Feng, Janssen, Feng, Meng (bib66) 2015; 85
R. Carsten, H. Hugo, J. Hans, IEA Annex 41 Whole Building Heat, Air and Moisture Response, Nordic Building Physics Conference, 2008.
M.K. Kumaran, J.C. Lackey, N. Normandin, F. Tariku, Dv Reenen, ASHRAE Research Project 1018-RP, ASHRAE, 2002.
ASTM, Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion, 2019.
Zhou (10.1016/j.cscm.2025.e04447_bib37) 2022; 225
Derluyn (10.1016/j.cscm.2025.e04447_bib54) 2013; 36
Bonnet (10.1016/j.cscm.2025.e04447_bib26) 1999; 32
P. L, H. H, K. K (10.1016/j.cscm.2025.e04447_bib7) 2003; 21
10.1016/j.cscm.2025.e04447_bib39
Yan (10.1016/j.cscm.2025.e04447_bib8) 2021; 80
He (10.1016/j.cscm.2025.e04447_bib28) 2023; 370
10.1016/j.cscm.2025.e04447_bib33
Koronthalyova (10.1016/j.cscm.2025.e04447_bib34) 2015; 78
Zhmud (10.1016/j.cscm.2025.e04447_bib60) 2000; 228
Brito (10.1016/j.cscm.2025.e04447_bib36) 2013; 100
Bai (10.1016/j.cscm.2025.e04447_bib27) 2021; 305
Zhao (10.1016/j.cscm.2025.e04447_bib55) 2022; 216
Kosior-Kazberuk (10.1016/j.cscm.2025.e04447_bib11) 2011; 54
Jiang (10.1016/j.cscm.2025.e04447_bib2) 2006; 6
Ruffolo (10.1016/j.cscm.2025.e04447_bib44) 2013; 114
Vázquez (10.1016/j.cscm.2025.e04447_bib4) 2012; 69
10.1016/j.cscm.2025.e04447_bib21
Lubelli (10.1016/j.cscm.2025.e04447_bib24) 2023; 56
10.1016/j.cscm.2025.e04447_bib22
10.1016/j.cscm.2025.e04447_bib20
Morillas (10.1016/j.cscm.2025.e04447_bib3) 2020; 745
10.1016/j.cscm.2025.e04447_bib23
Calia (10.1016/j.cscm.2025.e04447_bib63) 2017; 165
D'Altri (10.1016/j.cscm.2025.e04447_bib25) 2021; 304
Jaroš (10.1016/j.cscm.2025.e04447_bib38) 2023; 66
10.1016/j.cscm.2025.e04447_bib61
Rivas (10.1016/j.cscm.2025.e04447_bib65) 2010; 24
Li (10.1016/j.cscm.2025.e04447_bib9) 2021; 186
Gherardi (10.1016/j.cscm.2025.e04447_bib62) 2018; 121
Lubelli (10.1016/j.cscm.2025.e04447_bib64) 2007; 8
10.1016/j.cscm.2025.e04447_bib19
Gupta (10.1016/j.cscm.2025.e04447_bib35) 2014; 109
10.1016/j.cscm.2025.e04447_bib16
10.1016/j.cscm.2025.e04447_bib17
Franzen (10.1016/j.cscm.2025.e04447_bib30) 2009; 69
Castellazzi (10.1016/j.cscm.2025.e04447_bib18) 2015; 49
10.1016/j.cscm.2025.e04447_bib10
Li (10.1016/j.cscm.2025.e04447_bib32) 2023; 64
10.1016/j.cscm.2025.e04447_bib52
10.1016/j.cscm.2025.e04447_bib53
10.1016/j.cscm.2025.e04447_bib14
Koronthalyova (10.1016/j.cscm.2025.e04447_bib31) 2015; 107
10.1016/j.cscm.2025.e04447_bib58
10.1016/j.cscm.2025.e04447_bib15
10.1016/j.cscm.2025.e04447_bib59
Boyce (10.1016/j.cscm.2025.e04447_bib1) 1951; 113
10.1016/j.cscm.2025.e04447_bib12
Feng (10.1016/j.cscm.2025.e04447_bib66) 2015; 85
Morillas (10.1016/j.cscm.2025.e04447_bib5) 2020; 721
10.1016/j.cscm.2025.e04447_bib13
10.1016/j.cscm.2025.e04447_bib57
Lubelli (10.1016/j.cscm.2025.e04447_bib29) 2022; 55
10.1016/j.cscm.2025.e04447_bib50
10.1016/j.cscm.2025.e04447_bib51
Lubelli (10.1016/j.cscm.2025.e04447_bib41) 2018; 51
Flatt (10.1016/j.cscm.2025.e04447_bib6) 2014; 5
Marcin (10.1016/j.cscm.2025.e04447_bib56) 2009; 23
Lubelli (10.1016/j.cscm.2025.e04447_bib40) 2022; 9
10.1016/j.cscm.2025.e04447_bib49
10.1016/j.cscm.2025.e04447_bib43
10.1016/j.cscm.2025.e04447_bib42
10.1016/j.cscm.2025.e04447_bib47
10.1016/j.cscm.2025.e04447_bib48
10.1016/j.cscm.2025.e04447_bib45
10.1016/j.cscm.2025.e04447_bib46
References_xml – reference: RILEM, Accelerated laboratory test for the assessment of the durability of materials with respect to salt crystallization, 2016.
– volume: 5
  start-page: 4823
  year: 2014
  ident: bib6
  article-title: Chemo-mechanics of salt damage in stone
  publication-title: Nat. Commun.
– volume: 69
  start-page: 1237
  year: 2012
  end-page: 1248
  ident: bib4
  article-title: Surface changes on crystalline stones due to salt crystallisation
  publication-title: Environ. Earth Sci.
– volume: 100
  start-page: 193
  year: 2013
  end-page: 210
  ident: bib36
  article-title: Gonçalves, drying kinetics of porous stones in the presence of NaCl and NaNO3: experimental assessment of the factors affecting liquid and vapour transport
  publication-title: Transp. Porous Media
– reference: ISO, Hygrothermal performance of building materials and products — Determination of water vapour transmission properties — Cup method, 2016.
– volume: 8
  start-page: 223
  year: 2007
  end-page: 234
  ident: bib64
  article-title: Effectiveness of crystallization inhibitors in preventing salt damage in building materials
  publication-title: J. Cult. Herit.
– volume: 304
  year: 2021
  ident: bib25
  article-title: Towards a more effective and reliable salt crystallisation test for porous building materials: predictive modelling of sodium chloride salt distribution
  publication-title: Constr. Build. Mater.
– reference: R.T. 25-PEM, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods, Materials and Structures 13(75) (1980).
– reference: P. A.-S, Transport and crystallization of dissolved salts in cracked porous building materials, KU Leuven university, 2007.
– volume: 114
  start-page: 753
  year: 2013
  end-page: 758
  ident: bib44
  article-title: Efficacy of nanolime in restoration procedures of salt weathered limestone rock
  publication-title: Appl. Phys. A
– reference: ASTM, Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion, 2019.
– volume: 113
  start-page: 620
  year: 1951
  end-page: 621
  ident: bib1
  article-title: Source of atmospheric salts
  publication-title: Science
– volume: 107
  start-page: 667
  year: 2015
  end-page: 682
  ident: bib31
  article-title: Effect of presence of salt on hygric performance of ceramic bricks
  publication-title: Transp. Porous Media
– reference: IEA, Catalogue of Material Properties, Condensation and Energy, IEA, 1991.
– reference: J.R. Rumble, CRC Handbook of Chemistry and Physics, 102 ed., CRC Press2021-2022.
– volume: 121
  start-page: 13
  year: 2018
  end-page: 22
  ident: bib62
  article-title: Improvements in marble protection by means of innovative photocatalytic nanocomposites
  publication-title: Prog. Org. Coat.
– volume: 216
  year: 2022
  ident: bib55
  article-title: Drying characteristics of two capillary porous building materials: calcium silicate and ceramic brick
  publication-title: Build. Environ.
– volume: 51
  year: 2018
  ident: bib41
  article-title: Towards a more effective and reliable salt crystallization test for porous building materials: state of the art
  publication-title: Mater. Struct.
– volume: 55
  year: 2022
  ident: bib29
  article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation
  publication-title: Mater. Struct.
– reference: K.H. M, Simultaneous heat and moisture transport in building components:One- and two-dimensional calculation using simple parameters, Fraunhofer IRB Verlag Suttgart, 1995.
– reference: D. H, Salt transport and crystallization in porous limestone:neutron-X-ray imaging and poromechanical modeling, ETH Zurich, 2012.
– volume: 49
  start-page: 1039
  year: 2015
  end-page: 1063
  ident: bib18
  article-title: Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration
  publication-title: Mater. Struct.
– volume: 78
  start-page: 1401
  year: 2015
  end-page: 1406
  ident: bib34
  article-title: Moisture transport in salt free and salt contaminated ceramic bricks
  publication-title: Energy Procedia
– reference: C.B. Nielsen, Salts in porous building materials, Technical University of Denmark, 1991.
– volume: 228
  start-page: 263
  year: 2000
  end-page: 269
  ident: bib60
  article-title: Dynamics of capillary rise
  publication-title: J. Colloid Interface Sci.
– volume: 370
  year: 2023
  ident: bib28
  article-title: Experimental investigation of the effect of salt on the hygroscopic properties of autoclaved aerated concrete
  publication-title: Constr. Build. Mater.
– reference: ASTM, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates, 2015.
– volume: 721
  year: 2020
  ident: bib5
  article-title: Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials
  publication-title: Sci. Total Environ.
– reference: N. A, Modeling and numerical simulation of salt transport and phase transitions in unsaturated porous building materials, Syracuse University, 2007.
– reference: ASTM, Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials, 2023.
– reference: ISO, Hygrothermal performance of building materials and products — Determination of hygroscopic sorption properties, 2021.
– volume: 64
  year: 2023
  ident: bib32
  article-title: Salt migration and capillary absorption characteristics of cement mortar partially immersed in NaCl solution
  publication-title: J. Build. Eng.
– volume: 23
  start-page: 2988
  year: 2009
  end-page: 2996
  ident: bib56
  article-title: Influence of salt on desorption isotherm and hygral state of cement mortar – modelling using neural networks
  publication-title: Constr. Build. Mater.
– reference: C.E.d. Normalisation, conservation of cultural heritage: test methods: determination of drying properties, 2013.
– volume: 225
  year: 2022
  ident: bib37
  article-title: Hygric properties of porous building materials (VIII): influence of reduced air pressure
  publication-title: Build. Environ.
– reference: K.i. V, M.r. J, C.e. R, Computational model of coupled heat, moisture and salt transport in multi-layered building structures: Implementation of the deterministic physical model and example of application, 2013, pp. 968-971.
– reference: K. J, K.H. E, C.R. J, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solutions in the Temperature Range 20-150 “C cand the Pressure Range 0.1–35 MPa, Journal of Physical and Chemical Reference Data 10(1) (1981) 71-87.
– reference: ISO, Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature, 2000.
– volume: 69
  start-page: 91
  year: 2009
  end-page: 98
  ident: bib30
  article-title: Moisture sorption behaviour of salt mixtures in porous stone
  publication-title: Geochemistry
– volume: 109
  start-page: 204
  year: 2014
  end-page: 211
  ident: bib35
  article-title: Paradoxical drying of a fired-clay brick due to salt crystallization
  publication-title: Chem. Eng. Sci.
– reference: K. M, G. D, Heat and moisture transport in porous building materials containing salt, Journal of Building Physics 31(4) (2008) 279-300.
– reference: ISO, Hygrothermal performance of building materials and products — Determination of water absorption coefficient by partial immersion, 2002.
– volume: 21
  start-page: 317
  year: 2003
  end-page: 320
  ident: bib7
  article-title: Salt transport and crystallization in porous building materials
  publication-title: Magn. Reson Imaging
– reference: E. Standard, Natural stone test methods--Determination of resistance to salt crystallisation, 2020.
– volume: 85
  start-page: 160
  year: 2015
  end-page: 172
  ident: bib66
  article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility
  publication-title: Build. Environ.
– volume: 305
  year: 2021
  ident: bib27
  article-title: Effect of salt on hygroscopic properties of cement mortar
  publication-title: Constr. Build. Mater.
– volume: 66
  year: 2023
  ident: bib38
  article-title: Hygric and thermal properties of Slovak building sandstones
  publication-title: J. Build. Eng.
– reference: D. Bednarska, M. Koniorczyk, The influence of water and salt content on the thermal conductivity coefficient of red clay brick, 2017.
– reference: R. Carsten, H. Hugo, J. Hans, IEA Annex 41 Whole Building Heat, Air and Moisture Response, Nordic Building Physics Conference, 2008.
– volume: 56
  year: 2023
  ident: bib24
  article-title: Recommendation of RILEM TC 271-ASC: new accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization
  publication-title: Mater. Struct.
– reference: O. D, A. M, H. S, I. C, W. S, U. T, Measurement of salt solution uptake by ceramic brick using γ-ray projection, Measurement of salt solution uptake by ceramic brick using γ-ray projection, 2013, pp. 529-532.
– reference: M.K. Kumaran, J.C. Lackey, N. Normandin, F. Tariku, Dv Reenen, ASHRAE Research Project 1018-RP, ASHRAE, 2002.
– volume: 24
  start-page: 766
  year: 2010
  end-page: 776
  ident: bib65
  article-title: Crystallization modifiers applied in granite desalination: the role of the stone pore structure
  publication-title: Constr. Build. Mater.
– volume: 32
  start-page: 492
  year: 1999
  end-page: 499
  ident: bib26
  article-title: Chloride influence on equilibrium properties of mortars
  publication-title: Mater. Struct.
– volume: 165
  start-page: 1036
  year: 2017
  end-page: 1047
  ident: bib63
  article-title: Limestones coated with photocatalytic TiO 2 to enhance building surface with self-cleaning and depolluting abilities
  publication-title: J. Clean. Prod.
– volume: 54
  start-page: 86
  year: 2011
  end-page: 91
  ident: bib11
  article-title: Mathematical modelling of thermal conductivity process in salt-contaminated wall materials
  publication-title: Int. J. Heat. Mass Transf.
– reference: K.M. K, Material properties, Heat, Air and Moisture Transfer in Insulated Envelope Parts, IEA, 1996.
– reference: J. Grunewald, Diffusiver und konvektiver Stoff:und Energietransport in kapillarporösen Baustoffen, TU Dresden, 1997.
– volume: 6
  start-page: 1777
  year: 2006
  end-page: 1813
  ident: bib2
  article-title: Analysis and quantification of the diversities of aerosol life cycles within AeroCom
  publication-title: Atmos. Chem. Phys.
– volume: 745
  year: 2020
  ident: bib3
  article-title: The influence of marine environment on the conservation state of Built Heritage: an overview study
  publication-title: Sci. Total Environ.
– reference: ASTM, Standard Test Methods for Water Vapor Transmission of Materials, 2016.
– volume: 186
  year: 2021
  ident: bib9
  article-title: Effect of moisture on the thermal performance of exterior walls in the tropical islands of the South China Sea
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 238
  year: 2022
  ident: bib40
  article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation
  publication-title: Mater. Struct.
– volume: 80
  year: 2021
  ident: bib8
  article-title: Influences of water and salt contents on the thermal conductivity of loess
  publication-title: Environ. Earth Sci.
– reference: K. K, L. J, N. N, v.R. D, T. F, Summary report from Task 3 of MEWS Project at the Institute for Research in Construction:hygrothermal properties of several building materials, National Research Council of Canada. Institute for Research in Construction, 2002.
– volume: 36
  start-page: 353
  year: 2013
  end-page: 374
  ident: bib54
  article-title: Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography
  publication-title: J. Build. Phys.
– volume: 56
  issue: 5
  year: 2023
  ident: 10.1016/j.cscm.2025.e04447_bib24
  article-title: Recommendation of RILEM TC 271-ASC: new accelerated test procedure for the assessment of resistance of natural stone and fired-clay brick units against salt crystallization
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-023-02158-0
– ident: 10.1016/j.cscm.2025.e04447_bib58
– volume: 304
  year: 2021
  ident: 10.1016/j.cscm.2025.e04447_bib25
  article-title: Towards a more effective and reliable salt crystallisation test for porous building materials: predictive modelling of sodium chloride salt distribution
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124436
– volume: 228
  start-page: 263
  issue: 2
  year: 2000
  ident: 10.1016/j.cscm.2025.e04447_bib60
  article-title: Dynamics of capillary rise
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.6951
– ident: 10.1016/j.cscm.2025.e04447_bib16
– volume: 109
  start-page: 204
  year: 2014
  ident: 10.1016/j.cscm.2025.e04447_bib35
  article-title: Paradoxical drying of a fired-clay brick due to salt crystallization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.01.023
– volume: 55
  issue: 9
  year: 2022
  ident: 10.1016/j.cscm.2025.e04447_bib29
  article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-022-02067-8
– ident: 10.1016/j.cscm.2025.e04447_bib50
– ident: 10.1016/j.cscm.2025.e04447_bib39
– volume: 9
  start-page: 238
  issue: 55
  year: 2022
  ident: 10.1016/j.cscm.2025.e04447_bib40
  article-title: A new accelerated salt weathering test by RILEM TC 271-ASC: preliminary round robin validation
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-022-02067-8
– volume: 107
  start-page: 667
  issue: 3
  year: 2015
  ident: 10.1016/j.cscm.2025.e04447_bib31
  article-title: Effect of presence of salt on hygric performance of ceramic bricks
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-015-0461-5
– ident: 10.1016/j.cscm.2025.e04447_bib22
– volume: 100
  start-page: 193
  issue: 2
  year: 2013
  ident: 10.1016/j.cscm.2025.e04447_bib36
  article-title: Gonçalves, drying kinetics of porous stones in the presence of NaCl and NaNO3: experimental assessment of the factors affecting liquid and vapour transport
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-013-0211-5
– volume: 49
  start-page: 1039
  issue: 3
  year: 2015
  ident: 10.1016/j.cscm.2025.e04447_bib18
  article-title: Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-015-0557-y
– ident: 10.1016/j.cscm.2025.e04447_bib49
– ident: 10.1016/j.cscm.2025.e04447_bib45
– volume: 305
  year: 2021
  ident: 10.1016/j.cscm.2025.e04447_bib27
  article-title: Effect of salt on hygroscopic properties of cement mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124746
– volume: 370
  year: 2023
  ident: 10.1016/j.cscm.2025.e04447_bib28
  article-title: Experimental investigation of the effect of salt on the hygroscopic properties of autoclaved aerated concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.130412
– ident: 10.1016/j.cscm.2025.e04447_bib53
– ident: 10.1016/j.cscm.2025.e04447_bib15
– ident: 10.1016/j.cscm.2025.e04447_bib19
– volume: 186
  year: 2021
  ident: 10.1016/j.cscm.2025.e04447_bib9
  article-title: Effect of moisture on the thermal performance of exterior walls in the tropical islands of the South China Sea
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116505
– ident: 10.1016/j.cscm.2025.e04447_bib57
– volume: 721
  year: 2020
  ident: 10.1016/j.cscm.2025.e04447_bib5
  article-title: Decay processes in buildings close to the sea induced by marine aerosol: salt depositions inside construction materials
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137687
– volume: 69
  start-page: 91
  issue: 1
  year: 2009
  ident: 10.1016/j.cscm.2025.e04447_bib30
  article-title: Moisture sorption behaviour of salt mixtures in porous stone
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2008.02.001
– volume: 24
  start-page: 766
  issue: 5
  year: 2010
  ident: 10.1016/j.cscm.2025.e04447_bib65
  article-title: Crystallization modifiers applied in granite desalination: the role of the stone pore structure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.10.031
– ident: 10.1016/j.cscm.2025.e04447_bib21
– volume: 745
  year: 2020
  ident: 10.1016/j.cscm.2025.e04447_bib3
  article-title: The influence of marine environment on the conservation state of Built Heritage: an overview study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140899
– volume: 64
  year: 2023
  ident: 10.1016/j.cscm.2025.e04447_bib32
  article-title: Salt migration and capillary absorption characteristics of cement mortar partially immersed in NaCl solution
  publication-title: J. Build. Eng.
– ident: 10.1016/j.cscm.2025.e04447_bib42
– volume: 32
  start-page: 492
  issue: 221
  year: 1999
  ident: 10.1016/j.cscm.2025.e04447_bib26
  article-title: Chloride influence on equilibrium properties of mortars
  publication-title: Mater. Struct.
  doi: 10.1007/BF02481633
– ident: 10.1016/j.cscm.2025.e04447_bib17
  doi: 10.1063/1.4825664
– ident: 10.1016/j.cscm.2025.e04447_bib46
– volume: 23
  start-page: 2988
  issue: 9
  year: 2009
  ident: 10.1016/j.cscm.2025.e04447_bib56
  article-title: Influence of salt on desorption isotherm and hygral state of cement mortar – modelling using neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.05.001
– volume: 36
  start-page: 353
  issue: 4
  year: 2013
  ident: 10.1016/j.cscm.2025.e04447_bib54
  article-title: Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography
  publication-title: J. Build. Phys.
  doi: 10.1177/1744259112473947
– ident: 10.1016/j.cscm.2025.e04447_bib14
– ident: 10.1016/j.cscm.2025.e04447_bib33
– volume: 85
  start-page: 160
  year: 2015
  ident: 10.1016/j.cscm.2025.e04447_bib66
  article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.11.036
– volume: 225
  year: 2022
  ident: 10.1016/j.cscm.2025.e04447_bib37
  article-title: Hygric properties of porous building materials (VIII): influence of reduced air pressure
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109680
– ident: 10.1016/j.cscm.2025.e04447_bib52
– volume: 8
  start-page: 223
  issue: 3
  year: 2007
  ident: 10.1016/j.cscm.2025.e04447_bib64
  article-title: Effectiveness of crystallization inhibitors in preventing salt damage in building materials
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2007.06.001
– ident: 10.1016/j.cscm.2025.e04447_bib47
– volume: 113
  start-page: 620
  year: 1951
  ident: 10.1016/j.cscm.2025.e04447_bib1
  article-title: Source of atmospheric salts
  publication-title: Science
  doi: 10.1126/science.113.2944.620
– volume: 78
  start-page: 1401
  year: 2015
  ident: 10.1016/j.cscm.2025.e04447_bib34
  article-title: Moisture transport in salt free and salt contaminated ceramic bricks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.161
– ident: 10.1016/j.cscm.2025.e04447_bib20
– volume: 6
  start-page: 1777
  year: 2006
  ident: 10.1016/j.cscm.2025.e04447_bib2
  article-title: Analysis and quantification of the diversities of aerosol life cycles within AeroCom
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-6-1777-2006
– volume: 66
  year: 2023
  ident: 10.1016/j.cscm.2025.e04447_bib38
  article-title: Hygric and thermal properties of Slovak building sandstones
  publication-title: J. Build. Eng.
– volume: 216
  year: 2022
  ident: 10.1016/j.cscm.2025.e04447_bib55
  article-title: Drying characteristics of two capillary porous building materials: calcium silicate and ceramic brick
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109006
– volume: 80
  issue: 2
  year: 2021
  ident: 10.1016/j.cscm.2025.e04447_bib8
  article-title: Influences of water and salt contents on the thermal conductivity of loess
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-020-09335-2
– volume: 69
  start-page: 1237
  issue: 4
  year: 2012
  ident: 10.1016/j.cscm.2025.e04447_bib4
  article-title: Surface changes on crystalline stones due to salt crystallisation
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2003-6
– ident: 10.1016/j.cscm.2025.e04447_bib43
– volume: 165
  start-page: 1036
  year: 2017
  ident: 10.1016/j.cscm.2025.e04447_bib63
  article-title: Limestones coated with photocatalytic TiO 2 to enhance building surface with self-cleaning and depolluting abilities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.07.193
– ident: 10.1016/j.cscm.2025.e04447_bib59
– ident: 10.1016/j.cscm.2025.e04447_bib13
– ident: 10.1016/j.cscm.2025.e04447_bib61
  doi: 10.1063/1.555641
– volume: 114
  start-page: 753
  issue: 3
  year: 2013
  ident: 10.1016/j.cscm.2025.e04447_bib44
  article-title: Efficacy of nanolime in restoration procedures of salt weathered limestone rock
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-013-7982-y
– volume: 21
  start-page: 317
  issue: 3-4
  year: 2003
  ident: 10.1016/j.cscm.2025.e04447_bib7
  article-title: Salt transport and crystallization in porous building materials
  publication-title: Magn. Reson Imaging
  doi: 10.1016/S0730-725X(03)00161-9
– ident: 10.1016/j.cscm.2025.e04447_bib51
– ident: 10.1016/j.cscm.2025.e04447_bib23
– volume: 121
  start-page: 13
  year: 2018
  ident: 10.1016/j.cscm.2025.e04447_bib62
  article-title: Improvements in marble protection by means of innovative photocatalytic nanocomposites
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2018.04.010
– volume: 5
  start-page: 4823
  year: 2014
  ident: 10.1016/j.cscm.2025.e04447_bib6
  article-title: Chemo-mechanics of salt damage in stone
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5823
– volume: 54
  start-page: 86
  issue: 1-3
  year: 2011
  ident: 10.1016/j.cscm.2025.e04447_bib11
  article-title: Mathematical modelling of thermal conductivity process in salt-contaminated wall materials
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.10.004
– ident: 10.1016/j.cscm.2025.e04447_bib10
  doi: 10.1177/1744259107088003
– ident: 10.1016/j.cscm.2025.e04447_bib12
  doi: 10.1063/1.4994485
– volume: 51
  issue: 2
  year: 2018
  ident: 10.1016/j.cscm.2025.e04447_bib41
  article-title: Towards a more effective and reliable salt crystallization test for porous building materials: state of the art
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-018-1180-5
– ident: 10.1016/j.cscm.2025.e04447_bib48
SSID ssj0002856827
Score 2.3078363
Snippet Building envelopes in coastal areas are exposed to both the heat and humidity of inland regions and the corrosive effects of salt spray. Given that these...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage e04447
SubjectTerms Hygric properties
Mechanism of salt effect
Moisture storage
Moisture transfer
Porous building materials
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqTiwIBIjykgc2FNrEdmqPtGpVIcEClbpFjh-lCKVVEgb-PXdOWrULA0OGWH5En5172HefCblnRqfKpj6CuRURl15GuQAvJRe5ckYbw0JW2strOpvz54VYdMh4mwuDYZWt7G9kepDWbUm_RbO_Wa36bwmSbIOFAEoczw_RBWJchiS-xWi3z5JIkcpwcyvWj7BBmzvThHmZymBCeiIeHVKnDQ_0U6Dx31NTe6pnekKOW5uRPjWfdUo6rjgjy8keNz8NLLF0XdCPnyVINrrBPfYSyVLp2tNKf9URBqVrDHwBG5OW8FSY5Ytc3HRVULPWFXaUt9dkU1eEaCJ3TubTyft4FrW3JkQmUXGNe3pJPnCpGCrNlPFOMGFBTSkN-Ofc2wHir4aCa8s8eHNcGMZiFv5fwzS7IN0Cxr4kNLbSx9BE5Vbw1CjFLbfGejaQCkp1jzxssco2DTlGto0a-8wQ2QyRzRpke2SEcO5qIrF1KFiXy6yd2UygVeJcorXGM2EwUDwYXAM29LE1XsseEdvJyA7WCXS1-mPwq3-2uyZH-NYE6N6Qbl1-u1swQ-r8LqyzX9I03Es
  priority: 102
  providerName: Elsevier
Title Experimental study on hygric properties of salt-contaminated red sandstone in coastal building envelope
URI https://dx.doi.org/10.1016/j.cscm.2025.e04447
https://doaj.org/article/5b000ee2aaa2452082f159037f1dcfa8
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG7MvHgxGjXOH0sP3gwKlAI9bmbLdNGDcXE3UvpjbjFsGXjwv_e9wgxe9OIBDgRa8j3gey3f-0rIFVMyFjq2HsSWe1FqUy_nMErJeS6MkkoxV5X2-BSPp9HDjM9aS32hJqy2B66Bu-VIU8aEUkr8SQiMZYGBfZbYQCsrXZkvcF5rMLV0U0Y8TsOkqZKpBV2qVFh6HvIbgyZpyQ8mcob9LUJqkczogOw32SHt13d1SHZMcUTmw5YLP3V-sHRV0LfPOXzD6Bpn0zdoi0pXlpbyvfJQfi5R4gLZJN3AVmI9L7pu00VB1UqW2FDeLIhNTeF0Q-aYTEfDl7ux16yP4KlQBBXO3oW5b2KeCMmEsoYzroGQhASk88hqH5EWCY-kZhbGbRFXjAXMvamKSXZCOgX0fUpooFMbwCUi1zyKlRCRjrTSlvmpgKOyS663WGXr2gYj2-rDlhkimyGyWY1slwwQzu8z0cLaHYDAZk1gs78C2yV8G4ysyQZqloemFr90fvYfnZ-TPWyy1uVekE61-TCXkH1UeY_s9ifPr5Oee-Bgfz8bfAHyDNyb
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBIECUpwc2FNrEcRKPFFG1PLpApW6W40cpQmmVloF_z52TVGVhYMji5JzozvF9tu--I-SaaZUIk7gAbMuDOHNZkHNYpeQ8F1YrrZnPSnsZJYNx_Djhkxa5b3JhMKyynvurOd3P1nVLp9ZmZzGbdV4jJNkGhABOHM8PYQm0DWggxfoNw0lvvdESZTzJfOlWFAhQok6eqeK89FJjRnrEby1yp6W_HJTn8d_wUxu-p79P9mrQSO-q7zogLVsckunDBjk_9TSxdF7Q9-8pTG10gZvsJbKl0rmjS_W5CjAqXWHkC4BMWsK1xDRfJOOms4LquVpiR3ldJ5vawocT2SMy7j-83Q-CumxCoCMRrnBTL8q7NuGpUExoZznjBvyUUGCAPHamiwYQKY-VYQ6WczHXjIXM_8CaKXZMtgp49wmhoclcCCIiNzxOtBCxiY02jnUzAa2qTW4aXclFxY4hm7CxD4malahZWWm2TXqozvWTyGztG-blVNamlRxhibWRUgoPhQGhOEBcXZa60GinsjbhjTHkr4ECXc3-ePnpP-WuyM7g7eVZPg9HT2dkF-9U0brnZGtVftkLwCSr_NKPuR_uhd9q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+hygric+properties+of+salt-contaminated+red+sandstone+in+coastal+building+envelope&rft.jtitle=Case+Studies+in+Construction+Materials&rft.au=Yu+Zhang&rft.au=Qinglin+Meng&rft.au=Chuanrui+Li&rft.au=Junsong+Wang&rft.date=2025-07-01&rft.pub=Elsevier&rft.eissn=2214-5095&rft.volume=22&rft.spage=e04447&rft_id=info:doi/10.1016%2Fj.cscm.2025.e04447&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b000ee2aaa2452082f159037f1dcfa8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5095&client=summon