Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 25; no. 15; pp. 9731 - 9763 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of data complexity give rise to DL methods. Intrusion detection is one of the prominent areas in which researchers are extending DL methods. Even though several excellent surveys cover the growing body of research on this subject, the literature lacks a detailed comparison of ML methods such as ANN, SVM, fuzzy approach, swarm intelligence and evolutionary computation methods in intrusion detection, particularly on recent research. In this context, the present paper deals with the systematic review of ML methods and DL methods in intrusion detection. In addition to reviewing ML and DL methods, this paper also focuses on benchmark datasets, performance evaluation measures and various applications of DL methods for intrusion detection. The present paper summarizes the recent work, compares their experimental results for detecting network intrusions. Furthermore, current research challenges are identified for helping fellow researchers in the era of DL-based intrusion detection. |
---|---|
AbstractList | Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of data complexity give rise to DL methods. Intrusion detection is one of the prominent areas in which researchers are extending DL methods. Even though several excellent surveys cover the growing body of research on this subject, the literature lacks a detailed comparison of ML methods such as ANN, SVM, fuzzy approach, swarm intelligence and evolutionary computation methods in intrusion detection, particularly on recent research. In this context, the present paper deals with the systematic review of ML methods and DL methods in intrusion detection. In addition to reviewing ML and DL methods, this paper also focuses on benchmark datasets, performance evaluation measures and various applications of DL methods for intrusion detection. The present paper summarizes the recent work, compares their experimental results for detecting network intrusions. Furthermore, current research challenges are identified for helping fellow researchers in the era of DL-based intrusion detection. |
Author | Kocher, Geeta Kumar, Gulshan |
Author_xml | – sequence: 1 givenname: Geeta surname: Kocher fullname: Kocher, Geeta organization: Maharaja Ranjit Singh Punjab Technical University – sequence: 2 givenname: Gulshan orcidid: 0000-0001-8013-6140 surname: Kumar fullname: Kumar, Gulshan email: gulshanahuja@gmail.com organization: Shaheed Bhagat Singh State Technical Campus |
BookMark | eNp9kM9KAzEQxoNUsK2-gKd9gegk2W023qT4Dype9BzS7KTdspstSSr07U1bQfDQ03zMzG-G75uQkR88EnLL4I4ByPsIUAFQ4IxCVStB4YKMWSkElaVUo6PmVM5KcUUmMW4gb8pKjIl_N3bdeiw6NMG3flUY3xQN4vav02NaD00s3BCK1qewi-3g805Cmw4q7mPCPj4UAS36lCff2A3bPut4PGfXpuvQrzBek0tnuog3v3VKvp6fPuevdPHx8jZ_XFDLFUu0ZtyZmZLKzTg3AlhlGmaxNKJRDQp0TpWVWJpSclYvHUiHYLirS7Vs0IERU8JPd20YYgzo9Da0vQl7zUAfEtOnxHTOQR8T05Ch-h9k22QOFlMwbXceFSc05j_ZaNCbYRd8tniO-gFta4V1 |
CitedBy_id | crossref_primary_10_1016_j_iswa_2024_200442 crossref_primary_10_1007_s13369_025_09985_z crossref_primary_10_1016_j_aej_2023_09_064 crossref_primary_10_3390_electronics13183617 crossref_primary_10_1155_2022_6124895 crossref_primary_10_1002_widm_1565 crossref_primary_10_1016_j_cose_2024_104033 crossref_primary_10_32604_cmes_2022_020724 crossref_primary_10_1007_s10586_025_05156_9 crossref_primary_10_1186_s40537_023_00814_4 crossref_primary_10_1109_ACCESS_2023_3347619 crossref_primary_10_1109_ACCESS_2025_3528940 crossref_primary_10_1051_itmconf_20224301015 crossref_primary_10_1109_ACCESS_2024_3367004 crossref_primary_10_3390_info16010008 crossref_primary_10_3390_electronics13193823 crossref_primary_10_1007_s00500_023_07956_w crossref_primary_10_3390_app132112068 crossref_primary_10_1049_wss2_12100 crossref_primary_10_3390_a15080258 crossref_primary_10_3390_electronics12214545 crossref_primary_10_1109_ACCESS_2022_3188635 crossref_primary_10_1007_s10922_025_09917_0 crossref_primary_10_1109_TMLCN_2024_3402158 crossref_primary_10_1007_s12083_025_01911_2 crossref_primary_10_1007_s11276_023_03516_0 crossref_primary_10_1155_2023_8068038 crossref_primary_10_1007_s10207_023_00663_5 crossref_primary_10_1007_s10586_024_04544_x crossref_primary_10_1016_j_compeleceng_2024_109863 crossref_primary_10_1007_s00500_021_06689_y crossref_primary_10_1016_j_cose_2024_104160 crossref_primary_10_3390_data7020022 crossref_primary_10_1016_j_iot_2023_100843 crossref_primary_10_54732_jeecs_v9i1_1 crossref_primary_10_1109_ACCESS_2024_3369912 crossref_primary_10_56294_mw2024552 crossref_primary_10_7717_peerj_cs_2152 crossref_primary_10_1016_j_heliyon_2024_e37571 crossref_primary_10_3390_technologies12100203 crossref_primary_10_1007_s10207_022_00616_4 crossref_primary_10_21015_vtse_v12i2_1817 crossref_primary_10_1109_TCE_2024_3373126 crossref_primary_10_3390_math11214501 crossref_primary_10_3390_jsan12020029 crossref_primary_10_1109_ACCESS_2023_3346943 crossref_primary_10_3390_s22124405 crossref_primary_10_3390_s23218793 crossref_primary_10_3390_electronics13122405 crossref_primary_10_1155_2024_3909173 crossref_primary_10_1016_j_icte_2024_05_007 crossref_primary_10_1016_j_procs_2025_02_066 crossref_primary_10_1080_03772063_2024_2370949 crossref_primary_10_1051_itmconf_20224301003 crossref_primary_10_32604_cmc_2023_032617 crossref_primary_10_1109_TNSM_2024_3357316 crossref_primary_10_32604_csse_2023_030630 crossref_primary_10_12677_AAM_2023_126274 crossref_primary_10_1038_s41598_025_85866_7 crossref_primary_10_1007_s43926_023_00034_5 crossref_primary_10_1016_j_knosys_2024_112557 crossref_primary_10_1016_j_vehcom_2024_100837 crossref_primary_10_1007_s11042_024_19131_w crossref_primary_10_1109_JIOT_2024_3354045 crossref_primary_10_1007_s00500_023_09552_4 crossref_primary_10_1155_2023_8043619 crossref_primary_10_53759_7669_jmc202404073 |
Cites_doi | 10.1016/j.cose.2020.102158 10.1109/ICITISEE.2017.8285566 10.4018/978-1-7998-2460-2.ch053 10.1016/j.knosys.2018.08.036 10.1016/j.icte.2018.01.014 10.1007/978-3-030-04984-3_1 10.1016/j.eswa.2016.09.041 10.1016/j.neucom.2016.06.021 10.1016/j.knosys.2015.01.009 10.1109/COMST.2019.2896380 10.1145/1978672.1978676 10.1016/j.envsoft.2007.10.001 10.1109/TC.2015.2470255 10.1007/978-3-319-93563-8_18 10.1145/2046707.2046731 10.1109/SP.2010.25 10.1109/TMM.2015.2477058 10.13052/jsn2445-9739.2017.009 10.1109/ACCESS.2018.2810264 10.4108/eai.3-12-2015.2262516 10.1016/j.engappai.2014.03.007 10.1016/j.jisa.2019.102419 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141 10.1109/COMST.2019.2922584 10.1016/j.future.2017.01.029 10.1016/j.jnca.2012.09.004 10.1561/2200000006 10.1007/978-3-319-56549-1_12 10.1016/j.comnet.2019.05.013 10.1299/jsmemecj.2019.J12106P 10.23919/SpringSim.2019.8732851 10.1007/s00521-016-2418-1 10.1016/j.neucom.2016.03.031 10.1145/1514274.1514289 10.1016/j.neucom.2017.08.050 10.1007/s10489-018-01408-x 10.1002/nem.804 10.1109/RTEICT.2016.7808050 10.1016/j.jnca.2020.102767 10.1016/j.inffus.2019.12.012 10.1016/j.cpc.2009.05.004 10.1109/IMCEC.2016.7867287 10.1109/ICWR.2019.8765272 10.1007/s10462-017-9567-1 10.1016/j.procs.2016.04.228 10.1007/3-540-36084-0_6 10.1109/WiCOM.2012.6478433 10.1016/j.knosys.2017.09.014 10.1016/j.cose.2019.101663 10.1145/2689746.2689747 10.1016/j.cose.2020.102151 10.1016/j.procs.2020.06.055 10.1016/j.iot.2019.100059 10.1109/TIFS.2017.2762828 10.1109/PlatCon.2016.7456805 10.1109/ICCOINS.2016.7783243 10.14569/IJACSA.2017.080841 10.1109/TETCI.2017.2772792 10.1109/CISDA.2009.5356528 10.1186/s40537-018-0145-4 10.1007/978-981-15-5243-4_1 10.1016/j.eswa.2013.08.066 10.1007/978-3-540-45248-5_13 10.1007/978-3-642-04968-2_4 10.1016/j.adhoc.2018.09.014 10.1109/WINCOM.2016.7777224 10.1109/JCSSE.2015.7219794 10.1007/978-3-540-45248-5_5 10.1109/ACCESS.2017.2762418 10.1109/TSE.2011.104 10.1016/j.procs.2020.04.133 10.1016/j.future.2020.07.042 10.1016/j.procs.2015.08.443 10.1109/ICECCT.2019.8869077 10.3390/app9020238 10.21608/asat.2009.23490 10.1016/j.procs.2016.06.047 10.1006/jvci.1996.0008 10.1109/ISCAS.2018.8350994 10.1145/3098954.3106068 10.1016/j.eswa.2017.07.005 10.1109/TEVC.2012.2227145 10.1007/978-3-642-58069-7_38 10.3390/s16101701 10.1109/ICISSEC.2016.7885840 10.1109/ACCESS.2019.2895334 10.1007/s00500-015-1669-6 10.1109/ACCESS.2018.2820092 10.1109/ENABL.2004.76 10.1007/s10462-010-9179-5 10.1007/978-3-030-24265-7_7 10.1109/TSC.2015.2497705 10.1016/j.future.2018.09.063 10.1109/CIS.2011.6169141 10.1109/WCNC.2013.6555301 10.1109/ICoAC.2012.6416848 10.1007/978-981-15-1480-7_68 10.1109/SAINT.2012.51 10.1007/978-3-030-19823-7_4 10.1016/j.ins.2016.04.019 10.1016/j.procs.2015.07.040 10.1007/978-981-13-0514-6_16 10.1016/j.cose.2019.05.022 10.1016/j.jnca.2019.102460 10.1016/j.procs.2016.06.016 10.1109/ICCSN.2016.7586590 10.1016/j.eswa.2018.03.030 10.1016/j.inffus.2019.12.001 10.1109/ACCESS.2018.2798626 10.1109/TFUZZ.2015.2406889 10.1109/ICSITech.2017.8257156 10.1109/CICN.2016.87 10.1016/j.eswa.2014.11.009 10.4018/978-1-5225-9866-4.ch026 10.1016/j.cose.2011.12.012 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00500-021-05893-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 9763 |
ExternalDocumentID | 10_1007_s00500_021_05893_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-812fa6979f622a3015ad1ce4a3d9de3eff9453ba47218bf07fe0a2f849bdef0a3 |
IEDL.DBID | U2A |
ISSN | 1432-7643 |
IngestDate | Fri Jul 04 01:04:13 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Fri Feb 21 02:48:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Deep learning Recurrent neural network Deep belief network Intrusion detection system Network intrusion detection system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-812fa6979f622a3015ad1ce4a3d9de3eff9453ba47218bf07fe0a2f849bdef0a3 |
ORCID | 0000-0001-8013-6140 |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1007_s00500_021_05893_0 crossref_citationtrail_10_1007_s00500_021_05893_0 springer_journals_10_1007_s00500_021_05893_0 |
PublicationCentury | 2000 |
PublicationDate | 20210800 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp 4–11 Cloudstor (2019) Cloudstor. https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys. Accessed 15 Apr 15 2020 FerragMAMaglarasLMoschoyiannisSJanickeHDeep learning for cyber security intrusion detection: approaches, datasets, and comparative studyJ Inf Secur Appl202010.1016/j.jisa.2019.102419 KimGLeeSKimSA novel hybrid intrusion detection method integrating anomaly detection with misuse detectionExpert Syst Appl2014414169017003249626 TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat Mach Intell20196614 Pandey A, Sinha A, PS A (2019) Intrusion detection using sequential hybrid model. arXiv preprint arXiv:1910.12074 BamakanSMHWangHYingjieTShiYAn effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimizationNeurocomputing201619990102 ZhangYZhangYZhangNXiaoMA network intrusion detection method based on deep learning with higher accuracyProcedia Comput Sci20201745054 Hodo E, Bellekens X, Iorkyase E, Hamilton A, Tachtatzis C, Atkinson R (2017) Machine learning approach for detection of nontor traffic. In: Proceedings of the 12th international conference on availability, reliability and security, pp 1–6 KumarVChauhanHPanwarDK-means clustering approach to analyze nsl-kdd intrusion detection datasetInt J Soft Comput Eng2013666 BelavagiMCMuniyalBPerformance evaluation of supervised machine learning algorithms for intrusion detectionProcedia Comput Sci201689117123 AlzaylaeeMKYerimaSYSezerSDl-droid: deep learning based android malware detection using real devicesComput Secur202089101663 Khan FA, Gumaei A (2019) A comparative study of machine learning classifiers for network intrusion detection. In: International conference on artificial intelligence and security. Springer, pp 75–86 Gharib A, Sharafaldin I, Lashkari AH, Ghorbani AA (2016) An evaluation framework for intrusion detection dataset. In: 2016 International conference on information science and security (ICISS). IEEE, pp 1–6 Gautam RKS, Doegar EA (2018) An ensemble approach for intrusion detection system using machine learning algorithms. In: 2018 8th International conference on cloud computing, data science & engineering (confluence). IEEE, pp 14–15 ShenYHanTYangQYangXWangYLiFWenHCs-cnn: enabling robust and efficient convolutional neural networks inference for internet-of-things applicationsIEEE Access201861343913448 ViegasFRochaLGonçalvesMMourãoFSáGSallesTAndradeGSandinIA genetic programming approach for feature selection in highly dimensional skewed dataNeurocomputing2018273554569 Wisesty UN, et al. (2017) Comparative study of conjugate gradient to optimize learning process of neural network for intrusion detection system (ids). In: 2017 3rd International conference on science in information technology (ICSITech). IEEE, pp 459–464 ChenCPZhangCYChenLGanMFuzzy restricted Boltzmann machine for the enhancement of deep learningIEEE Trans Fuzzy Syst201523621632173 JeburSANasereddinHEnhanced solutions for misuse network intrusion detection system using sga and ssgaInt J Comput Sci Netw Secur201515566 PalmieriFNetwork anomaly detection based on logistic regression of nonlinear chaotic invariantsJ Netw Comput Appl2019148102460 TongXWangZYuHA research using hybrid rbf/elman neural networks for intrusion detection system secure modelComput Phys Commun20091801017951801 OjugoAEbokaAOkontaOYoroRAghwareFGenetic algorithm rule-based intrusion detection system (gaids)J Emerg Trends Comput Inf Sci20123811821194 Nehinbe JO (2011) A critical evaluation of datasets for investigating idss and ipss researches. In: 2011 IEEE 10th international conference on cybernetic intelligent systems (CIS). IEEE, pp 92–97 HajimirzaeiBNavimipourNJIntrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithmICT Express2019515659 Al-YaseenWLOthmanZANazriMZAMulti-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection systemExpert Syst Appl201767296303 AissaNBGuerroumiMSemi-supervised statistical approach for network anomaly detectionProcedia Comput Sci20168310901095 YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access201752195421961 Serrano W (2019) The blockchain random neural network in cybersecurity and the internet of things. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 50–63 Ghose N, Lazos L, Rozenblit J, Breiger R (2019) Multimodal graph analysis of cyber attacks. In: 2019 Spring simulation conference (SpringSim). IEEE, pp 1–12 Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011) Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the first workshop on building analysis datasets and gathering experience returns for security, pp 29–36 Srimuang W, Intarasothonchun S (2015) Classification model of network intrusion using weighted extreme learning machine. In: 2015 12th International joint conference on computer science and software engineering (JCSSE). IEEE, pp 190–194 Javaid A, Niyaz Q, Sun W, Alam M (2016) A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), pp 21–26 Kyoto (2019) Kyoto. http://www.takakura.com/Kyoto_data/. Accessed 15 Apr 2020 KumarGKumarKSachdevaMThe use of artificial intelligence based techniques for intrusion detection: a reviewArtif Intell Rev2010344369387 ChenHSchuffelsCOrwigRInternet categorization and search: a self-organizing approachJ Vis Commun Image Represent19967188102 Chitrakar R, Huang C (2012) Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naive Bayes classification. In: 2012 8th International conference on wireless communications, networking and mobile computing. IEEE, pp 1–5 Prusty S, Levine BN, Liberatore M (2011) Forensic investigation of the oneswarm anonymous filesharing system. In: Proceedings of the 18th ACM conference on Computer and communications security, pp 201–214 Farzaneh B, Montazeri MA, Jamali S (2019) An anomaly-based ids for detecting attacks in rpl-based internet of things. In: 2019 5th International conference on web research (ICWR). IEEE, pp 61–66 KaltehAMHjorthPBerndtssonRReview of the self-organizing map (som) approach in water resources: analysis, modelling and applicationEnviron Model Softw2008237835845 NguyenMTKimKGenetic convolutional neural network for intrusion detection systemsFut Gener Comput Syst2020113418427 Porras PA, Fong MW, Valdes A (2002) A mission-impact-based approach to infosec alarm correlation. In: International workshop on recent advances in intrusion detection. Springer, pp 95–114 Akilandeswari V, Shalinie SM (2012) Probabilistic neural network based attack traffic classification. In: 2012 Fourth international conference on advanced computing (ICoAC). IEEE, pp 1–8 SaranyaTSrideviSDeisyCChungTDKhanMAPerformance analysis of machine learning algorithms in intrusion detection system: a reviewProcedia Comput Sci202017112511260 MunaAHMoustafaNSitnikovaEIdentification of malicious activities in industrial internet of things based on deep learning modelsJ Inf Secur Appl201841111 Uci (2019) Uci. http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data. Accessed 15 Apr 2020 U. of massachusetts amherst (2019) U. of massachusetts amherst, optimistic tcp acking. http://traces.cs.umass.edu/. Accessed 12 Feb 2019 KurniabudiKPurnamaBSharipuddinSDarmawijoyoDStiawanDSamsuryadiSHeryantoABudiartoRNetwork anomaly detection research: a surveyIndones J Electr Eng Inform2019713750 Unb (2019b) https://www.unb.ca/cic/datasets/ids.html Accessed 15 Apr 2020 Nskh P, Varma MN, Naik RR (2016) Principle component analysis based intrusion detection system using support vector machine. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1344–1350 HasanMIslamMMZarifMIIHashemMAttack and anomaly detection in iot sensors in iot sites using machine learning approachesInternet Things20197100059 AminantoMEChoiRTanuwidjajaHCYooPDKimKDeep abstraction and weighted feature selection for wi-fi impersonation detectionIEEE Trans Inf Forensics Secur2017133621636 GamageSSamarabanduJDeep learning methods in network intrusion detection: a survey and an objective comparisonJ Netw Comput Appl2020169102767 Hussain MS, Khan KUR (2020) A survey of ids techniques in manets using machine-learning. In: Proceedings of the third international conference on computational intelligence and informatics. Springer, pp 743–751 Chevalier R, Plaquin D, Villatel M, Hiet G (2020) Intrusion detection systems. US Patent App. 16/486,331 Zhao S, Li W, Zia T, Zomaya AY (2017) A dimension reduction model and classifier for anomaly-based intrusion detection in internet of things. In: 2017 IEEE 15th international conference on dependable, autonomic and secure computing, 15th international conference on pervasive intelligence and computing, 3rd international conference on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 836–843 Creech G, Hu J (2013) Generation of a new ids test dataset: time to retire the kdd collection. In: 2013 IEEE wireless communications and networking conference (WCNC). IEEE, pp 4487–4492 LiWUsing genetic algorithm for network intrusion detectionProc US Dept Energy Cyber Secur Group2004118 Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for network intrusion detection. In: 2016 8th IEEE international conference on communication software and network 5893_CR33 LM Ibrahim (5893_CR59) 2013; 8 5893_CR32 5893_CR35 5893_CR34 5893_CR37 5893_CR36 5893_CR39 C Le Goues (5893_CR77) 2011; 38 MK Alzaylaee (5893_CR13) 2020; 89 T Ma (5893_CR84) 2016; 16 K Alsubhi (5893_CR12) 2012; 22 N Farnaaz (5893_CR40) 2016; 89 B Hajimirzaei (5893_CR54) 2019; 5 H Wang (5893_CR150) 2017; 136 AI Saleh (5893_CR113) 2019; 51 N Shone (5893_CR125) 2018; 2 5893_CR156 5893_CR46 AH Muna (5893_CR93) 2018; 41 5893_CR157 5893_CR45 5893_CR48 5893_CR47 5893_CR49 K Kurniabudi (5893_CR74) 2019; 7 J Gu (5893_CR51) 2019; 86 T Meng (5893_CR90) 2020; 57 RAR Ashfaq (5893_CR20) 2017; 378 5893_CR161 5893_CR162 L Zhao (5893_CR160) 2015; 17 5893_CR41 5893_CR57 5893_CR56 5893_CR104 5893_CR58 5893_CR105 5893_CR106 5893_CR107 5893_CR108 5893_CR109 Y Li (5893_CR79) 2015; 9 Y Shen (5893_CR123) 2018; 6 J Srinivas (5893_CR132) 2019; 92 5893_CR3 H Liu (5893_CR82) 2019; 163 Y Yang (5893_CR154) 2019; 9 MN Napiah (5893_CR94) 2018; 6 5893_CR1 5893_CR2 5893_CR7 5893_CR6 5893_CR110 S Revathi (5893_CR111) 2013; 2 SA Jebur (5893_CR62) 2015; 15 AB Arrieta (5893_CR19) 2020; 58 5893_CR65 5893_CR68 ST Brugger (5893_CR26) 2007; 1 WC Lin (5893_CR81) 2015; 78 E Kabir (5893_CR63) 2018; 79 F Palmieri (5893_CR103) 2019; 148 Y Bengio (5893_CR24) 2009; 2 R Vinayakumar (5893_CR149) 2019; 7 C Yin (5893_CR155) 2017; 5 T Saranya (5893_CR117) 2020; 171 F Feng (5893_CR42) 2019; 84 P Kudłacik (5893_CR71) 2016; 20 J Kevric (5893_CR67) 2017; 28 T Saranya (5893_CR116) 2020; 171 5893_CR61 T Nyathi (5893_CR100) 2018; 104 PS Maniyar (5893_CR87) 2016; 5 5893_CR122 5893_CR76 ME Aminanto (5893_CR17) 2017; 13 G Caminero (5893_CR27) 2019; 159 5893_CR126 MC Belavagi (5893_CR23) 2016; 89 V Kumar (5893_CR73) 2013; 6 MH Aghdam (5893_CR4) 2016; 18 MA Ferrag (5893_CR43) 2020 5893_CR128 5893_CR129 S Tabakhi (5893_CR135) 2014; 32 MT Nguyen (5893_CR97) 2020; 113 SM Othman (5893_CR102) 2018; 5 LN Tidjon (5893_CR139) 2019; 21 SMH Bamakan (5893_CR21) 2015; 55 NM Jacob (5893_CR60) 2018; 5 5893_CR70 5893_CR130 5893_CR75 5893_CR131 5893_CR112 5893_CR89 5893_CR114 SM Mousavi (5893_CR92) 2019; 66 5893_CR115 J Gu (5893_CR50) 2021; 103 5893_CR118 5893_CR119 H Chen (5893_CR30) 1996; 7 S Gamage (5893_CR44) 2020; 169 BB Gupta (5893_CR53) 2012; 14 MJ Kang (5893_CR66) 2016; 11 G Kumar (5893_CR72) 2010; 34 S Yang (5893_CR153) 2013; 17 AM Kalteh (5893_CR64) 2008; 23 X Tong (5893_CR141) 2009; 180 MH Ali (5893_CR9) 2018; 6 W Li (5893_CR78) 2004; 1 G Kim (5893_CR69) 2014; 41 SMH Bamakan (5893_CR22) 2016; 199 HJ Liao (5893_CR80) 2013; 36 5893_CR83 5893_CR86 5893_CR120 5893_CR85 5893_CR121 5893_CR11 5893_CR99 A Ojugo (5893_CR101) 2012; 3 5893_CR144 5893_CR10 5893_CR98 5893_CR145 5893_CR146 Y Zhang (5893_CR159) 2020; 174 M Hasan (5893_CR55) 2019; 7 5893_CR147 WL Al-Yaseen (5893_CR8) 2017; 67 5893_CR15 AS Eesa (5893_CR38) 2015; 42 M Taddeo (5893_CR136) 2019; 66 5893_CR14 F Viegas (5893_CR148) 2018; 273 5893_CR16 5893_CR18 CP Chen (5893_CR31) 2015; 23 5893_CR91 SM Sohi (5893_CR127) 2021; 102 5893_CR95 5893_CR151 5893_CR152 5893_CR96 5893_CR133 Ü Çavuşoğlu (5893_CR28) 2019; 49 5893_CR137 5893_CR25 5893_CR138 NB Aissa (5893_CR5) 2016; 83 Q Zhang (5893_CR158) 2015; 65 A Shiravi (5893_CR124) 2012; 31 I Manzoor (5893_CR88) 2017; 88 N Srivastava (5893_CR134) 2014; 15 5893_CR140 N Chaabouni (5893_CR29) 2019; 21 5893_CR142 C Guo (5893_CR52) 2016; 214 5893_CR143 |
References_xml | – reference: Kandan AM, Kathrine GJ, Melvin AR (2019) Network attacks and prevention techniques—a study. In: 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT). IEEE, pp 1–6 – reference: GuJLuSAn effective intrusion detection approach using SVM with Naïve Bayes feature embeddingComput Secur2021103102158 – reference: Cloudstor (2019) Cloudstor. https://cloudstor.aarnet.edu.au/plus/index.php/s/2DhnLGDdEECo4ys. Accessed 15 Apr 15 2020 – reference: Aminanto ME, Kim K (2016b) Detecting impersonation attack in wifi networks using deep learning approach. In: International workshop on information security applications. Springer, pp 136–147 – reference: Sangster B, O’Connor T, Cook T, Fanelli R, Dean E, Morrell C, Conti GJ (2009) Toward instrumenting network warfare competitions to generate labeled datasets. In: CSET – reference: Qin X, Lee W (2003) Statistical causality analysis of infosec alert data. In: International workshop on recent advances in intrusion detection. Springer, pp 73–93 – reference: ShenYHanTYangQYangXWangYLiFWenHCs-cnn: enabling robust and efficient convolutional neural networks inference for internet-of-things applicationsIEEE Access201861343913448 – reference: Al-Dhafian B, Ahmad I, Al-Ghamid A (2015) An overview of the current classification techniques in intrusion detection. In: Proceedings of the international conference on security and management (SAM). The Steering Committee of The World Congress in Computer Science, Computer, p 82 – reference: AliMHAl MohammedBADIsmailAZolkipliMFA new intrusion detection system based on fast learning network and particle swarm optimizationIEEE Access201862025520261 – reference: Ghose N, Lazos L, Rozenblit J, Breiger R (2019) Multimodal graph analysis of cyber attacks. In: 2019 Spring simulation conference (SpringSim). IEEE, pp 1–12 – reference: NyathiTPillayNComparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithmsExpert Syst Appl2018104213234 – reference: Al-YaseenWLOthmanZANazriMZAMulti-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection systemExpert Syst Appl201767296303 – reference: FerragMAMaglarasLMoschoyiannisSJanickeHDeep learning for cyber security intrusion detection: approaches, datasets, and comparative studyJ Inf Secur Appl202010.1016/j.jisa.2019.102419 – reference: Hussain MS, Khan KUR (2020) A survey of ids techniques in manets using machine-learning. In: Proceedings of the third international conference on computational intelligence and informatics. Springer, pp 743–751 – reference: GuJWangLWangHWangSA novel approach to intrusion detection using SVM ensemble with feature augmentationComput Secur2019865362 – reference: Abubakar AI, Chiroma H, Muaz SA, Ila LB (2015) A review of the advances in cyber security benchmark datasets for evaluating data-driven based intrusion detection systems. In: SCSE, pp 221–227 – reference: LinWCKeSWTsaiCFCann: an intrusion detection system based on combining cluster centers and nearest neighborsKnowl Based Syst2015781321 – reference: Almomani A, Alauthman M, Albalas F, Dorgham O, Obeidat A (2020) An online intrusion detection system to cloud computing based on neucube algorithms. In: Cognitive analytics: concepts, methodologies, tools, and applications. IGI Global, pp 1042–1059 – reference: Chitrakar R, Huang C (2012) Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naive Bayes classification. In: 2012 8th International conference on wireless communications, networking and mobile computing. IEEE, pp 1–5 – reference: ZhangYZhangYZhangNXiaoMA network intrusion detection method based on deep learning with higher accuracyProcedia Comput Sci20201745054 – reference: HasanMIslamMMZarifMIIHashemMAttack and anomaly detection in iot sensors in iot sites using machine learning approachesInternet Things20197100059 – reference: Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, pp 4–11 – reference: Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6 – reference: PalmieriFNetwork anomaly detection based on logistic regression of nonlinear chaotic invariantsJ Netw Comput Appl2019148102460 – reference: ZhaoLHuQWangWHeterogeneous feature selection with multi-modal deep neural networks and sparse group lassoIEEE Trans Multimed2015171119361948 – reference: KumarVChauhanHPanwarDK-means clustering approach to analyze nsl-kdd intrusion detection datasetInt J Soft Comput Eng2013666 – reference: Mohamad Tahir H, Hasan W, Md Said A, Zakaria NH, Katuk N, Kabir NF, Omar MH, Ghazali O, Yahya NI (2015) Hybrid machine learning technique for intrusion detection system – reference: Abdullah B, Abd-Alghafar I, Salama GI, Abd-Alhafez A (2009) Performance evaluation of a genetic algorithm based approach to network intrusion detection system. In: International conference on aerospace sciences and aviation technology. The Military Technical College, pp 1–17 – reference: GuoCPingYLiuNLuoSSA two-level hybrid approach for intrusion detectionNeurocomputing2016214391400 – reference: Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep Boltzmann machines. In: Advances in neural information processing systems, pp 2222–2230 – reference: geopolitical-attacks (2019) geopolitical-attacks. https://www.privacyaffairs.com/geopolitical-attacks/3. Accessed 15 Apr 2020 – reference: U. of massachusetts amherst (2019) U. of massachusetts amherst, optimistic tcp acking. http://traces.cs.umass.edu/. Accessed 12 Feb 2019 – reference: Sommer R, Paxson V (2010) Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE symposium on security and privacy. IEEE, pp 305–316 – reference: Effendy DA, Kusrini K, Sudarmawan S (2017) Classification of intrusion detection system (ids) based on computer network. In: 2017 2nd International conferences on information technology, information systems and electrical engineering (ICITISEE). IEEE, pp 90–94 – reference: ZhangQYangLTChenZPrivacy preserving deep computation model on cloud for big data feature learningIEEE Trans Comput20156551351136234894411360.68197 – reference: Crosbie M, Spafford G, et al. (1995) Applying genetic programming to intrusion detection. In: Working notes for the AAAI symposium on genetic programming. MIT Press, Cambridge, pp 1–8 – reference: Tirumala SS (2014) Implementation of evolutionary algorithms for deep architectures. In: CEUR workshop proceedings – reference: KaltehAMHjorthPBerndtssonRReview of the self-organizing map (som) approach in water resources: analysis, modelling and applicationEnviron Model Softw2008237835845 – reference: Mäkelä A (2019) Network anomaly detection based on wavenet. In: Internet of things, smart spaces, and next generation networks and systems: 19th international conference, NEW2AN 2019, and 12th conference, ruSMART 2019, St. Petersburg, Russia, August 26–28, 2019, proceedings, vol 11660. Springer, p 424 – reference: Porras PA, Fong MW, Valdes A (2002) A mission-impact-based approach to infosec alarm correlation. In: International workshop on recent advances in intrusion detection. Springer, pp 95–114 – reference: LiYMaRJiaoRA hybrid malicious code detection method based on deep learningInt J Secur Appl201595205216 – reference: ÇavuşoğluÜA new hybrid approach for intrusion detection using machine learning methodsAppl Intell201949727352761 – reference: FarnaazNJabbarMRandom forest modeling for network intrusion detection systemProcedia Comput Sci201689213217 – reference: Le GouesCNguyenTForrestSWeimerWGenprog: a generic method for automatic software repairIEEE Trans Softw Eng20113815472 – reference: TaddeoMMcCutcheonTFloridiLTrusting artificial intelligence in cybersecurity is a double-edged swordNat Mach Intell20196614 – reference: ChenHSchuffelsCOrwigRInternet categorization and search: a self-organizing approachJ Vis Commun Image Represent19967188102 – reference: KudłacikPPorwikPWesołowskiTFuzzy approach for intrusion detection based on users commandsSoft Comput201620727052719 – reference: Şen S, Clark JA (2009) A grammatical evolution approach to intrusion detection on mobile ad hoc networks. In: Proceedings of the second ACM conference on Wireless network security, pp 95–102 – reference: Chevalier R, Plaquin D, Villatel M, Hiet G (2020) Intrusion detection systems. US Patent App. 16/486,331 – reference: Javaid A, Niyaz Q, Sun W, Alam M (2016) A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), pp 21–26 – reference: TidjonLNFrappierMMammarAIntrusion detection systems: a cross-domain overviewIEEE Commun Surv Tutor201921436393681 – reference: Aminanto ME, Kim K (2017) Improving detection of wi-fi impersonation by fully unsupervised deep learning. In: International workshop on information security applications. Springer, pp 212–223 – reference: Prusty S, Levine BN, Liberatore M (2011) Forensic investigation of the oneswarm anonymous filesharing system. In: Proceedings of the 18th ACM conference on Computer and communications security, pp 201–214 – reference: Gharib A, Sharafaldin I, Lashkari AH, Ghorbani AA (2016) An evaluation framework for intrusion detection dataset. In: 2016 International conference on information science and security (ICISS). IEEE, pp 1–6 – reference: YangYZhengKWuCNiuXYangYBuilding an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networksAppl Sci201992238 – reference: ShoneNNgocTNPhaiVDShiQA deep learning approach to network intrusion detectionIEEE Trans Emerg Top Comput Intell2018214150 – reference: LiuHLangBLiuMYanHCnn and rnn based payload classification methods for attack detectionKnowl Based Syst2019163332341 – reference: Nehinbe JO (2011) A critical evaluation of datasets for investigating idss and ipss researches. In: 2011 IEEE 10th international conference on cybernetic intelligent systems (CIS). IEEE, pp 92–97 – reference: RevathiSMalathiAA detailed analysis on nsl-kdd dataset using various machine learning techniques for intrusion detectionInt J Eng Res Technol201321218481853 – reference: IbrahimLMBasheerDTMahmodMSA comparison study for intrusion database (kdd99, nsl-kdd) based on self organization map (som) artificial neural networkJ Eng Sci Technol201381107119 – reference: Signal detection theory (2019) Signal detection theory. http://gim.unmc.edu/dxtests/roc2.htm/. Accessed 2019 – reference: ChaabouniNMosbahMZemmariASauvignacCFarukiPNetwork intrusion detection for iot security based on learning techniquesIEEE Commun Surv Tutor201921326712701 – reference: VinayakumarRAlazabMSomanKPoornachandranPAl-NemratAVenkatramanSDeep learning approach for intelligent intrusion detection systemIEEE Access201974152541550 – reference: He D, Chen X, Zou D, Pei L, Jiang L (2018) An improved kernel clustering algorithm used in computer network intrusion detection. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5 – reference: Mahoney MV, Chan PK (2003) An analysis of the 1999 darpa/lincoln laboratory evaluation data for network anomaly detection. In: International workshop on recent advances in intrusion detection. Springer, pp 220–237 – reference: Gomez J, Dasgupta D (2002) Evolving fuzzy classifiers for intrusion detection. In: Proceedings of the 2002 IEEE workshop on information assurance, pp 321–323 – reference: KevricJJukicSSubasiAAn effective combining classifier approach using tree algorithms for network intrusion detectionNeural Comput Appl201728110511058 – reference: SaranyaTSrideviSDeisyCChungTDKhanMAPerformance analysis of machine learning algorithms in intrusion detection system: a reviewProcedia Comput Sci202017112511260 – reference: MousaviSMMajidnezhadVNaghipourAA new intelligent intrusion detector based on ensemble of decision treesJ Ambient Intell Hum Comput201966113 – reference: Kim J, Kim J, Thu HLT, Kim H (2016) Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International conference on platform technology and service (PlatCon). IEEE, pp 1–5 – reference: Mehmood T, Rais HBM (2016) Machine learning algorithms in context of intrusion detection. In: 2016 3rd International conference on computer and information sciences (ICCOINS). IEEE, pp 369–373 – reference: Srimuang W, Intarasothonchun S (2015) Classification model of network intrusion using weighted extreme learning machine. In: 2015 12th International joint conference on computer science and software engineering (JCSSE). IEEE, pp 190–194 – reference: Ziegler S (2019) Internet of things cybersecurity paradigm shift, threat matrix and practical taxonomy. In: Internet of things security and data protection. Springer, pp 1–7 – reference: Unb (2019a) Unb. http://www.unb.ca/cic/datasets/nsl.html. Accessed 15 Apr 2020 – reference: Sperotto A, Sadre R, Van Vliet F, Pras A (2009) A labeled data set for flow-based intrusion detection. In: International workshop on IP operations and management. Springer, pp 39–50 – reference: ViegasFRochaLGonçalvesMMourãoFSáGSallesTAndradeGSandinIA genetic programming approach for feature selection in highly dimensional skewed dataNeurocomputing2018273554569 – reference: GamageSSamarabanduJDeep learning methods in network intrusion detection: a survey and an objective comparisonJ Netw Comput Appl2020169102767 – reference: FengFLiuXYongBZhouRZhouQAnomaly detection in ad-hoc networks based on deep learning model: a plug and play deviceAd Hoc Netw2019848289 – reference: AlzaylaeeMKYerimaSYSezerSDl-droid: deep learning based android malware detection using real devicesComput Secur202089101663 – reference: Nskh P, Varma MN, Naik RR (2016) Principle component analysis based intrusion detection system using support vector machine. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT). IEEE, pp 1344–1350 – reference: Tang TA, Mhamdi L, McLernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. In: 2016 International conference on wireless networks and mobile communications (WINCOM). IEEE, pp 258–263 – reference: Akilandeswari V, Shalinie SM (2012) Probabilistic neural network based attack traffic classification. In: 2012 Fourth international conference on advanced computing (ICoAC). IEEE, pp 1–8 – reference: Kyoto (2019) Kyoto. http://www.takakura.com/Kyoto_data/. Accessed 15 Apr 2020 – reference: BamakanSMHWangHYingjieTShiYAn effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimizationNeurocomputing201619990102 – reference: NapiahMNIdrisMYIBRamliRAhmedyICompression header analyzer intrusion detection system (cha-ids) for 6lowpan communication protocolIEEE Access201861662316638 – reference: JeburSANasereddinHEnhanced solutions for misuse network intrusion detection system using sga and ssgaInt J Comput Sci Netw Secur201515566 – reference: YinCZhuYFeiJHeXA deep learning approach for intrusion detection using recurrent neural networksIEEE Access201752195421961 – reference: Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for cyber security. arXiv preprint arXiv:1906.05799 – reference: Aburomman AA, Reaz MBI (2016) Ensemble of binary SVM classifiers based on pca and lda feature extraction for intrusion detection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE, pp 636–640 – reference: ManzoorIKumarNA feature reduced intrusion detection system using ANN classifierExpert Syst Appl201788249257 – reference: SohiSMSeifertJPGanjiFRnnids: enhancing network intrusion detection systems through deep learningComput Secur2021102102151 – reference: KurniabudiKPurnamaBSharipuddinSDarmawijoyoDStiawanDSamsuryadiSHeryantoABudiartoRNetwork anomaly detection research: a surveyIndones J Electr Eng Inform2019713750 – reference: Unb (2019c) https://www.unb.ca/cic/datasets/dos-dataset.html. Accessed 15 Apr 2020 – reference: BengioYLearning deep architectures for aiFound Trends Mach Learn200921112740553811192.68503 – reference: Seo S, Park S, Kim J (2016) Improvement of network intrusion detection accuracy by using restricted Boltzmann machine. In: 2016 8th International conference on computational intelligence and communication networks (CICN). IEEE, pp 413–417 – reference: JacobNMWanjalaMYA review of intrusion detection systemsGlob J Comput Sci Technol2018566 – reference: TabakhiSMoradiPAkhlaghianFAn unsupervised feature selection algorithm based on ant colony optimizationEng Appl Artif Intell201432112123 – reference: HajimirzaeiBNavimipourNJIntrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithmICT Express2019515659 – reference: OjugoAEbokaAOkontaOYoroRAghwareFGenetic algorithm rule-based intrusion detection system (gaids)J Emerg Trends Comput Inf Sci20123811821194 – reference: Sato M, Yamaki H, Takakura H (2012) Unknown attacks detection using feature extraction from anomaly-based ids alerts. In: 2012 IEEE/IPSJ 12th international symposium on applications and the internet. IEEE, pp 273–277 – reference: ManiyarPSMusandeVRules based intrusion detection system using genetic algorithmInt J Comput Sci Netw201653554558 – reference: OthmanSMBa-AlwiFMAlsohybeNTAl-HashidaAYIntrusion detection model using machine learning algorithm on big data environmentJ Big Data201851112 – reference: AissaNBGuerroumiMSemi-supervised statistical approach for network anomaly detectionProcedia Comput Sci20168310901095 – reference: Wisesty UN, et al. (2017) Comparative study of conjugate gradient to optimize learning process of neural network for intrusion detection system (ids). In: 2017 3rd International conference on science in information technology (ICSITech). IEEE, pp 459–464 – reference: Rao CS, Raju KB (2019) Mapreduce accelerated signature-based intrusion detection mechanism (idm) with pattern matching mechanism. In: Soft computing in data analytics. Springer, pp 157–164 – reference: ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur2012313357374 – reference: Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. 18216097198 – reference: AlsubhiKAibIBoutabaRFuzmet: a fuzzy-logic based alert prioritization engine for intrusion detection systemsInt J Netw Manag2012224263284 – reference: Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. OpenReview – reference: EesaASOrmanZBrifcaniAMAA novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systemsExpert Syst Appl201542526702679 – reference: Khan FA, Gumaei A (2019) A comparative study of machine learning classifiers for network intrusion detection. In: International conference on artificial intelligence and security. Springer, pp 75–86 – reference: Arabo A (2019) Distributed ids using agents: an agent-based detection system to detect passive and active threats to a network. In: ICCWS 2019 14th international conference on cyber warfare and security: ICCWS 2019. Academic Conferences and Publishing Limited, p 11 – reference: Hodo E, Bellekens X, Iorkyase E, Hamilton A, Tachtatzis C, Atkinson R (2017) Machine learning approach for detection of nontor traffic. In: Proceedings of the 12th international conference on availability, reliability and security, pp 1–6 – reference: Pradhan M, Nayak CK, Pradhan SK (2020) Intrusion detection system (ids) and their types. In: Securing the internet of things: concepts, methodologies, tools, and applications. IGI Global, pp 481–497 – reference: MengTJingXYanZPedryczWA survey on machine learning for data fusionInf Fusion202057115129 – reference: MaTWangFChengJYuYChenXA hybrid spectral clustering and deep neural network ensemble algorithm for intrusion detection in sensor networksSensors201616101701 – reference: BruggerSTChowJAn assessment of the Darpa ids evaluation dataset using snortUCDAVIS Dept Comput Sci20071200722 – reference: Uci (2019) Uci. http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data. Accessed 15 Apr 2020 – reference: ChenCPZhangCYChenLGanMFuzzy restricted Boltzmann machine for the enhancement of deep learningIEEE Trans Fuzzy Syst201523621632173 – reference: Serrano W (2019) The blockchain random neural network in cybersecurity and the internet of things. In: IFIP international conference on artificial intelligence applications and innovations. Springer, pp 50–63 – reference: YangSLiMLiuXZhengJA grid-based evolutionary algorithm for many-objective optimizationIEEE Trans Evol Comput2013175721736 – reference: GuptaBBJoshiRCMisraMAnn based scheme to predict number of zombies in a ddos attackIJ Netw Secur20121426170 – reference: SrinivasJDasAKKumarNGovernment regulations in cyber security: framework, standards and recommendationsFut Gener Comput Syst201992178188 – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141511929195832315921318.68153 – reference: LiaoHJLinCHRLinYCTungKYIntrusion detection system: a comprehensive reviewJ Netw Comput Appl20133611624 – reference: Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards a new bionics? Springer, pp 703–712 – reference: Kyoto2006+ (2015) Kyoto2006+ dataset. http://www.takakura.com/Kyoto_data/. Accessed Feb 2015 – reference: Worku A (2019) Minimizing black hole attack in mobile ad hoc network with anomaly based ids approach. PhD thesis, ASTU – reference: Sharafaldin I, Gharib A, Lashkari AH, Ghorbani AA (2018) Towards a reliable intrusion detection benchmark dataset. Softw Networking 2018(1):177–200 – reference: Farzaneh B, Montazeri MA, Jamali S (2019) An anomaly-based ids for detecting attacks in rpl-based internet of things. In: 2019 5th International conference on web research (ICWR). IEEE, pp 61–66 – reference: AshfaqRARWangXZHuangJZAbbasHHeYLFuzziness based semi-supervised learning approach for intrusion detection systemInf Sci2017378484497 – reference: KimGLeeSKimSA novel hybrid intrusion detection method integrating anomaly detection with misuse detectionExpert Syst Appl2014414169017003249626 – reference: Pandey A, Sinha A, PS A (2019) Intrusion detection using sequential hybrid model. arXiv preprint arXiv:1910.12074 – reference: Gautam RKS, Doegar EA (2018) An ensemble approach for intrusion detection system using machine learning algorithms. In: 2018 8th International conference on cloud computing, data science & engineering (confluence). IEEE, pp 14–15 – reference: CamineroGLopez-MartinMCarroBAdversarial environment reinforcement learning algorithm for intrusion detectionComput Netw201915996109 – reference: Creech G, Hu J (2013) Generation of a new ids test dataset: time to retire the kdd collection. In: 2013 IEEE wireless communications and networking conference (WCNC). IEEE, pp 4487–4492 – reference: MunaAHMoustafaNSitnikovaEIdentification of malicious activities in industrial internet of things based on deep learning modelsJ Inf Secur Appl201841111 – reference: Zhao S, Li W, Zia T, Zomaya AY (2017) A dimension reduction model and classifier for anomaly-based intrusion detection in internet of things. In: 2017 IEEE 15th international conference on dependable, autonomic and secure computing, 15th international conference on pervasive intelligence and computing, 3rd international conference on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 836–843 – reference: AminantoMEChoiRTanuwidjajaHCYooPDKimKDeep abstraction and weighted feature selection for wi-fi impersonation detectionIEEE Trans Inf Forensics Secur2017133621636 – reference: ArrietaABDíaz-RodríguezNDel SerJBennetotATabikSBarbadoAGarcíaSGil-LópezSMolinaDBenjaminsRExplainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible aiInf Fusion20205882115 – reference: KumarGKumarKSachdevaMThe use of artificial intelligence based techniques for intrusion detection: a reviewArtif Intell Rev2010344369387 – reference: KabirEHuJWangHZhuoGA novel statistical technique for intrusion detection systemsFut Gener Comput Syst201879303318 – reference: Praanna K, Sruthi S, Kalyani K, Tejaswi AS (2020) A CNN-LSTM model for intrusion detection system from high dimensional data – reference: TongXWangZYuHA research using hybrid rbf/elman neural networks for intrusion detection system secure modelComput Phys Commun20091801017951801 – reference: Aminanto ME, Kim K (2016a) Deep learning-based feature selection for intrusion detection system in transport layer. In: Proceedings of the Korea Institutes of information security and cryptology conference, pp 740–743 – reference: KangMJKangJWIntrusion detection system using deep neural network for in-vehicle network securityPLoS ONE20161166 – reference: Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K (2011) Statistical analysis of honeypot data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the first workshop on building analysis datasets and gathering experience returns for security, pp 29–36 – reference: AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationIJ Netw Secur2016183420432 – reference: SalehAITalaatFMLabibLMA hybrid intrusion detection system (hids) based on prioritized k-nearest neighbors and optimized svm classifiersArtif Intell Rev2019513403443 – reference: Dong B, Wang X (2016) Comparison deep learning method to traditional methods using for network intrusion detection. In: 2016 8th IEEE international conference on communication software and networks (ICCSN). IEEE, pp 581–585 – reference: Zhang Q, Yang LT, Chen Z (2015a) Deep computation model for unsupervised feature learning on big data. IEEE Trans Serv Comput 9(1):161–171 – reference: BelavagiMCMuniyalBPerformance evaluation of supervised machine learning algorithms for intrusion detectionProcedia Comput Sci201689117123 – reference: Luo J (1999) Integrating fuzzy logic with data mining methods for intrusion detection. Master’s thesis, Mississippi State University. Department of Computer Science – reference: Unb (2019b) https://www.unb.ca/cic/datasets/ids.html Accessed 15 Apr 2020 – reference: WangHGuJWangSAn effective intrusion detection framework based on SVM with feature augmentationKnowl Based Syst2017136130139 – reference: Yu J, Reddy YR, Selliah S, Kankanahalli S, Reddy S, Bharadwaj V (2004) Trinetr: an intrusion detection alert management systems. In: 13th IEEE international workshops on enabling technologies: infrastructure for collaborative enterprises. IEEE, pp 235–240 – reference: NguyenMTKimKGenetic convolutional neural network for intrusion detection systemsFut Gener Comput Syst2020113418427 – reference: BamakanSMHAmiriBMirzabagheriMShiYA new intrusion detection approach using pso based multiple criteria linear programmingProcedia Comput Sci201555231237 – reference: Sanjaya SKSSS, Jena K (2014) A detail analysis on intrusion detection datasets. In: 2014 IEEE international advance computing conference (IACC) – reference: Aljumah A (2017) Detection of distributed denial of service attacks using artificial neural networks. In: IJACSA international journal of advanced computer science and applications, vol 8(8) – reference: LiWUsing genetic algorithm for network intrusion detectionProc US Dept Energy Cyber Secur Group2004118 – ident: 5893_CR45 – volume: 103 start-page: 102158 year: 2021 ident: 5893_CR50 publication-title: Comput Secur doi: 10.1016/j.cose.2020.102158 – ident: 5893_CR144 – ident: 5893_CR39 doi: 10.1109/ICITISEE.2017.8285566 – ident: 5893_CR11 doi: 10.4018/978-1-7998-2460-2.ch053 – volume: 163 start-page: 332 year: 2019 ident: 5893_CR82 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.08.036 – ident: 5893_CR115 – volume: 5 start-page: 56 issue: 1 year: 2019 ident: 5893_CR54 publication-title: ICT Express doi: 10.1016/j.icte.2018.01.014 – ident: 5893_CR162 doi: 10.1007/978-3-030-04984-3_1 – volume: 67 start-page: 296 year: 2017 ident: 5893_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.041 – volume: 214 start-page: 391 year: 2016 ident: 5893_CR52 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.021 – volume: 78 start-page: 13 year: 2015 ident: 5893_CR81 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.01.009 – volume: 21 start-page: 2671 issue: 3 year: 2019 ident: 5893_CR29 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2019.2896380 – ident: 5893_CR106 – ident: 5893_CR129 doi: 10.1145/1978672.1978676 – volume: 23 start-page: 835 issue: 7 year: 2008 ident: 5893_CR64 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2007.10.001 – ident: 5893_CR36 – volume: 41 start-page: 1 year: 2018 ident: 5893_CR93 publication-title: J Inf Secur Appl – volume: 65 start-page: 1351 issue: 5 year: 2015 ident: 5893_CR158 publication-title: IEEE Trans Comput doi: 10.1109/TC.2015.2470255 – ident: 5893_CR16 doi: 10.1007/978-3-319-93563-8_18 – ident: 5893_CR108 doi: 10.1145/2046707.2046731 – ident: 5893_CR128 doi: 10.1109/SP.2010.25 – volume: 17 start-page: 1936 issue: 11 year: 2015 ident: 5893_CR160 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2015.2477058 – ident: 5893_CR147 – ident: 5893_CR122 doi: 10.13052/jsn2445-9739.2017.009 – volume: 6 start-page: 13439 year: 2018 ident: 5893_CR123 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810264 – ident: 5893_CR61 doi: 10.4108/eai.3-12-2015.2262516 – volume: 32 start-page: 112 year: 2014 ident: 5893_CR135 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.03.007 – year: 2020 ident: 5893_CR43 publication-title: J Inf Secur Appl doi: 10.1016/j.jisa.2019.102419 – volume: 2 start-page: 1848 issue: 12 year: 2013 ident: 5893_CR111 publication-title: Int J Eng Res Technol – ident: 5893_CR161 doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141 – volume: 21 start-page: 3639 issue: 4 year: 2019 ident: 5893_CR139 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2019.2922584 – volume: 79 start-page: 303 year: 2018 ident: 5893_CR63 publication-title: Fut Gener Comput Syst doi: 10.1016/j.future.2017.01.029 – volume: 36 start-page: 16 issue: 1 year: 2013 ident: 5893_CR80 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.09.004 – ident: 5893_CR126 – volume: 5 start-page: 66 year: 2018 ident: 5893_CR60 publication-title: Glob J Comput Sci Technol – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 5893_CR24 publication-title: Found Trends Mach Learn doi: 10.1561/2200000006 – ident: 5893_CR15 doi: 10.1007/978-3-319-56549-1_12 – volume: 159 start-page: 96 year: 2019 ident: 5893_CR27 publication-title: Comput Netw doi: 10.1016/j.comnet.2019.05.013 – ident: 5893_CR75 doi: 10.1299/jsmemecj.2019.J12106P – ident: 5893_CR48 doi: 10.23919/SpringSim.2019.8732851 – volume: 28 start-page: 1051 issue: 1 year: 2017 ident: 5893_CR67 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2418-1 – volume: 199 start-page: 90 year: 2016 ident: 5893_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.031 – ident: 5893_CR91 – ident: 5893_CR146 – ident: 5893_CR18 – ident: 5893_CR152 – volume: 14 start-page: 61 issue: 2 year: 2012 ident: 5893_CR53 publication-title: IJ Netw Secur – ident: 5893_CR119 doi: 10.1145/1514274.1514289 – volume: 273 start-page: 554 year: 2018 ident: 5893_CR148 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.050 – volume: 49 start-page: 2735 issue: 7 year: 2019 ident: 5893_CR28 publication-title: Appl Intell doi: 10.1007/s10489-018-01408-x – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 5893_CR134 publication-title: J Mach Learn Res – volume: 22 start-page: 263 issue: 4 year: 2012 ident: 5893_CR12 publication-title: Int J Netw Manag doi: 10.1002/nem.804 – ident: 5893_CR99 doi: 10.1109/RTEICT.2016.7808050 – volume: 169 start-page: 102767 year: 2020 ident: 5893_CR44 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2020.102767 – ident: 5893_CR133 – volume: 58 start-page: 82 year: 2020 ident: 5893_CR19 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.012 – volume: 180 start-page: 1795 issue: 10 year: 2009 ident: 5893_CR141 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2009.05.004 – ident: 5893_CR3 doi: 10.1109/IMCEC.2016.7867287 – ident: 5893_CR86 – volume: 66 start-page: 1 year: 2019 ident: 5893_CR92 publication-title: J Ambient Intell Hum Comput – volume: 3 start-page: 1182 issue: 8 year: 2012 ident: 5893_CR101 publication-title: J Emerg Trends Comput Inf Sci – ident: 5893_CR41 doi: 10.1109/ICWR.2019.8765272 – volume: 51 start-page: 403 issue: 3 year: 2019 ident: 5893_CR113 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9567-1 – volume: 83 start-page: 1090 year: 2016 ident: 5893_CR5 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.04.228 – ident: 5893_CR46 – ident: 5893_CR105 doi: 10.1007/3-540-36084-0_6 – ident: 5893_CR33 doi: 10.1109/WiCOM.2012.6478433 – volume: 136 start-page: 130 year: 2017 ident: 5893_CR150 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.09.014 – volume: 89 start-page: 101663 year: 2020 ident: 5893_CR13 publication-title: Comput Secur doi: 10.1016/j.cose.2019.101663 – ident: 5893_CR112 doi: 10.1145/2689746.2689747 – ident: 5893_CR83 – volume: 102 start-page: 102151 year: 2021 ident: 5893_CR127 publication-title: Comput Secur doi: 10.1016/j.cose.2020.102151 – volume: 66 start-page: 1 year: 2019 ident: 5893_CR136 publication-title: Nat Mach Intell – volume: 174 start-page: 50 year: 2020 ident: 5893_CR159 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.06.055 – volume: 7 start-page: 100059 year: 2019 ident: 5893_CR55 publication-title: Internet Things doi: 10.1016/j.iot.2019.100059 – volume: 13 start-page: 621 issue: 3 year: 2017 ident: 5893_CR17 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2017.2762828 – ident: 5893_CR70 doi: 10.1109/PlatCon.2016.7456805 – ident: 5893_CR89 doi: 10.1109/ICCOINS.2016.7783243 – ident: 5893_CR10 doi: 10.14569/IJACSA.2017.080841 – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 5893_CR125 publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2017.2772792 – ident: 5893_CR138 doi: 10.1109/CISDA.2009.5356528 – ident: 5893_CR49 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 5893_CR102 publication-title: J Big Data doi: 10.1186/s40537-018-0145-4 – ident: 5893_CR104 doi: 10.1007/978-981-15-5243-4_1 – volume: 41 start-page: 1690 issue: 4 year: 2014 ident: 5893_CR69 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.08.066 – ident: 5893_CR85 doi: 10.1007/978-3-540-45248-5_13 – ident: 5893_CR130 doi: 10.1007/978-3-642-04968-2_4 – volume: 18 start-page: 420 issue: 3 year: 2016 ident: 5893_CR4 publication-title: IJ Netw Secur – volume: 84 start-page: 82 year: 2019 ident: 5893_CR42 publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2018.09.014 – ident: 5893_CR137 doi: 10.1109/WINCOM.2016.7777224 – ident: 5893_CR131 doi: 10.1109/JCSSE.2015.7219794 – volume: 7 start-page: 37 issue: 1 year: 2019 ident: 5893_CR74 publication-title: Indones J Electr Eng Inform – ident: 5893_CR109 doi: 10.1007/978-3-540-45248-5_5 – volume: 5 start-page: 21954 year: 2017 ident: 5893_CR155 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – volume: 38 start-page: 54 issue: 1 year: 2011 ident: 5893_CR77 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2011.104 – volume: 171 start-page: 1251 year: 2020 ident: 5893_CR117 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.04.133 – volume: 113 start-page: 418 year: 2020 ident: 5893_CR97 publication-title: Fut Gener Comput Syst doi: 10.1016/j.future.2020.07.042 – ident: 5893_CR2 doi: 10.1016/j.procs.2015.08.443 – volume: 15 start-page: 66 issue: 5 year: 2015 ident: 5893_CR62 publication-title: Int J Comput Sci Netw Secur – ident: 5893_CR32 – ident: 5893_CR65 doi: 10.1109/ICECCT.2019.8869077 – volume: 9 start-page: 238 issue: 2 year: 2019 ident: 5893_CR154 publication-title: Appl Sci doi: 10.3390/app9020238 – ident: 5893_CR1 doi: 10.21608/asat.2009.23490 – volume: 89 start-page: 213 year: 2016 ident: 5893_CR40 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.06.047 – ident: 5893_CR140 – volume: 7 start-page: 88 issue: 1 year: 1996 ident: 5893_CR30 publication-title: J Vis Commun Image Represent doi: 10.1006/jvci.1996.0008 – ident: 5893_CR56 doi: 10.1109/ISCAS.2018.8350994 – volume: 171 start-page: 1251 year: 2020 ident: 5893_CR116 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.04.133 – ident: 5893_CR57 doi: 10.1145/3098954.3106068 – volume: 6 start-page: 66 year: 2013 ident: 5893_CR73 publication-title: Int J Soft Comput Eng – volume: 88 start-page: 249 year: 2017 ident: 5893_CR88 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.005 – ident: 5893_CR143 – volume: 17 start-page: 721 issue: 5 year: 2013 ident: 5893_CR153 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2227145 – ident: 5893_CR25 doi: 10.1007/978-3-642-58069-7_38 – volume: 16 start-page: 1701 issue: 10 year: 2016 ident: 5893_CR84 publication-title: Sensors doi: 10.3390/s16101701 – ident: 5893_CR47 doi: 10.1109/ICISSEC.2016.7885840 – ident: 5893_CR7 – volume: 7 start-page: 41525 year: 2019 ident: 5893_CR149 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – volume: 11 start-page: 6 issue: 6 year: 2016 ident: 5893_CR66 publication-title: PLoS ONE – volume: 20 start-page: 2705 issue: 7 year: 2016 ident: 5893_CR71 publication-title: Soft Comput doi: 10.1007/s00500-015-1669-6 – volume: 5 start-page: 554 issue: 3 year: 2016 ident: 5893_CR87 publication-title: Int J Comput Sci Netw – ident: 5893_CR96 – volume: 6 start-page: 20255 year: 2018 ident: 5893_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2820092 – volume: 1 start-page: 22 issue: 2007 year: 2007 ident: 5893_CR26 publication-title: UCDAVIS Dept Comput Sci – ident: 5893_CR156 doi: 10.1109/ENABL.2004.76 – volume: 34 start-page: 369 issue: 4 year: 2010 ident: 5893_CR72 publication-title: Artif Intell Rev doi: 10.1007/s10462-010-9179-5 – ident: 5893_CR68 doi: 10.1007/978-3-030-24265-7_7 – ident: 5893_CR157 doi: 10.1109/TSC.2015.2497705 – volume: 92 start-page: 178 year: 2019 ident: 5893_CR132 publication-title: Fut Gener Comput Syst doi: 10.1016/j.future.2018.09.063 – ident: 5893_CR95 doi: 10.1109/CIS.2011.6169141 – ident: 5893_CR35 doi: 10.1109/WCNC.2013.6555301 – ident: 5893_CR142 – ident: 5893_CR6 doi: 10.1109/ICoAC.2012.6416848 – ident: 5893_CR58 doi: 10.1007/978-981-15-1480-7_68 – ident: 5893_CR76 – ident: 5893_CR118 doi: 10.1109/SAINT.2012.51 – ident: 5893_CR121 doi: 10.1007/978-3-030-19823-7_4 – volume: 378 start-page: 484 year: 2017 ident: 5893_CR20 publication-title: Inf Sci doi: 10.1016/j.ins.2016.04.019 – ident: 5893_CR34 – volume: 55 start-page: 231 year: 2015 ident: 5893_CR21 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.07.040 – ident: 5893_CR110 doi: 10.1007/978-981-13-0514-6_16 – volume: 86 start-page: 53 year: 2019 ident: 5893_CR51 publication-title: Comput Secur doi: 10.1016/j.cose.2019.05.022 – volume: 148 start-page: 102460 year: 2019 ident: 5893_CR103 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.102460 – volume: 89 start-page: 117 year: 2016 ident: 5893_CR23 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.06.016 – volume: 1 start-page: 1 year: 2004 ident: 5893_CR78 publication-title: Proc US Dept Energy Cyber Secur Group – ident: 5893_CR37 doi: 10.1109/ICCSN.2016.7586590 – ident: 5893_CR145 – volume: 104 start-page: 213 year: 2018 ident: 5893_CR100 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.03.030 – volume: 9 start-page: 205 issue: 5 year: 2015 ident: 5893_CR79 publication-title: Int J Secur Appl – ident: 5893_CR114 – volume: 57 start-page: 115 year: 2020 ident: 5893_CR90 publication-title: Inf Fusion doi: 10.1016/j.inffus.2019.12.001 – volume: 6 start-page: 16623 year: 2018 ident: 5893_CR94 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2798626 – volume: 23 start-page: 2163 issue: 6 year: 2015 ident: 5893_CR31 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2015.2406889 – ident: 5893_CR98 – ident: 5893_CR151 doi: 10.1109/ICSITech.2017.8257156 – ident: 5893_CR120 doi: 10.1109/CICN.2016.87 – volume: 42 start-page: 2670 issue: 5 year: 2015 ident: 5893_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.11.009 – volume: 8 start-page: 107 issue: 1 year: 2013 ident: 5893_CR59 publication-title: J Eng Sci Technol – ident: 5893_CR107 doi: 10.4018/978-1-5225-9866-4.ch026 – ident: 5893_CR14 – volume: 31 start-page: 357 issue: 3 year: 2012 ident: 5893_CR124 publication-title: Comput Secur doi: 10.1016/j.cose.2011.12.012 |
SSID | ssj0021753 |
Score | 2.541745 |
Snippet | Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 9731 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Foundations Mathematical Logic and Foundations Mechatronics Robotics |
Title | Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges |
URI | https://link.springer.com/article/10.1007/s00500-021-05893-0 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yXfTgj6k4f4wcvGkgTZOu8bbJ5lDcycE8lbRJRJA66P5_fEnTzoEMvLRQXnvo95L3Hvne-xC6FYwrWVBXm3BJwCkUSWMuiDuT4QnT7uLYFvNktuDPS7EMTWFVw3ZvjiT9Tt02u7lRJZQ4SoGTwosJFOpd4Wp38OIFG7VlVpg9CYkA5I4QcEOrzN_f2A5H22ehPsRMj9FhyA3xqAbzBO2ZsoeOGt0FHJZhDx38GiJ4ispXz4c0OAhAfGBVaqyNWW2e1DrRFYYMFX-Wrs8C4ACbtSdilbie51w9YNj_IAphvaESVf5zRaO5Up2hxXTy9jgjQUWBFExGawIR3KpEDqVNGFOwnoXSUWG4irXUJjbWSi7iXHGoBdPc0qE1VDGbcplrY6mKz1Gn_C7NBcKREQVjliZpwXlhmWSAsqZcWSFsmiR9FDU_MyvCiHGndPGVtcORPQAZAJB5ADLaR3ftO6t6wMZO6_sGoywstmqH-eX_zK_QPvO-4fh916gDcJgbyDnW-QB1R9PxeO7uT-8vk4F3uR_HI8-5 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH1Nx_szBmwbSNOkab0McU7edNtitpE0igtRB9__jS5p2DmTgpYfymkO_l7z3yPe-h9C9YFzJgrrahEsCTqFIGnNB3J0MT5h2D8e2mCajOX9biEVoCqsatntzJelP6rbZzUmVUOIoBW4UXkygUN-FZCB1RK45G7RlVtCehEQAckcIuKFV5u81NsPR5l2oDzHDY3QYckM8qME8QTum7KKjZu4CDtuwiw5-iQieonLi-ZAGhwEQH1iVGmtjlus39ZzoCkOGij9L12cBcIDNyhOxSlzrOVdPGM4_iEJYr6lElV-uaGauVGdoPnyZPY9ImKJACiajFYEIblUi-9ImjCnYz0LpqDBcxVpqExtrJRdxrjjUgmluad8aqphNucy1sVTF56hTfpfmAuHIiIIxS5O04LywTDJAWVOurBA2TZIeipqfmRVBYtxNuvjKWnFkD0AGAGQegIz20EP7zbIW2Nhq_dhglIXNVm0xv_yf-R3aG80m42z8On2_QvvM-4nj-l2jDkBjbiD_WOW33t1-ALJSz5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfTgx1Scnzl407A2TbvG21DH_BoeHOxW0iYRQeKg_f_xJU27DWTgpYfymkN_L3nvkfd-P4SuY8oELwJbmzBOwCkESSMWE3snwxIq7cN2W0yS8ZQ9z-LZ0hS_63ZvriTrmQbL0mSq_lzqfjv4ZmlLAmLbC6wsXkSgaN-E4zi0fj2lw7bk8jyUkBRAHgnB14_N_L3GamhavRd14Wa0j3Z9noiHNbAHaEOZLtprNBiw35JdtLNEKHiIzJvrjVTYi0F8YmEklkrNF29qzegSQ7aKv4yduQBowKZyTVkG19zO5R2GsxD-CJaLtqLSLVc0-ivlEZqOHj_ux8QrKpCC8rAiEM21SPiA64RSAXs7FjIsFBOR5FJFSmvO4igXDOrCNNfBQKtAUJ0ynkulAxEdo475MeoE4VDFBaU6SNKCsUJTTgFxGTCh41inSdJDYfMzs8LTjVvVi--sJUp2AGQAQOYAyIIeumm_mddkG2utbxuMMr_xyjXmp_8zv0Jb7w-j7PVp8nKGtqlzE9v2d446gIy6gFSkyi-dt_0C2xPT2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+deep+learning+methods+for+intrusion+detection+systems%3A+recent+developments+and+challenges&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Kocher%2C+Geeta&rft.au=Kumar%2C+Gulshan&rft.date=2021-08-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=15&rft.spage=9731&rft.epage=9763&rft_id=info:doi/10.1007%2Fs00500-021-05893-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_021_05893_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |