Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges

Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 15; pp. 9731 - 9763
Main Authors Kocher, Geeta, Kumar, Gulshan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of data complexity give rise to DL methods. Intrusion detection is one of the prominent areas in which researchers are extending DL methods. Even though several excellent surveys cover the growing body of research on this subject, the literature lacks a detailed comparison of ML methods such as ANN, SVM, fuzzy approach, swarm intelligence and evolutionary computation methods in intrusion detection, particularly on recent research. In this context, the present paper deals with the systematic review of ML methods and DL methods in intrusion detection. In addition to reviewing ML and DL methods, this paper also focuses on benchmark datasets, performance evaluation measures and various applications of DL methods for intrusion detection. The present paper summarizes the recent work, compares their experimental results for detecting network intrusions. Furthermore, current research challenges are identified for helping fellow researchers in the era of DL-based intrusion detection.
AbstractList Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of data complexity give rise to DL methods. Intrusion detection is one of the prominent areas in which researchers are extending DL methods. Even though several excellent surveys cover the growing body of research on this subject, the literature lacks a detailed comparison of ML methods such as ANN, SVM, fuzzy approach, swarm intelligence and evolutionary computation methods in intrusion detection, particularly on recent research. In this context, the present paper deals with the systematic review of ML methods and DL methods in intrusion detection. In addition to reviewing ML and DL methods, this paper also focuses on benchmark datasets, performance evaluation measures and various applications of DL methods for intrusion detection. The present paper summarizes the recent work, compares their experimental results for detecting network intrusions. Furthermore, current research challenges are identified for helping fellow researchers in the era of DL-based intrusion detection.
Author Kocher, Geeta
Kumar, Gulshan
Author_xml – sequence: 1
  givenname: Geeta
  surname: Kocher
  fullname: Kocher, Geeta
  organization: Maharaja Ranjit Singh Punjab Technical University
– sequence: 2
  givenname: Gulshan
  orcidid: 0000-0001-8013-6140
  surname: Kumar
  fullname: Kumar, Gulshan
  email: gulshanahuja@gmail.com
  organization: Shaheed Bhagat Singh State Technical Campus
BookMark eNp9kM9KAzEQxoNUsK2-gKd9gegk2W023qT4Dype9BzS7KTdspstSSr07U1bQfDQ03zMzG-G75uQkR88EnLL4I4ByPsIUAFQ4IxCVStB4YKMWSkElaVUo6PmVM5KcUUmMW4gb8pKjIl_N3bdeiw6NMG3flUY3xQN4vav02NaD00s3BCK1qewi-3g805Cmw4q7mPCPj4UAS36lCff2A3bPut4PGfXpuvQrzBek0tnuog3v3VKvp6fPuevdPHx8jZ_XFDLFUu0ZtyZmZLKzTg3AlhlGmaxNKJRDQp0TpWVWJpSclYvHUiHYLirS7Vs0IERU8JPd20YYgzo9Da0vQl7zUAfEtOnxHTOQR8T05Ch-h9k22QOFlMwbXceFSc05j_ZaNCbYRd8tniO-gFta4V1
CitedBy_id crossref_primary_10_1016_j_iswa_2024_200442
crossref_primary_10_1007_s13369_025_09985_z
crossref_primary_10_1016_j_aej_2023_09_064
crossref_primary_10_3390_electronics13183617
crossref_primary_10_1155_2022_6124895
crossref_primary_10_1002_widm_1565
crossref_primary_10_1016_j_cose_2024_104033
crossref_primary_10_32604_cmes_2022_020724
crossref_primary_10_1007_s10586_025_05156_9
crossref_primary_10_1186_s40537_023_00814_4
crossref_primary_10_1109_ACCESS_2023_3347619
crossref_primary_10_1109_ACCESS_2025_3528940
crossref_primary_10_1051_itmconf_20224301015
crossref_primary_10_1109_ACCESS_2024_3367004
crossref_primary_10_3390_info16010008
crossref_primary_10_3390_electronics13193823
crossref_primary_10_1007_s00500_023_07956_w
crossref_primary_10_3390_app132112068
crossref_primary_10_1049_wss2_12100
crossref_primary_10_3390_a15080258
crossref_primary_10_3390_electronics12214545
crossref_primary_10_1109_ACCESS_2022_3188635
crossref_primary_10_1007_s10922_025_09917_0
crossref_primary_10_1109_TMLCN_2024_3402158
crossref_primary_10_1007_s12083_025_01911_2
crossref_primary_10_1007_s11276_023_03516_0
crossref_primary_10_1155_2023_8068038
crossref_primary_10_1007_s10207_023_00663_5
crossref_primary_10_1007_s10586_024_04544_x
crossref_primary_10_1016_j_compeleceng_2024_109863
crossref_primary_10_1007_s00500_021_06689_y
crossref_primary_10_1016_j_cose_2024_104160
crossref_primary_10_3390_data7020022
crossref_primary_10_1016_j_iot_2023_100843
crossref_primary_10_54732_jeecs_v9i1_1
crossref_primary_10_1109_ACCESS_2024_3369912
crossref_primary_10_56294_mw2024552
crossref_primary_10_7717_peerj_cs_2152
crossref_primary_10_1016_j_heliyon_2024_e37571
crossref_primary_10_3390_technologies12100203
crossref_primary_10_1007_s10207_022_00616_4
crossref_primary_10_21015_vtse_v12i2_1817
crossref_primary_10_1109_TCE_2024_3373126
crossref_primary_10_3390_math11214501
crossref_primary_10_3390_jsan12020029
crossref_primary_10_1109_ACCESS_2023_3346943
crossref_primary_10_3390_s22124405
crossref_primary_10_3390_s23218793
crossref_primary_10_3390_electronics13122405
crossref_primary_10_1155_2024_3909173
crossref_primary_10_1016_j_icte_2024_05_007
crossref_primary_10_1016_j_procs_2025_02_066
crossref_primary_10_1080_03772063_2024_2370949
crossref_primary_10_1051_itmconf_20224301003
crossref_primary_10_32604_cmc_2023_032617
crossref_primary_10_1109_TNSM_2024_3357316
crossref_primary_10_32604_csse_2023_030630
crossref_primary_10_12677_AAM_2023_126274
crossref_primary_10_1038_s41598_025_85866_7
crossref_primary_10_1007_s43926_023_00034_5
crossref_primary_10_1016_j_knosys_2024_112557
crossref_primary_10_1016_j_vehcom_2024_100837
crossref_primary_10_1007_s11042_024_19131_w
crossref_primary_10_1109_JIOT_2024_3354045
crossref_primary_10_1007_s00500_023_09552_4
crossref_primary_10_1155_2023_8043619
crossref_primary_10_53759_7669_jmc202404073
Cites_doi 10.1016/j.cose.2020.102158
10.1109/ICITISEE.2017.8285566
10.4018/978-1-7998-2460-2.ch053
10.1016/j.knosys.2018.08.036
10.1016/j.icte.2018.01.014
10.1007/978-3-030-04984-3_1
10.1016/j.eswa.2016.09.041
10.1016/j.neucom.2016.06.021
10.1016/j.knosys.2015.01.009
10.1109/COMST.2019.2896380
10.1145/1978672.1978676
10.1016/j.envsoft.2007.10.001
10.1109/TC.2015.2470255
10.1007/978-3-319-93563-8_18
10.1145/2046707.2046731
10.1109/SP.2010.25
10.1109/TMM.2015.2477058
10.13052/jsn2445-9739.2017.009
10.1109/ACCESS.2018.2810264
10.4108/eai.3-12-2015.2262516
10.1016/j.engappai.2014.03.007
10.1016/j.jisa.2019.102419
10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141
10.1109/COMST.2019.2922584
10.1016/j.future.2017.01.029
10.1016/j.jnca.2012.09.004
10.1561/2200000006
10.1007/978-3-319-56549-1_12
10.1016/j.comnet.2019.05.013
10.1299/jsmemecj.2019.J12106P
10.23919/SpringSim.2019.8732851
10.1007/s00521-016-2418-1
10.1016/j.neucom.2016.03.031
10.1145/1514274.1514289
10.1016/j.neucom.2017.08.050
10.1007/s10489-018-01408-x
10.1002/nem.804
10.1109/RTEICT.2016.7808050
10.1016/j.jnca.2020.102767
10.1016/j.inffus.2019.12.012
10.1016/j.cpc.2009.05.004
10.1109/IMCEC.2016.7867287
10.1109/ICWR.2019.8765272
10.1007/s10462-017-9567-1
10.1016/j.procs.2016.04.228
10.1007/3-540-36084-0_6
10.1109/WiCOM.2012.6478433
10.1016/j.knosys.2017.09.014
10.1016/j.cose.2019.101663
10.1145/2689746.2689747
10.1016/j.cose.2020.102151
10.1016/j.procs.2020.06.055
10.1016/j.iot.2019.100059
10.1109/TIFS.2017.2762828
10.1109/PlatCon.2016.7456805
10.1109/ICCOINS.2016.7783243
10.14569/IJACSA.2017.080841
10.1109/TETCI.2017.2772792
10.1109/CISDA.2009.5356528
10.1186/s40537-018-0145-4
10.1007/978-981-15-5243-4_1
10.1016/j.eswa.2013.08.066
10.1007/978-3-540-45248-5_13
10.1007/978-3-642-04968-2_4
10.1016/j.adhoc.2018.09.014
10.1109/WINCOM.2016.7777224
10.1109/JCSSE.2015.7219794
10.1007/978-3-540-45248-5_5
10.1109/ACCESS.2017.2762418
10.1109/TSE.2011.104
10.1016/j.procs.2020.04.133
10.1016/j.future.2020.07.042
10.1016/j.procs.2015.08.443
10.1109/ICECCT.2019.8869077
10.3390/app9020238
10.21608/asat.2009.23490
10.1016/j.procs.2016.06.047
10.1006/jvci.1996.0008
10.1109/ISCAS.2018.8350994
10.1145/3098954.3106068
10.1016/j.eswa.2017.07.005
10.1109/TEVC.2012.2227145
10.1007/978-3-642-58069-7_38
10.3390/s16101701
10.1109/ICISSEC.2016.7885840
10.1109/ACCESS.2019.2895334
10.1007/s00500-015-1669-6
10.1109/ACCESS.2018.2820092
10.1109/ENABL.2004.76
10.1007/s10462-010-9179-5
10.1007/978-3-030-24265-7_7
10.1109/TSC.2015.2497705
10.1016/j.future.2018.09.063
10.1109/CIS.2011.6169141
10.1109/WCNC.2013.6555301
10.1109/ICoAC.2012.6416848
10.1007/978-981-15-1480-7_68
10.1109/SAINT.2012.51
10.1007/978-3-030-19823-7_4
10.1016/j.ins.2016.04.019
10.1016/j.procs.2015.07.040
10.1007/978-981-13-0514-6_16
10.1016/j.cose.2019.05.022
10.1016/j.jnca.2019.102460
10.1016/j.procs.2016.06.016
10.1109/ICCSN.2016.7586590
10.1016/j.eswa.2018.03.030
10.1016/j.inffus.2019.12.001
10.1109/ACCESS.2018.2798626
10.1109/TFUZZ.2015.2406889
10.1109/ICSITech.2017.8257156
10.1109/CICN.2016.87
10.1016/j.eswa.2014.11.009
10.4018/978-1-5225-9866-4.ch026
10.1016/j.cose.2011.12.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00500-021-05893-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 9763
ExternalDocumentID 10_1007_s00500_021_05893_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-812fa6979f622a3015ad1ce4a3d9de3eff9453ba47218bf07fe0a2f849bdef0a3
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Jul 04 01:04:13 EDT 2025
Thu Apr 24 22:59:08 EDT 2025
Fri Feb 21 02:48:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Deep learning
Recurrent neural network
Deep belief network
Intrusion detection system
Network intrusion detection system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-812fa6979f622a3015ad1ce4a3d9de3eff9453ba47218bf07fe0a2f849bdef0a3
ORCID 0000-0001-8013-6140
PageCount 33
ParticipantIDs crossref_primary_10_1007_s00500_021_05893_0
crossref_citationtrail_10_1007_s00500_021_05893_0
springer_journals_10_1007_s00500_021_05893_0
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp 4–11
Cloudstor (2019) Cloudstor. https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys. Accessed 15 Apr 15 2020
FerragMAMaglarasLMoschoyiannisSJanickeHDeep learning for cyber security intrusion detection: approaches, datasets, and comparative studyJ Inf Secur Appl202010.1016/j.jisa.2019.102419
KimGLeeSKimSA novel hybrid intrusion detection method integrating anomaly detection with misuse detectionExpert Syst Appl2014414169017003249626
TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat Mach Intell20196614
Pandey A, Sinha A, PS A (2019) Intrusion detection using sequential hybrid model. arXiv preprint arXiv:1910.12074
BamakanSMHWangHYingjieTShiYAn effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimizationNeurocomputing201619990102
ZhangYZhangYZhangNXiaoMA network intrusion detection method based on deep learning with higher accuracyProcedia Comput Sci20201745054
Hodo E, Bellekens X, Iorkyase E, Hamilton A, Tachtatzis C, Atkinson R (2017) Machine learning approach for detection of nontor traffic. In: Proceedings of the 12th international conference on availability, reliability and security, pp 1–6
KumarVChauhanHPanwarDK-means clustering approach to analyze nsl-kdd intrusion detection datasetInt J Soft Comput Eng2013666
BelavagiMCMuniyalBPerformance evaluation of supervised machine learning algorithms for intrusion detectionProcedia Comput Sci201689117123
AlzaylaeeMKYerimaSYSezerSDl-droid: deep learning based android malware detection using real devicesComput Secur202089101663
Khan FA, Gumaei A (2019) A comparative study of machine learning classifiers for network intrusion detection. In: International conference on artificial intelligence and security. Springer, pp 75–86
Gharib A, Sharafaldin I, Lashkari AH, Ghorbani AA (2016) An evaluation framework for intrusion detection dataset. In: 2016 International conference on information science and security (ICISS). IEEE, pp 1–6
Gautam RKS, Doegar EA (2018) An ensemble approach for intrusion detection system using machine learning algorithms. In: 2018 8th International conference on cloud computing, data science & engineering (confluence). IEEE, pp 14–15
ShenYHanTYangQYangXWangYLiFWenHCs-cnn: enabling robust and efficient convolutional neural networks inference for internet-of-things applicationsIEEE Access201861343913448
ViegasFRochaLGonçalvesMMourãoFSáGSallesTAndradeGSandinIA genetic programming approach for feature selection in highly dimensional skewed dataNeurocomputing2018273554569
Wisesty UN, et al. (2017) Comparative study of conjugate gradient to optimize learning process of neural network for intrusion detection system (ids). In: 2017 3rd International conference on science in information technology (ICSITech). IEEE, pp 459–464
ChenCPZhangCYChenLGanMFuzzy restricted Boltzmann machine for the enhancement of deep learningIEEE Trans Fuzzy Syst201523621632173
JeburSANasereddinHEnhanced solutions for misuse network intrusion detection system using sga and ssgaInt J Comput Sci Netw Secur201515566
PalmieriFNetwork anomaly detection based on logistic regression of nonlinear chaotic invariantsJ Netw Comput Appl2019148102460
TongXWangZYuHA research using hybrid rbf/elman neural networks for intrusion detection system secure modelComput Phys Commun20091801017951801
OjugoAEbokaAOkontaOYoroRAghwareFGenetic algorithm rule-based intrusion detection system (gaids)J Emerg Trends Comput Inf Sci20123811821194
Nehinbe JO (2011) A critical evaluation of datasets for investigating idss and ipss researches. In: 2011 IEEE 10th international conference on cybernetic intelligent systems (CIS). IEEE, pp 92–97
HajimirzaeiBNavimipourNJIntrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithmICT Express2019515659
Al-YaseenWLOthmanZANazriMZAMulti-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection systemExpert Syst Appl201767296303
AissaNBGuerroumiMSemi-supervised statistical approach for network anomaly detectionProcedia Comput Sci20168310901095
YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access201752195421961
Serrano W (2019) The blockchain random neural network in cybersecurity and the internet of things. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 50–63
Ghose N, Lazos L, Rozenblit J, Breiger R (2019) Multimodal graph analysis of cyber attacks. In: 2019 Spring simulation conference (SpringSim). IEEE, pp 1–12
Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011) Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the first workshop on building analysis datasets and gathering experience returns for security, pp 29–36
Srimuang W, Intarasothonchun S (2015) Classification model of network intrusion using weighted extreme learning machine. In: 2015 12th International joint conference on computer science and software engineering (JCSSE). IEEE, pp 190–194
Javaid A, Niyaz Q, Sun W, Alam M (2016) A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), pp 21–26
Kyoto (2019) Kyoto. http://www.takakura.com/Kyoto_data/. Accessed 15 Apr 2020
KumarGKumarKSachdevaMThe use of artificial intelligence based techniques for intrusion detection: a reviewArtif Intell Rev2010344369387
ChenHSchuffelsCOrwigRInternet categorization and search: a self-organizing approachJ Vis Commun Image Represent19967188102
Chitrakar R, Huang C (2012) Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naive Bayes classification. In: 2012 8th International conference on wireless communications, networking and mobile computing. IEEE, pp 1–5
Prusty S, Levine BN, Liberatore M (2011) Forensic investigation of the oneswarm anonymous filesharing system. In: Proceedings of the 18th ACM conference on Computer and communications security, pp 201–214
Farzaneh B, Montazeri MA, Jamali S (2019) An anomaly-based ids for detecting attacks in rpl-based internet of things. In: 2019 5th International conference on web research (ICWR). IEEE, pp 61–66
KaltehAMHjorthPBerndtssonRReview of the self-organizing map (som) approach in water resources: analysis, modelling and applicationEnviron Model Softw2008237835845
NguyenMTKimKGenetic convolutional neural network for intrusion detection systemsFut Gener Comput Syst2020113418427
Porras PA, Fong MW, Valdes A (2002) A mission-impact-based approach to infosec alarm correlation. In: International workshop on recent advances in intrusion detection. Springer, pp 95–114
Akilandeswari V, Shalinie SM (2012) Probabilistic neural network based attack traffic classification. In: 2012 Fourth international conference on advanced computing (ICoAC). IEEE, pp 1–8
SaranyaTSrideviSDeisyCChungTDKhanMAPerformance analysis of machine learning algorithms in intrusion detection system: a reviewProcedia Comput Sci202017112511260
MunaAHMoustafaNSitnikovaEIdentification of malicious activities in industrial internet of things based on deep learning modelsJ Inf Secur Appl201841111
Uci (2019) Uci. http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data. Accessed 15 Apr 2020
U. of massachusetts amherst (2019) U. of massachusetts amherst, optimistic tcp acking. http://traces.cs.umass.edu/. Accessed 12 Feb 2019
KurniabudiKPurnamaBSharipuddinSDarmawijoyoDStiawanDSamsuryadiSHeryantoABudiartoRNetwork anomaly detection research: a surveyIndones J Electr Eng Inform2019713750
Unb (2019b) https://www.unb.ca/cic/datasets/ids.html Accessed 15 Apr 2020
Nskh P, Varma MN, Naik RR (2016) Principle component analysis based intrusion detection system using support vector machine. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1344–1350
HasanMIslamMMZarifMIIHashemMAttack and anomaly detection in iot sensors in iot sites using machine learning approachesInternet Things20197100059
AminantoMEChoiRTanuwidjajaHCYooPDKimKDeep abstraction and weighted feature selection for wi-fi impersonation detectionIEEE Trans Inf Forensics Secur2017133621636
GamageSSamarabanduJDeep learning methods in network intrusion detection: a survey and an objective comparisonJ Netw Comput Appl2020169102767
Hussain MS, Khan KUR (2020) A survey of ids techniques in manets using machine-learning. In: Proceedings of the third international conference on computational intelligence and informatics. Springer, pp 743–751
Chevalier R, Plaquin D, Villatel M, Hiet G (2020) Intrusion detection systems. US Patent App. 16/486,331
Zhao S, Li W, Zia T, Zomaya AY (2017) A dimension reduction model and classifier for anomaly-based intrusion detection in internet of things. In: 2017 IEEE 15th international conference on dependable, autonomic and secure computing, 15th international conference on pervasive intelligence and computing, 3rd international conference on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 836–843
Creech G, Hu J (2013) Generation of a new ids test dataset: time to retire the kdd collection. In: 2013 IEEE wireless communications and networking conference (WCNC). IEEE, pp 4487–4492
LiWUsing genetic algorithm for network intrusion detectionProc US Dept Energy Cyber Secur Group2004118
Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for network intrusion detection. In: 2016 8th IEEE international conference on communication software and network
5893_CR33
LM Ibrahim (5893_CR59) 2013; 8
5893_CR32
5893_CR35
5893_CR34
5893_CR37
5893_CR36
5893_CR39
C Le Goues (5893_CR77) 2011; 38
MK Alzaylaee (5893_CR13) 2020; 89
T Ma (5893_CR84) 2016; 16
K Alsubhi (5893_CR12) 2012; 22
N Farnaaz (5893_CR40) 2016; 89
B Hajimirzaei (5893_CR54) 2019; 5
H Wang (5893_CR150) 2017; 136
AI Saleh (5893_CR113) 2019; 51
N Shone (5893_CR125) 2018; 2
5893_CR156
5893_CR46
AH Muna (5893_CR93) 2018; 41
5893_CR157
5893_CR45
5893_CR48
5893_CR47
5893_CR49
K Kurniabudi (5893_CR74) 2019; 7
J Gu (5893_CR51) 2019; 86
T Meng (5893_CR90) 2020; 57
RAR Ashfaq (5893_CR20) 2017; 378
5893_CR161
5893_CR162
L Zhao (5893_CR160) 2015; 17
5893_CR41
5893_CR57
5893_CR56
5893_CR104
5893_CR58
5893_CR105
5893_CR106
5893_CR107
5893_CR108
5893_CR109
Y Li (5893_CR79) 2015; 9
Y Shen (5893_CR123) 2018; 6
J Srinivas (5893_CR132) 2019; 92
5893_CR3
H Liu (5893_CR82) 2019; 163
Y Yang (5893_CR154) 2019; 9
MN Napiah (5893_CR94) 2018; 6
5893_CR1
5893_CR2
5893_CR7
5893_CR6
5893_CR110
S Revathi (5893_CR111) 2013; 2
SA Jebur (5893_CR62) 2015; 15
AB Arrieta (5893_CR19) 2020; 58
5893_CR65
5893_CR68
ST Brugger (5893_CR26) 2007; 1
WC Lin (5893_CR81) 2015; 78
E Kabir (5893_CR63) 2018; 79
F Palmieri (5893_CR103) 2019; 148
Y Bengio (5893_CR24) 2009; 2
R Vinayakumar (5893_CR149) 2019; 7
C Yin (5893_CR155) 2017; 5
T Saranya (5893_CR117) 2020; 171
F Feng (5893_CR42) 2019; 84
P Kudłacik (5893_CR71) 2016; 20
J Kevric (5893_CR67) 2017; 28
T Saranya (5893_CR116) 2020; 171
5893_CR61
T Nyathi (5893_CR100) 2018; 104
PS Maniyar (5893_CR87) 2016; 5
5893_CR122
5893_CR76
ME Aminanto (5893_CR17) 2017; 13
G Caminero (5893_CR27) 2019; 159
5893_CR126
MC Belavagi (5893_CR23) 2016; 89
V Kumar (5893_CR73) 2013; 6
MH Aghdam (5893_CR4) 2016; 18
MA Ferrag (5893_CR43) 2020
5893_CR128
5893_CR129
S Tabakhi (5893_CR135) 2014; 32
MT Nguyen (5893_CR97) 2020; 113
SM Othman (5893_CR102) 2018; 5
LN Tidjon (5893_CR139) 2019; 21
SMH Bamakan (5893_CR21) 2015; 55
NM Jacob (5893_CR60) 2018; 5
5893_CR70
5893_CR130
5893_CR75
5893_CR131
5893_CR112
5893_CR89
5893_CR114
SM Mousavi (5893_CR92) 2019; 66
5893_CR115
J Gu (5893_CR50) 2021; 103
5893_CR118
5893_CR119
H Chen (5893_CR30) 1996; 7
S Gamage (5893_CR44) 2020; 169
BB Gupta (5893_CR53) 2012; 14
MJ Kang (5893_CR66) 2016; 11
G Kumar (5893_CR72) 2010; 34
S Yang (5893_CR153) 2013; 17
AM Kalteh (5893_CR64) 2008; 23
X Tong (5893_CR141) 2009; 180
MH Ali (5893_CR9) 2018; 6
W Li (5893_CR78) 2004; 1
G Kim (5893_CR69) 2014; 41
SMH Bamakan (5893_CR22) 2016; 199
HJ Liao (5893_CR80) 2013; 36
5893_CR83
5893_CR86
5893_CR120
5893_CR85
5893_CR121
5893_CR11
5893_CR99
A Ojugo (5893_CR101) 2012; 3
5893_CR144
5893_CR10
5893_CR98
5893_CR145
5893_CR146
Y Zhang (5893_CR159) 2020; 174
M Hasan (5893_CR55) 2019; 7
5893_CR147
WL Al-Yaseen (5893_CR8) 2017; 67
5893_CR15
AS Eesa (5893_CR38) 2015; 42
M Taddeo (5893_CR136) 2019; 66
5893_CR14
F Viegas (5893_CR148) 2018; 273
5893_CR16
5893_CR18
CP Chen (5893_CR31) 2015; 23
5893_CR91
SM Sohi (5893_CR127) 2021; 102
5893_CR95
5893_CR151
5893_CR152
5893_CR96
5893_CR133
Ü Çavuşoğlu (5893_CR28) 2019; 49
5893_CR137
5893_CR25
5893_CR138
NB Aissa (5893_CR5) 2016; 83
Q Zhang (5893_CR158) 2015; 65
A Shiravi (5893_CR124) 2012; 31
I Manzoor (5893_CR88) 2017; 88
N Srivastava (5893_CR134) 2014; 15
5893_CR140
N Chaabouni (5893_CR29) 2019; 21
5893_CR142
C Guo (5893_CR52) 2016; 214
5893_CR143
References_xml – reference: Kandan AM, Kathrine GJ, Melvin AR (2019) Network attacks and prevention techniques—a study. In: 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT). IEEE, pp 1–6
– reference: GuJLuSAn effective intrusion detection approach using SVM with Naïve Bayes feature embeddingComput Secur2021103102158
– reference: Cloudstor (2019) Cloudstor. https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys. Accessed 15 Apr 15 2020
– reference: Aminanto ME, Kim K (2016b) Detecting impersonation attack in wifi networks using deep learning approach. In: International workshop on information security applications. Springer, pp 136–147
– reference: Sangster B, O’Connor T, Cook T, Fanelli R, Dean E, Morrell C, Conti GJ (2009) Toward instrumenting network warfare competitions to generate labeled datasets. In: CSET
– reference: Qin X, Lee W (2003) Statistical causality analysis of infosec alert data. In: International workshop on recent advances in intrusion detection. Springer, pp 73–93
– reference: ShenYHanTYangQYangXWangYLiFWenHCs-cnn: enabling robust and efficient convolutional neural networks inference for internet-of-things applicationsIEEE Access201861343913448
– reference: Al-Dhafian B, Ahmad I, Al-Ghamid A (2015) An overview of the current classification techniques in intrusion detection. In: Proceedings of the international conference on security and management (SAM). The Steering Committee of The World Congress in Computer Science, Computer, p 82
– reference: AliMHAl MohammedBADIsmailAZolkipliMFA new intrusion detection system based on fast learning network and particle swarm optimizationIEEE Access201862025520261
– reference: Ghose N, Lazos L, Rozenblit J, Breiger R (2019) Multimodal graph analysis of cyber attacks. In: 2019 Spring simulation conference (SpringSim). IEEE, pp 1–12
– reference: NyathiTPillayNComparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithmsExpert Syst Appl2018104213234
– reference: Al-YaseenWLOthmanZANazriMZAMulti-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection systemExpert Syst Appl201767296303
– reference: FerragMAMaglarasLMoschoyiannisSJanickeHDeep learning for cyber security intrusion detection: approaches, datasets, and comparative studyJ Inf Secur Appl202010.1016/j.jisa.2019.102419
– reference: Hussain MS, Khan KUR (2020) A survey of ids techniques in manets using machine-learning. In: Proceedings of the third international conference on computational intelligence and informatics. Springer, pp 743–751
– reference: GuJWangLWangHWangSA novel approach to intrusion detection using SVM ensemble with feature augmentationComput Secur2019865362
– reference: Abubakar AI, Chiroma H, Muaz SA, Ila LB (2015) A review of the advances in cyber security benchmark datasets for evaluating data-driven based intrusion detection systems. In: SCSE, pp 221–227
– reference: LinWCKeSWTsaiCFCann: an intrusion detection system based on combining cluster centers and nearest neighborsKnowl Based Syst2015781321
– reference: Almomani A, Alauthman M, Albalas F, Dorgham O, Obeidat A (2020) An online intrusion detection system to cloud computing based on neucube algorithms. In: Cognitive analytics: concepts, methodologies, tools, and applications. IGI Global, pp 1042–1059
– reference: Chitrakar R, Huang C (2012) Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naive Bayes classification. In: 2012 8th International conference on wireless communications, networking and mobile computing. IEEE, pp 1–5
– reference: ZhangYZhangYZhangNXiaoMA network intrusion detection method based on deep learning with higher accuracyProcedia Comput Sci20201745054
– reference: HasanMIslamMMZarifMIIHashemMAttack and anomaly detection in iot sensors in iot sites using machine learning approachesInternet Things20197100059
– reference: Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp 4–11
– reference: Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6
– reference: PalmieriFNetwork anomaly detection based on logistic regression of nonlinear chaotic invariantsJ Netw Comput Appl2019148102460
– reference: ZhaoLHuQWangWHeterogeneous feature selection with multi-modal deep neural networks and sparse group lassoIEEE Trans Multimed2015171119361948
– reference: KumarVChauhanHPanwarDK-means clustering approach to analyze nsl-kdd intrusion detection datasetInt J Soft Comput Eng2013666
– reference: Mohamad Tahir H, Hasan W, Md Said A, Zakaria NH, Katuk N, Kabir NF, Omar MH, Ghazali O, Yahya NI (2015) Hybrid machine learning technique for intrusion detection system
– reference: Abdullah B, Abd-Alghafar I, Salama GI, Abd-Alhafez A (2009) Performance evaluation of a genetic algorithm based approach to network intrusion detection system. In: International conference on aerospace sciences and aviation technology. The Military Technical College, pp 1–17
– reference: GuoCPingYLiuNLuoSSA two-level hybrid approach for intrusion detectionNeurocomputing2016214391400
– reference: Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep Boltzmann machines. In: Advances in neural information processing systems, pp 2222–2230
– reference: geopolitical-attacks (2019) geopolitical-attacks. https://www.privacyaffairs.com/geopolitical-attacks/3. Accessed 15 Apr 2020
– reference: U. of massachusetts amherst (2019) U. of massachusetts amherst, optimistic tcp acking. http://traces.cs.umass.edu/. Accessed 12 Feb 2019
– reference: Sommer R, Paxson V (2010) Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE symposium on security and privacy. IEEE, pp 305–316
– reference: Effendy DA, Kusrini K, Sudarmawan S (2017) Classification of intrusion detection system (ids) based on computer network. In: 2017 2nd International conferences on information technology, information systems and electrical engineering (ICITISEE). IEEE, pp 90–94
– reference: ZhangQYangLTChenZPrivacy preserving deep computation model on cloud for big data feature learningIEEE Trans Comput20156551351136234894411360.68197
– reference: Crosbie M, Spafford G, et al. (1995) Applying genetic programming to intrusion detection. In: Working notes for the AAAI symposium on genetic programming. MIT Press, Cambridge, pp 1–8
– reference: Tirumala SS (2014) Implementation of evolutionary algorithms for deep architectures. In: CEUR workshop proceedings
– reference: KaltehAMHjorthPBerndtssonRReview of the self-organizing map (som) approach in water resources: analysis, modelling and applicationEnviron Model Softw2008237835845
– reference: Mäkelä A (2019) Network anomaly detection based on wavenet. In: Internet of things, smart spaces, and next generation networks and systems: 19th international conference, NEW2AN 2019, and 12th conference, ruSMART 2019, St. Petersburg, Russia, August 26–28, 2019, proceedings, vol 11660. Springer, p 424
– reference: Porras PA, Fong MW, Valdes A (2002) A mission-impact-based approach to infosec alarm correlation. In: International workshop on recent advances in intrusion detection. Springer, pp 95–114
– reference: LiYMaRJiaoRA hybrid malicious code detection method based on deep learningInt J Secur Appl201595205216
– reference: ÇavuşoğluÜA new hybrid approach for intrusion detection using machine learning methodsAppl Intell201949727352761
– reference: FarnaazNJabbarMRandom forest modeling for network intrusion detection systemProcedia Comput Sci201689213217
– reference: Le GouesCNguyenTForrestSWeimerWGenprog: a generic method for automatic software repairIEEE Trans Softw Eng20113815472
– reference: TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat Mach Intell20196614
– reference: ChenHSchuffelsCOrwigRInternet categorization and search: a self-organizing approachJ Vis Commun Image Represent19967188102
– reference: KudłacikPPorwikPWesołowskiTFuzzy approach for intrusion detection based on users commandsSoft Comput201620727052719
– reference: Şen S, Clark JA (2009) A grammatical evolution approach to intrusion detection on mobile ad hoc networks. In: Proceedings of the second ACM conference on Wireless network security, pp 95–102
– reference: Chevalier R, Plaquin D, Villatel M, Hiet G (2020) Intrusion detection systems. US Patent App. 16/486,331
– reference: Javaid A, Niyaz Q, Sun W, Alam M (2016) A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), pp 21–26
– reference: TidjonLNFrappierMMammarAIntrusion detection systems: a cross-domain overviewIEEE Commun Surv Tutor201921436393681
– reference: Aminanto ME, Kim K (2017) Improving detection of wi-fi impersonation by fully unsupervised deep learning. In: International workshop on information security applications. Springer, pp 212–223
– reference: Prusty S, Levine BN, Liberatore M (2011) Forensic investigation of the oneswarm anonymous filesharing system. In: Proceedings of the 18th ACM conference on Computer and communications security, pp 201–214
– reference: Gharib A, Sharafaldin I, Lashkari AH, Ghorbani AA (2016) An evaluation framework for intrusion detection dataset. In: 2016 International conference on information science and security (ICISS). IEEE, pp 1–6
– reference: YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci201992238
– reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans Emerg Top Comput Intell2018214150
– reference: LiuHLangBLiuMYanHCnn and rnn based payload classification methods for attack detectionKnowl Based Syst2019163332341
– reference: Nehinbe JO (2011) A critical evaluation of datasets for investigating idss and ipss researches. In: 2011 IEEE 10th international conference on cybernetic intelligent systems (CIS). IEEE, pp 92–97
– reference: RevathiSMalathiAA detailed analysis on nsl-kdd dataset using various machine learning techniques for intrusion detectionInt J Eng Res Technol201321218481853
– reference: IbrahimLMBasheerDTMahmodMSA comparison study for intrusion database (kdd99, nsl-kdd) based on self organization map (som) artificial neural networkJ Eng Sci Technol201381107119
– reference: Signal detection theory (2019) Signal detection theory. http://gim.unmc.edu/dxtests/roc2.htm/. Accessed 2019
– reference: ChaabouniNMosbahMZemmariASauvignacCFarukiPNetwork intrusion detection for iot security based on learning techniquesIEEE Commun Surv Tutor201921326712701
– reference: VinayakumarRAlazabMSomanKPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access201974152541550
– reference: He D, Chen X, Zou D, Pei L, Jiang L (2018) An improved kernel clustering algorithm used in computer network intrusion detection. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5
– reference: Mahoney MV, Chan PK (2003) An analysis of the 1999 darpa/lincoln laboratory evaluation data for network anomaly detection. In: International workshop on recent advances in intrusion detection. Springer, pp 220–237
– reference: Gomez J, Dasgupta D (2002) Evolving fuzzy classifiers for intrusion detection. In: Proceedings of the 2002 IEEE workshop on information assurance, pp 321–323
– reference: KevricJJukicSSubasiAAn effective combining classifier approach using tree algorithms for network intrusion detectionNeural Comput Appl201728110511058
– reference: SaranyaTSrideviSDeisyCChungTDKhanMAPerformance analysis of machine learning algorithms in intrusion detection system: a reviewProcedia Comput Sci202017112511260
– reference: MousaviSMMajidnezhadVNaghipourAA new intelligent intrusion detector based on ensemble of decision treesJ Ambient Intell Hum Comput201966113
– reference: Kim J, Kim J, Thu HLT, Kim H (2016) Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International conference on platform technology and service (PlatCon). IEEE, pp 1–5
– reference: Mehmood T, Rais HBM (2016) Machine learning algorithms in context of intrusion detection. In: 2016 3rd International conference on computer and information sciences (ICCOINS). IEEE, pp 369–373
– reference: Srimuang W, Intarasothonchun S (2015) Classification model of network intrusion using weighted extreme learning machine. In: 2015 12th International joint conference on computer science and software engineering (JCSSE). IEEE, pp 190–194
– reference: Ziegler S (2019) Internet of things cybersecurity paradigm shift, threat matrix and practical taxonomy. In: Internet of things security and data protection. Springer, pp 1–7
– reference: Unb (2019a) Unb. http://www.unb.ca/cic/datasets/nsl.html. Accessed 15 Apr 2020
– reference: Sperotto A, Sadre R, Van Vliet F, Pras A (2009) A labeled data set for flow-based intrusion detection. In: International workshop on IP operations and management. Springer, pp 39–50
– reference: ViegasFRochaLGonçalvesMMourãoFSáGSallesTAndradeGSandinIA genetic programming approach for feature selection in highly dimensional skewed dataNeurocomputing2018273554569
– reference: GamageSSamarabanduJDeep learning methods in network intrusion detection: a survey and an objective comparisonJ Netw Comput Appl2020169102767
– reference: FengFLiuXYongBZhouRZhouQAnomaly detection in ad-hoc networks based on deep learning model: a plug and play deviceAd Hoc Netw2019848289
– reference: AlzaylaeeMKYerimaSYSezerSDl-droid: deep learning based android malware detection using real devicesComput Secur202089101663
– reference: Nskh P, Varma MN, Naik RR (2016) Principle component analysis based intrusion detection system using support vector machine. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1344–1350
– reference: Tang TA, Mhamdi L, McLernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. In: 2016 International conference on wireless networks and mobile communications (WINCOM). IEEE, pp 258–263
– reference: Akilandeswari V, Shalinie SM (2012) Probabilistic neural network based attack traffic classification. In: 2012 Fourth international conference on advanced computing (ICoAC). IEEE, pp 1–8
– reference: Kyoto (2019) Kyoto. http://www.takakura.com/Kyoto_data/. Accessed 15 Apr 2020
– reference: BamakanSMHWangHYingjieTShiYAn effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimizationNeurocomputing201619990102
– reference: NapiahMNIdrisMYIBRamliRAhmedyICompression header analyzer intrusion detection system (cha-ids) for 6lowpan communication protocolIEEE Access201861662316638
– reference: JeburSANasereddinHEnhanced solutions for misuse network intrusion detection system using sga and ssgaInt J Comput Sci Netw Secur201515566
– reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access201752195421961
– reference: Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for cyber security. arXiv preprint arXiv:1906.05799
– reference: Aburomman AA, Reaz MBI (2016) Ensemble of binary SVM classifiers based on pca and lda feature extraction for intrusion detection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE, pp 636–640
– reference: ManzoorIKumarNA feature reduced intrusion detection system using ANN classifierExpert Syst Appl201788249257
– reference: SohiSMSeifertJPGanjiFRnnids: enhancing network intrusion detection systems through deep learningComput Secur2021102102151
– reference: KurniabudiKPurnamaBSharipuddinSDarmawijoyoDStiawanDSamsuryadiSHeryantoABudiartoRNetwork anomaly detection research: a surveyIndones J Electr Eng Inform2019713750
– reference: Unb (2019c) https://www.unb.ca/cic/datasets/dos-dataset.html. Accessed 15 Apr 2020
– reference: BengioYLearning deep architectures for aiFound Trends Mach Learn200921112740553811192.68503
– reference: Seo S, Park S, Kim J (2016) Improvement of network intrusion detection accuracy by using restricted Boltzmann machine. In: 2016 8th International conference on computational intelligence and communication networks (CICN). IEEE, pp 413–417
– reference: JacobNMWanjalaMYA review of intrusion detection systemsGlob J Comput Sci Technol2018566
– reference: TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng Appl Artif Intell201432112123
– reference: HajimirzaeiBNavimipourNJIntrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithmICT Express2019515659
– reference: OjugoAEbokaAOkontaOYoroRAghwareFGenetic algorithm rule-based intrusion detection system (gaids)J Emerg Trends Comput Inf Sci20123811821194
– reference: Sato M, Yamaki H, Takakura H (2012) Unknown attacks detection using feature extraction from anomaly-based ids alerts. In: 2012 IEEE/IPSJ 12th international symposium on applications and the internet. IEEE, pp 273–277
– reference: ManiyarPSMusandeVRules based intrusion detection system using genetic algorithmInt J Comput Sci Netw201653554558
– reference: OthmanSMBa-AlwiFMAlsohybeNTAl-HashidaAYIntrusion detection model using machine learning algorithm on big data environmentJ Big Data201851112
– reference: AissaNBGuerroumiMSemi-supervised statistical approach for network anomaly detectionProcedia Comput Sci20168310901095
– reference: Wisesty UN, et al. (2017) Comparative study of conjugate gradient to optimize learning process of neural network for intrusion detection system (ids). In: 2017 3rd International conference on science in information technology (ICSITech). IEEE, pp 459–464
– reference: Rao CS, Raju KB (2019) Mapreduce accelerated signature-based intrusion detection mechanism (idm) with pattern matching mechanism. In: Soft computing in data analytics. Springer, pp 157–164
– reference: ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur2012313357374
– reference: Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. 18216097198
– reference: AlsubhiKAibIBoutabaRFuzmet: a fuzzy-logic based alert prioritization engine for intrusion detection systemsInt J Netw Manag2012224263284
– reference: Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. OpenReview
– reference: EesaASOrmanZBrifcaniAMAA novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systemsExpert Syst Appl201542526702679
– reference: Khan FA, Gumaei A (2019) A comparative study of machine learning classifiers for network intrusion detection. In: International conference on artificial intelligence and security. Springer, pp 75–86
– reference: Arabo A (2019) Distributed ids using agents: an agent-based detection system to detect passive and active threats to a network. In: ICCWS 2019 14th international conference on cyber warfare and security: ICCWS 2019. Academic Conferences and Publishing Limited, p 11
– reference: Hodo E, Bellekens X, Iorkyase E, Hamilton A, Tachtatzis C, Atkinson R (2017) Machine learning approach for detection of nontor traffic. In: Proceedings of the 12th international conference on availability, reliability and security, pp 1–6
– reference: Pradhan M, Nayak CK, Pradhan SK (2020) Intrusion detection system (ids) and their types. In: Securing the internet of things: concepts, methodologies, tools, and applications. IGI Global, pp 481–497
– reference: MengTJingXYanZPedryczWA survey on machine learning for data fusionInf Fusion202057115129
– reference: MaTWangFChengJYuYChenXA hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networksSensors201616101701
– reference: BruggerSTChowJAn assessment of the Darpa ids evaluation dataset using snortUCDAVIS Dept Comput Sci20071200722
– reference: Uci (2019) Uci. http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data. Accessed 15 Apr 2020
– reference: ChenCPZhangCYChenLGanMFuzzy restricted Boltzmann machine for the enhancement of deep learningIEEE Trans Fuzzy Syst201523621632173
– reference: Serrano W (2019) The blockchain random neural network in cybersecurity and the internet of things. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 50–63
– reference: YangSLiMLiuXZhengJA grid-based evolutionary algorithm for many-objective optimizationIEEE Trans Evol Comput2013175721736
– reference: GuptaBBJoshiRCMisraMAnn based scheme to predict number of zombies in a ddos attackIJ Netw Secur20121426170
– reference: SrinivasJDasAKKumarNGovernment regulations in cyber security: framework, standards and recommendationsFut Gener Comput Syst201992178188
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153
– reference: LiaoHJLinCHRLinYCTungKYIntrusion detection system: a comprehensive reviewJ Netw Comput Appl20133611624
– reference: Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards a new bionics? Springer, pp 703–712
– reference: Kyoto2006+ (2015) Kyoto2006+ dataset. http://www.takakura.com/Kyoto_data/. Accessed Feb 2015
– reference: Worku A (2019) Minimizing black hole attack in mobile ad hoc network with anomaly based ids approach. PhD thesis, ASTU
– reference: Sharafaldin I, Gharib A, Lashkari AH, Ghorbani AA (2018) Towards a reliable intrusion detection benchmark dataset. Softw Networking 2018(1):177–200
– reference: Farzaneh B, Montazeri MA, Jamali S (2019) An anomaly-based ids for detecting attacks in rpl-based internet of things. In: 2019 5th International conference on web research (ICWR). IEEE, pp 61–66
– reference: AshfaqRARWangXZHuangJZAbbasHHeYLFuzziness based semi-supervised learning approach for intrusion detection systemInf Sci2017378484497
– reference: KimGLeeSKimSA novel hybrid intrusion detection method integrating anomaly detection with misuse detectionExpert Syst Appl2014414169017003249626
– reference: Pandey A, Sinha A, PS A (2019) Intrusion detection using sequential hybrid model. arXiv preprint arXiv:1910.12074
– reference: Gautam RKS, Doegar EA (2018) An ensemble approach for intrusion detection system using machine learning algorithms. In: 2018 8th International conference on cloud computing, data science & engineering (confluence). IEEE, pp 14–15
– reference: CamineroGLopez-MartinMCarroBAdversarial environment reinforcement learning algorithm for intrusion detectionComput Netw201915996109
– reference: Creech G, Hu J (2013) Generation of a new ids test dataset: time to retire the kdd collection. In: 2013 IEEE wireless communications and networking conference (WCNC). IEEE, pp 4487–4492
– reference: MunaAHMoustafaNSitnikovaEIdentification of malicious activities in industrial internet of things based on deep learning modelsJ Inf Secur Appl201841111
– reference: Zhao S, Li W, Zia T, Zomaya AY (2017) A dimension reduction model and classifier for anomaly-based intrusion detection in internet of things. In: 2017 IEEE 15th international conference on dependable, autonomic and secure computing, 15th international conference on pervasive intelligence and computing, 3rd international conference on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 836–843
– reference: AminantoMEChoiRTanuwidjajaHCYooPDKimKDeep abstraction and weighted feature selection for wi-fi impersonation detectionIEEE Trans Inf Forensics Secur2017133621636
– reference: ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible aiInf Fusion20205882115
– reference: KumarGKumarKSachdevaMThe use of artificial intelligence based techniques for intrusion detection: a reviewArtif Intell Rev2010344369387
– reference: KabirEHuJWangHZhuoGA novel statistical technique for intrusion detection systemsFut Gener Comput Syst201879303318
– reference: Praanna K, Sruthi S, Kalyani K, Tejaswi AS (2020) A CNN-LSTM model for intrusion detection system from high dimensional data
– reference: TongXWangZYuHA research using hybrid rbf/elman neural networks for intrusion detection system secure modelComput Phys Commun20091801017951801
– reference: Aminanto ME, Kim K (2016a) Deep learning-based feature selection for intrusion detection system in transport layer. In: Proceedings of the Korea Institutes of information security and cryptology conference, pp 740–743
– reference: KangMJKangJWIntrusion detection system using deep neural network for in-vehicle network securityPLoS ONE20161166
– reference: Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011) Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the first workshop on building analysis datasets and gathering experience returns for security, pp 29–36
– reference: AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationIJ Netw Secur2016183420432
– reference: SalehAITalaatFMLabibLMA hybrid intrusion detection system (hids) based on prioritized k-nearest neighbors and optimized svm classifiersArtif Intell Rev2019513403443
– reference: Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for network intrusion detection. In: 2016 8th IEEE international conference on communication software and networks (ICCSN). IEEE, pp 581–585
– reference: Zhang Q, Yang LT, Chen Z (2015a) Deep computation model for unsupervised feature learning on big data. IEEE Trans Serv Comput 9(1):161–171
– reference: BelavagiMCMuniyalBPerformance evaluation of supervised machine learning algorithms for intrusion detectionProcedia Comput Sci201689117123
– reference: Luo J (1999) Integrating fuzzy logic with data mining methods for intrusion detection. Master’s thesis, Mississippi State University. Department of Computer Science
– reference: Unb (2019b) https://www.unb.ca/cic/datasets/ids.html Accessed 15 Apr 2020
– reference: WangHGuJWangSAn effective intrusion detection framework based on SVM with feature augmentationKnowl Based Syst2017136130139
– reference: Yu J, Reddy YR, Selliah S, Kankanahalli S, Reddy S, Bharadwaj V (2004) Trinetr: an intrusion detection alert management systems. In: 13th IEEE international workshops on enabling technologies: infrastructure for collaborative enterprises. IEEE, pp 235–240
– reference: NguyenMTKimKGenetic convolutional neural network for intrusion detection systemsFut Gener Comput Syst2020113418427
– reference: BamakanSMHAmiriBMirzabagheriMShiYA new intrusion detection approach using pso based multiple criteria linear programmingProcedia Comput Sci201555231237
– reference: Sanjaya SKSSS, Jena K (2014) A detail analysis on intrusion detection datasets. In: 2014 IEEE international advance computing conference (IACC)
– reference: Aljumah A (2017) Detection of distributed denial of service attacks using artificial neural networks. In: IJACSA international journal of advanced computer science and applications, vol 8(8)
– reference: LiWUsing genetic algorithm for network intrusion detectionProc US Dept Energy Cyber Secur Group2004118
– ident: 5893_CR45
– volume: 103
  start-page: 102158
  year: 2021
  ident: 5893_CR50
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.102158
– ident: 5893_CR144
– ident: 5893_CR39
  doi: 10.1109/ICITISEE.2017.8285566
– ident: 5893_CR11
  doi: 10.4018/978-1-7998-2460-2.ch053
– volume: 163
  start-page: 332
  year: 2019
  ident: 5893_CR82
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.08.036
– ident: 5893_CR115
– volume: 5
  start-page: 56
  issue: 1
  year: 2019
  ident: 5893_CR54
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.01.014
– ident: 5893_CR162
  doi: 10.1007/978-3-030-04984-3_1
– volume: 67
  start-page: 296
  year: 2017
  ident: 5893_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.041
– volume: 214
  start-page: 391
  year: 2016
  ident: 5893_CR52
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.021
– volume: 78
  start-page: 13
  year: 2015
  ident: 5893_CR81
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.01.009
– volume: 21
  start-page: 2671
  issue: 3
  year: 2019
  ident: 5893_CR29
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2019.2896380
– ident: 5893_CR106
– ident: 5893_CR129
  doi: 10.1145/1978672.1978676
– volume: 23
  start-page: 835
  issue: 7
  year: 2008
  ident: 5893_CR64
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2007.10.001
– ident: 5893_CR36
– volume: 41
  start-page: 1
  year: 2018
  ident: 5893_CR93
  publication-title: J Inf Secur Appl
– volume: 65
  start-page: 1351
  issue: 5
  year: 2015
  ident: 5893_CR158
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2015.2470255
– ident: 5893_CR16
  doi: 10.1007/978-3-319-93563-8_18
– ident: 5893_CR108
  doi: 10.1145/2046707.2046731
– ident: 5893_CR128
  doi: 10.1109/SP.2010.25
– volume: 17
  start-page: 1936
  issue: 11
  year: 2015
  ident: 5893_CR160
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2015.2477058
– ident: 5893_CR147
– ident: 5893_CR122
  doi: 10.13052/jsn2445-9739.2017.009
– volume: 6
  start-page: 13439
  year: 2018
  ident: 5893_CR123
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810264
– ident: 5893_CR61
  doi: 10.4108/eai.3-12-2015.2262516
– volume: 32
  start-page: 112
  year: 2014
  ident: 5893_CR135
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.03.007
– year: 2020
  ident: 5893_CR43
  publication-title: J Inf Secur Appl
  doi: 10.1016/j.jisa.2019.102419
– volume: 2
  start-page: 1848
  issue: 12
  year: 2013
  ident: 5893_CR111
  publication-title: Int J Eng Res Technol
– ident: 5893_CR161
  doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141
– volume: 21
  start-page: 3639
  issue: 4
  year: 2019
  ident: 5893_CR139
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2019.2922584
– volume: 79
  start-page: 303
  year: 2018
  ident: 5893_CR63
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2017.01.029
– volume: 36
  start-page: 16
  issue: 1
  year: 2013
  ident: 5893_CR80
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.09.004
– ident: 5893_CR126
– volume: 5
  start-page: 66
  year: 2018
  ident: 5893_CR60
  publication-title: Glob J Comput Sci Technol
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 5893_CR24
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– ident: 5893_CR15
  doi: 10.1007/978-3-319-56549-1_12
– volume: 159
  start-page: 96
  year: 2019
  ident: 5893_CR27
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2019.05.013
– ident: 5893_CR75
  doi: 10.1299/jsmemecj.2019.J12106P
– ident: 5893_CR48
  doi: 10.23919/SpringSim.2019.8732851
– volume: 28
  start-page: 1051
  issue: 1
  year: 2017
  ident: 5893_CR67
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2418-1
– volume: 199
  start-page: 90
  year: 2016
  ident: 5893_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.031
– ident: 5893_CR91
– ident: 5893_CR146
– ident: 5893_CR18
– ident: 5893_CR152
– volume: 14
  start-page: 61
  issue: 2
  year: 2012
  ident: 5893_CR53
  publication-title: IJ Netw Secur
– ident: 5893_CR119
  doi: 10.1145/1514274.1514289
– volume: 273
  start-page: 554
  year: 2018
  ident: 5893_CR148
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.050
– volume: 49
  start-page: 2735
  issue: 7
  year: 2019
  ident: 5893_CR28
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01408-x
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 5893_CR134
  publication-title: J Mach Learn Res
– volume: 22
  start-page: 263
  issue: 4
  year: 2012
  ident: 5893_CR12
  publication-title: Int J Netw Manag
  doi: 10.1002/nem.804
– ident: 5893_CR99
  doi: 10.1109/RTEICT.2016.7808050
– volume: 169
  start-page: 102767
  year: 2020
  ident: 5893_CR44
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2020.102767
– ident: 5893_CR133
– volume: 58
  start-page: 82
  year: 2020
  ident: 5893_CR19
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.012
– volume: 180
  start-page: 1795
  issue: 10
  year: 2009
  ident: 5893_CR141
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2009.05.004
– ident: 5893_CR3
  doi: 10.1109/IMCEC.2016.7867287
– ident: 5893_CR86
– volume: 66
  start-page: 1
  year: 2019
  ident: 5893_CR92
  publication-title: J Ambient Intell Hum Comput
– volume: 3
  start-page: 1182
  issue: 8
  year: 2012
  ident: 5893_CR101
  publication-title: J Emerg Trends Comput Inf Sci
– ident: 5893_CR41
  doi: 10.1109/ICWR.2019.8765272
– volume: 51
  start-page: 403
  issue: 3
  year: 2019
  ident: 5893_CR113
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9567-1
– volume: 83
  start-page: 1090
  year: 2016
  ident: 5893_CR5
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.228
– ident: 5893_CR46
– ident: 5893_CR105
  doi: 10.1007/3-540-36084-0_6
– ident: 5893_CR33
  doi: 10.1109/WiCOM.2012.6478433
– volume: 136
  start-page: 130
  year: 2017
  ident: 5893_CR150
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.09.014
– volume: 89
  start-page: 101663
  year: 2020
  ident: 5893_CR13
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.101663
– ident: 5893_CR112
  doi: 10.1145/2689746.2689747
– ident: 5893_CR83
– volume: 102
  start-page: 102151
  year: 2021
  ident: 5893_CR127
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.102151
– volume: 66
  start-page: 1
  year: 2019
  ident: 5893_CR136
  publication-title: Nat Mach Intell
– volume: 174
  start-page: 50
  year: 2020
  ident: 5893_CR159
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.06.055
– volume: 7
  start-page: 100059
  year: 2019
  ident: 5893_CR55
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100059
– volume: 13
  start-page: 621
  issue: 3
  year: 2017
  ident: 5893_CR17
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2762828
– ident: 5893_CR70
  doi: 10.1109/PlatCon.2016.7456805
– ident: 5893_CR89
  doi: 10.1109/ICCOINS.2016.7783243
– ident: 5893_CR10
  doi: 10.14569/IJACSA.2017.080841
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 5893_CR125
  publication-title: IEEE Trans Emerg Top Comput Intell
  doi: 10.1109/TETCI.2017.2772792
– ident: 5893_CR138
  doi: 10.1109/CISDA.2009.5356528
– ident: 5893_CR49
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 5893_CR102
  publication-title: J Big Data
  doi: 10.1186/s40537-018-0145-4
– ident: 5893_CR104
  doi: 10.1007/978-981-15-5243-4_1
– volume: 41
  start-page: 1690
  issue: 4
  year: 2014
  ident: 5893_CR69
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.08.066
– ident: 5893_CR85
  doi: 10.1007/978-3-540-45248-5_13
– ident: 5893_CR130
  doi: 10.1007/978-3-642-04968-2_4
– volume: 18
  start-page: 420
  issue: 3
  year: 2016
  ident: 5893_CR4
  publication-title: IJ Netw Secur
– volume: 84
  start-page: 82
  year: 2019
  ident: 5893_CR42
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2018.09.014
– ident: 5893_CR137
  doi: 10.1109/WINCOM.2016.7777224
– ident: 5893_CR131
  doi: 10.1109/JCSSE.2015.7219794
– volume: 7
  start-page: 37
  issue: 1
  year: 2019
  ident: 5893_CR74
  publication-title: Indones J Electr Eng Inform
– ident: 5893_CR109
  doi: 10.1007/978-3-540-45248-5_5
– volume: 5
  start-page: 21954
  year: 2017
  ident: 5893_CR155
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– volume: 38
  start-page: 54
  issue: 1
  year: 2011
  ident: 5893_CR77
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2011.104
– volume: 171
  start-page: 1251
  year: 2020
  ident: 5893_CR117
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.133
– volume: 113
  start-page: 418
  year: 2020
  ident: 5893_CR97
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2020.07.042
– ident: 5893_CR2
  doi: 10.1016/j.procs.2015.08.443
– volume: 15
  start-page: 66
  issue: 5
  year: 2015
  ident: 5893_CR62
  publication-title: Int J Comput Sci Netw Secur
– ident: 5893_CR32
– ident: 5893_CR65
  doi: 10.1109/ICECCT.2019.8869077
– volume: 9
  start-page: 238
  issue: 2
  year: 2019
  ident: 5893_CR154
  publication-title: Appl Sci
  doi: 10.3390/app9020238
– ident: 5893_CR1
  doi: 10.21608/asat.2009.23490
– volume: 89
  start-page: 213
  year: 2016
  ident: 5893_CR40
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.06.047
– ident: 5893_CR140
– volume: 7
  start-page: 88
  issue: 1
  year: 1996
  ident: 5893_CR30
  publication-title: J Vis Commun Image Represent
  doi: 10.1006/jvci.1996.0008
– ident: 5893_CR56
  doi: 10.1109/ISCAS.2018.8350994
– volume: 171
  start-page: 1251
  year: 2020
  ident: 5893_CR116
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.04.133
– ident: 5893_CR57
  doi: 10.1145/3098954.3106068
– volume: 6
  start-page: 66
  year: 2013
  ident: 5893_CR73
  publication-title: Int J Soft Comput Eng
– volume: 88
  start-page: 249
  year: 2017
  ident: 5893_CR88
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.005
– ident: 5893_CR143
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 5893_CR153
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2012.2227145
– ident: 5893_CR25
  doi: 10.1007/978-3-642-58069-7_38
– volume: 16
  start-page: 1701
  issue: 10
  year: 2016
  ident: 5893_CR84
  publication-title: Sensors
  doi: 10.3390/s16101701
– ident: 5893_CR47
  doi: 10.1109/ICISSEC.2016.7885840
– ident: 5893_CR7
– volume: 7
  start-page: 41525
  year: 2019
  ident: 5893_CR149
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– volume: 11
  start-page: 6
  issue: 6
  year: 2016
  ident: 5893_CR66
  publication-title: PLoS ONE
– volume: 20
  start-page: 2705
  issue: 7
  year: 2016
  ident: 5893_CR71
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1669-6
– volume: 5
  start-page: 554
  issue: 3
  year: 2016
  ident: 5893_CR87
  publication-title: Int J Comput Sci Netw
– ident: 5893_CR96
– volume: 6
  start-page: 20255
  year: 2018
  ident: 5893_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2820092
– volume: 1
  start-page: 22
  issue: 2007
  year: 2007
  ident: 5893_CR26
  publication-title: UCDAVIS Dept Comput Sci
– ident: 5893_CR156
  doi: 10.1109/ENABL.2004.76
– volume: 34
  start-page: 369
  issue: 4
  year: 2010
  ident: 5893_CR72
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-010-9179-5
– ident: 5893_CR68
  doi: 10.1007/978-3-030-24265-7_7
– ident: 5893_CR157
  doi: 10.1109/TSC.2015.2497705
– volume: 92
  start-page: 178
  year: 2019
  ident: 5893_CR132
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2018.09.063
– ident: 5893_CR95
  doi: 10.1109/CIS.2011.6169141
– ident: 5893_CR35
  doi: 10.1109/WCNC.2013.6555301
– ident: 5893_CR142
– ident: 5893_CR6
  doi: 10.1109/ICoAC.2012.6416848
– ident: 5893_CR58
  doi: 10.1007/978-981-15-1480-7_68
– ident: 5893_CR76
– ident: 5893_CR118
  doi: 10.1109/SAINT.2012.51
– ident: 5893_CR121
  doi: 10.1007/978-3-030-19823-7_4
– volume: 378
  start-page: 484
  year: 2017
  ident: 5893_CR20
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.04.019
– ident: 5893_CR34
– volume: 55
  start-page: 231
  year: 2015
  ident: 5893_CR21
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.07.040
– ident: 5893_CR110
  doi: 10.1007/978-981-13-0514-6_16
– volume: 86
  start-page: 53
  year: 2019
  ident: 5893_CR51
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.05.022
– volume: 148
  start-page: 102460
  year: 2019
  ident: 5893_CR103
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.102460
– volume: 89
  start-page: 117
  year: 2016
  ident: 5893_CR23
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.06.016
– volume: 1
  start-page: 1
  year: 2004
  ident: 5893_CR78
  publication-title: Proc US Dept Energy Cyber Secur Group
– ident: 5893_CR37
  doi: 10.1109/ICCSN.2016.7586590
– ident: 5893_CR145
– volume: 104
  start-page: 213
  year: 2018
  ident: 5893_CR100
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.03.030
– volume: 9
  start-page: 205
  issue: 5
  year: 2015
  ident: 5893_CR79
  publication-title: Int J Secur Appl
– ident: 5893_CR114
– volume: 57
  start-page: 115
  year: 2020
  ident: 5893_CR90
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2019.12.001
– volume: 6
  start-page: 16623
  year: 2018
  ident: 5893_CR94
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2798626
– volume: 23
  start-page: 2163
  issue: 6
  year: 2015
  ident: 5893_CR31
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2015.2406889
– ident: 5893_CR98
– ident: 5893_CR151
  doi: 10.1109/ICSITech.2017.8257156
– ident: 5893_CR120
  doi: 10.1109/CICN.2016.87
– volume: 42
  start-page: 2670
  issue: 5
  year: 2015
  ident: 5893_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.11.009
– volume: 8
  start-page: 107
  issue: 1
  year: 2013
  ident: 5893_CR59
  publication-title: J Eng Sci Technol
– ident: 5893_CR107
  doi: 10.4018/978-1-5225-9866-4.ch026
– ident: 5893_CR14
– volume: 31
  start-page: 357
  issue: 3
  year: 2012
  ident: 5893_CR124
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2011.12.012
SSID ssj0021753
Score 2.541745
Snippet Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 9731
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Foundations
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
URI https://link.springer.com/article/10.1007/s00500-021-05893-0
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yXfTgj6k4f4wcvGkgTZOu8bbJ5lDcycE8lbRJRJA66P5_fEnTzoEMvLRQXnvo95L3Hvne-xC6FYwrWVBXm3BJwCkUSWMuiDuT4QnT7uLYFvNktuDPS7EMTWFVw3ZvjiT9Tt02u7lRJZQ4SoGTwosJFOpd4Wp38OIFG7VlVpg9CYkA5I4QcEOrzN_f2A5H22ehPsRMj9FhyA3xqAbzBO2ZsoeOGt0FHJZhDx38GiJ4ispXz4c0OAhAfGBVaqyNWW2e1DrRFYYMFX-Wrs8C4ACbtSdilbie51w9YNj_IAphvaESVf5zRaO5Up2hxXTy9jgjQUWBFExGawIR3KpEDqVNGFOwnoXSUWG4irXUJjbWSi7iXHGoBdPc0qE1VDGbcplrY6mKz1Gn_C7NBcKREQVjliZpwXlhmWSAsqZcWSFsmiR9FDU_MyvCiHGndPGVtcORPQAZAJB5ADLaR3ftO6t6wMZO6_sGoywstmqH-eX_zK_QPvO-4fh916gDcJgbyDnW-QB1R9PxeO7uT-8vk4F3uR_HI8-5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH1Nx_szBmwbSNOkab0McU7edNtitpE0igtRB9__jS5p2DmTgpYfymkO_l7z3yPe-h9C9YFzJgrrahEsCTqFIGnNB3J0MT5h2D8e2mCajOX9biEVoCqsatntzJelP6rbZzUmVUOIoBW4UXkygUN-FZCB1RK45G7RlVtCehEQAckcIuKFV5u81NsPR5l2oDzHDY3QYckM8qME8QTum7KKjZu4CDtuwiw5-iQieonLi-ZAGhwEQH1iVGmtjlus39ZzoCkOGij9L12cBcIDNyhOxSlzrOVdPGM4_iEJYr6lElV-uaGauVGdoPnyZPY9ImKJACiajFYEIblUi-9ImjCnYz0LpqDBcxVpqExtrJRdxrjjUgmluad8aqphNucy1sVTF56hTfpfmAuHIiIIxS5O04LywTDJAWVOurBA2TZIeipqfmRVBYtxNuvjKWnFkD0AGAGQegIz20EP7zbIW2Nhq_dhglIXNVm0xv_yf-R3aG80m42z8On2_QvvM-4nj-l2jDkBjbiD_WOW33t1-ALJSz5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfTgx1Scnzl407A2TbvG21DH_BoeHOxW0iYRQeKg_f_xJU27DWTgpYfymkN_L3nvkfd-P4SuY8oELwJbmzBOwCkESSMWE3snwxIq7cN2W0yS8ZQ9z-LZ0hS_63ZvriTrmQbL0mSq_lzqfjv4ZmlLAmLbC6wsXkSgaN-E4zi0fj2lw7bk8jyUkBRAHgnB14_N_L3GamhavRd14Wa0j3Z9noiHNbAHaEOZLtprNBiw35JdtLNEKHiIzJvrjVTYi0F8YmEklkrNF29qzegSQ7aKv4yduQBowKZyTVkG19zO5R2GsxD-CJaLtqLSLVc0-ivlEZqOHj_ux8QrKpCC8rAiEM21SPiA64RSAXs7FjIsFBOR5FJFSmvO4igXDOrCNNfBQKtAUJ0ynkulAxEdo475MeoE4VDFBaU6SNKCsUJTTgFxGTCh41inSdJDYfMzs8LTjVvVi--sJUp2AGQAQOYAyIIeumm_mddkG2utbxuMMr_xyjXmp_8zv0Jb7w-j7PVp8nKGtqlzE9v2d446gIy6gFSkyi-dt_0C2xPT2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+deep+learning+methods+for+intrusion+detection+systems%3A+recent+developments+and+challenges&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kocher%2C+Geeta&rft.au=Kumar%2C+Gulshan&rft.date=2021-08-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=15&rft.spage=9731&rft.epage=9763&rft_id=info:doi/10.1007%2Fs00500-021-05893-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_05893_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon