Neuromorphic Photonics With Coherent Linear Neurons Using Dual-IQ Modulation Cells
Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic funct...
Saved in:
Published in | Journal of lightwave technology Vol. 38; no. 4; pp. 811 - 819 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2019.2949133 |
Cover
Loading…
Abstract | Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete N-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively. |
---|---|
AbstractList | Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete [Formula Omitted]-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively. Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete N-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively. |
Author | Passalis, Nikolaos Tefas, Anastasios Totovic, Angelina Tsakyridis, Apostolos Mourgias-Alexandris, George Pleros, Nikos Vyrsokinos, Konstantinos |
Author_xml | – sequence: 1 givenname: George orcidid: 0000-0002-9646-3119 surname: Mourgias-Alexandris fullname: Mourgias-Alexandris, George email: mourgias@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 2 givenname: Angelina orcidid: 0000-0003-0267-7368 surname: Totovic fullname: Totovic, Angelina email: angelina@auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 3 givenname: Apostolos orcidid: 0000-0003-1498-4904 surname: Tsakyridis fullname: Tsakyridis, Apostolos email: atsakyrid@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 4 givenname: Nikolaos orcidid: 0000-0003-1177-9139 surname: Passalis fullname: Passalis, Nikolaos email: passalis@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 5 givenname: Konstantinos surname: Vyrsokinos fullname: Vyrsokinos, Konstantinos email: kv@auth.gr organization: Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 6 givenname: Anastasios surname: Tefas fullname: Tefas, Anastasios email: tefas@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 7 givenname: Nikos orcidid: 0000-0003-2931-4540 surname: Pleros fullname: Pleros, Nikos email: npleros@csd.auth.gr organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece |
BookMark | eNp9kLlOxDAQQC0EEsvRI9FYos7isZ3YLtFyazm1iDJKnAlrFOzFTgr-nj0QBQXVNO_NjN4e2fbBIyFHwMYAzJzeTmdjzsCMuZEGhNgiI8hznXEOYpuMmBIi04rLXbKX0jtjIKVWI_J8j0MMHyEu5s7Sx3nog3c20VfXz-kkzDGi7-nUeawiXbM-0Zfk_Bs9H6ouu3mid6EZuqp3wdMJdl06IDtt1SU8_Jn7ZHZ5MZtcZ9OHq5vJ2TSz3ECfKWuUhVZLrRuRY1VwW5kakLeyLYzSjZISRAOFamtd18owiw1ya1vA2jKxT042axcxfA6Y-vI9DNEvL5Zc5LIALkW-pIoNZWNIKWJbWtevn-1j5boSWLnKVy7zlat85U--pcj-iIvoPqr49Z9yvFEcIv7iWmsmNYhvBO19Kg |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1088_2634_4386_ad4b5b crossref_primary_10_1002_lpor_202401520 crossref_primary_10_1364_PRJ_471950 crossref_primary_10_1364_OME_452138 crossref_primary_10_1063_5_0134156 crossref_primary_10_1364_OME_497644 crossref_primary_10_1109_JLT_2022_3171831 crossref_primary_10_1109_JLT_2020_3038890 crossref_primary_10_1145_3711845 crossref_primary_10_1364_OE_452803 crossref_primary_10_3390_nano13243139 crossref_primary_10_1109_JSTQE_2025_3534636 crossref_primary_10_1109_JSTQE_2022_3219288 crossref_primary_10_1145_3459009 crossref_primary_10_1109_TETCI_2022_3182765 crossref_primary_10_1109_JSTQE_2020_2995830 crossref_primary_10_34133_icomputing_0032 crossref_primary_10_1038_s41598_022_09370_y crossref_primary_10_1364_OE_471519 crossref_primary_10_1007_s00521_022_07243_z crossref_primary_10_1364_OME_450226 crossref_primary_10_1038_s41377_021_00666_8 crossref_primary_10_1038_s41467_022_33259_z crossref_primary_10_1515_nanoph_2022_0423 crossref_primary_10_1515_nanoph_2022_0362 crossref_primary_10_1109_JLT_2024_3415436 crossref_primary_10_1063_5_0047946 crossref_primary_10_1515_nanoph_2022_0485 crossref_primary_10_1038_s41467_022_30906_3 crossref_primary_10_1002_aisy_202200417 crossref_primary_10_1063_5_0066350 crossref_primary_10_1103_PhysRevLett_125_093901 crossref_primary_10_1109_JSTQE_2022_3228318 crossref_primary_10_1109_JLT_2023_3234689 crossref_primary_10_1002_adpr_202000212 crossref_primary_10_1038_s41467_024_49768_y crossref_primary_10_1109_TCAD_2022_3197538 crossref_primary_10_1109_JSTQE_2020_2975579 crossref_primary_10_1109_JSTQE_2021_3108573 |
Cites_doi | 10.1109/5.726791 10.1145/24680.24681 10.1109/JSTQE.2016.2573583 10.1109/MM.2018.112130359 10.1109/MCSE.2017.29 10.1038/s41586-018-0028-z 10.1038/s41598-017-07754-z 10.1109/TCAD.2015.2474396 10.1109/ICASSP.2019.8682218 10.1109/LPT.2004.833896 10.1109/JSTQE.2016.2593636 10.1109/JLT.2015.2510962 10.1038/nphoton.2017.93 10.1109/TETCI.2019.2923001 10.1364/OE.27.014009 10.1109/OECC.2009.5213285 10.1109/JLT.2006.878071 10.1364/OE.23.012758 10.1364/OME.8.003851 10.1364/OFC.2019.Th2A.37 10.1109/ICCV.2015.123 10.1002/wics.101 10.1109/JSTQE.2018.2840448 10.1109/JPHOT.2018.2873673 10.1038/s41467-019-09724-7 10.1109/TC.2012.142 10.1364/JOCN.9.000D42 10.1109/LPT.2016.2516440 10.1364/OE.27.009620 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2019.2949133 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 819 |
ExternalDocumentID | 10_1109_JLT_2019_2949133 8880481 |
Genre | orig-research |
GrantInformation_xml | – fundername: ICT-PLASMONIAC grantid: 871391 – fundername: H2020 Projects ICT-MASSTART grantid: 825109 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c291t-7c97c1f8488d35ea62ca9b1e2f4f6978d74413d167fb8bb790cede2ccf1ebc03 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:22:20 EDT 2025 Tue Jul 01 01:01:52 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Wed Aug 27 02:36:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-7c97c1f8488d35ea62ca9b1e2f4f6978d74413d167fb8bb790cede2ccf1ebc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9646-3119 0000-0003-1177-9139 0000-0003-1498-4904 0000-0003-2931-4540 0000-0003-0267-7368 |
PQID | 2354612435 |
PQPubID | 85485 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_JLT_2019_2949133 ieee_primary_8880481 proquest_journals_2354612435 crossref_primary_10_1109_JLT_2019_2949133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-15 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref10 moralis-pegios (ref6) 0 ref2 ref1 ref17 ref16 ref19 ref18 wolf (ref35) 0 glorot (ref15) 0 kingma (ref32) 2014 pitris (ref8) 0 (ref28) 0 a aimone (ref34) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref7 ref9 ref4 ref3 ref5 |
References_xml | – ident: ref30 doi: 10.1109/5.726791 – start-page: 1 year: 0 ident: ref6 article-title: Chip-to-chip interconnect for 8-socket direct connectivity using 25 gb/s o-band integrated transceiver and routing circuits publication-title: Proc Eur Conf Opt Commun – start-page: w3e.2 year: 0 ident: ref8 article-title: A $4\times 40$ Gb/s o-band WDM silicon photonic transmitter based on micro-ring modulators publication-title: Proc Opt Fiber Commun Conf – ident: ref33 doi: 10.1145/24680.24681 – ident: ref19 doi: 10.1109/JSTQE.2016.2573583 – ident: ref4 doi: 10.1109/MM.2018.112130359 – ident: ref1 doi: 10.1109/MCSE.2017.29 – ident: ref5 doi: 10.1038/s41586-018-0028-z – ident: ref10 doi: 10.1038/s41598-017-07754-z – start-page: 315 year: 0 ident: ref15 article-title: Deep sparse rectifier neural networks publication-title: Proc Int Conf Artif Intell Statist – ident: ref2 doi: 10.1109/TCAD.2015.2474396 – ident: ref14 doi: 10.1109/ICASSP.2019.8682218 – ident: ref27 doi: 10.1109/LPT.2004.833896 – ident: ref37 doi: 10.1109/JSTQE.2016.2593636 – ident: ref25 doi: 10.1109/JLT.2015.2510962 – ident: ref9 doi: 10.1038/nphoton.2017.93 – ident: ref13 doi: 10.1109/TETCI.2019.2923001 – ident: ref12 doi: 10.1364/OE.27.014009 – ident: ref23 doi: 10.1109/OECC.2009.5213285 – start-page: 1 year: 2016 ident: ref34 article-title: DAC-Free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module publication-title: Optical Fiber Communication Conf Exhibit (OFC) – year: 2014 ident: ref32 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint arXiv 1412 6980 – ident: ref29 doi: 10.1109/JLT.2006.878071 – ident: ref18 doi: 10.1364/OE.23.012758 – ident: ref20 doi: 10.1364/OME.8.003851 – ident: ref22 doi: 10.1364/OFC.2019.Th2A.37 – ident: ref16 doi: 10.1109/ICCV.2015.123 – ident: ref31 doi: 10.1002/wics.101 – ident: ref11 doi: 10.1109/JSTQE.2018.2840448 – ident: ref7 doi: 10.1109/JPHOT.2018.2873673 – ident: ref36 doi: 10.1038/s41467-019-09724-7 – ident: ref3 doi: 10.1109/TC.2012.142 – ident: ref24 doi: 10.1364/JOCN.9.000D42 – ident: ref26 doi: 10.1109/LPT.2016.2516440 – ident: ref21 doi: 10.1364/OE.27.009620 – start-page: th5c year: 0 ident: ref35 article-title: Silicon-organic hybrid (SOH) IQ modulator for 100 GBd 16 QAM operation publication-title: Proc Opt Fiber Commun Conf – year: 0 ident: ref28 – ident: ref17 doi: 10.1162/neco.1997.9.8.1735 |
SSID | ssj0014487 |
Score | 2.5772994 |
Snippet | Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 811 |
SubjectTerms | Activation Algorithms All-optical signal processing Coherence Computer networks Computer simulation Integrated optics Linear algebra Modulation Neural networks neuromorphic computing neuromorphic photonics Neurons Optical components Optical interconnects Optical interferometry Optical modulation optical neural network accelerators Optical pulses Optics Photonics Representations Wave division multiplexing Wavelength division multiplexing Weight |
Title | Neuromorphic Photonics With Coherent Linear Neurons Using Dual-IQ Modulation Cells |
URI | https://ieeexplore.ieee.org/document/8880481 https://www.proquest.com/docview/2354612435 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BElIv5atVt1DkAxekZjexvcn6iCgIEIvaaqtyi-LJWKBuNxXJXvj1jL3elVoqxC2HsWT5eex58cwbgCON5DJDVZLnKBNd5TYxI1Mn7Ekyzf0FWfja4fFNfvFDX90Ob9fg86oWhohC8hn1_Wd4y68bnPtfZQNma17eZB3WmbgtarVWLwZMM0JpdKEUe7jUyyfJ1Ayuric-h8v0pdEmU-qvKyj0VHl2EIfb5XwLxst5LZJKfvXnne3j4z-Sja-d-Da8jWGmOFnsix1Yo9kubMWQU0SHbndhM2SAYrsH34NMx--G1_0exde7pvOiua34ed_dCV_E4WWcBFNXdg0RbGetCAkH4su8miaX38S4qWMzMHFK02n7DibnZ5PTiyQ2XEhQmqxLCjQFZm7ETl2rIVW5xMrYjKTTLme6WRccPKk6ywtnR9YWJkViTBFdRhZT9R42Zs2MPoBAq1JDbMSoaJW6qk6tlo6ctDgip3swWEJQYhQj9z0xpmUgJakpGbTSg1ZG0HpwvBrxZyHE8YLtnsdgZReXvwcHS5TL6KltKdVQc5THUePH_4_ahzfSc2zfBGZ4ABvdw5w-cSDS2cOwA58A3GDasA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6NIQQvG2xMlA3wAy9IpE1sN6kf0WDqRjsB6sTeovhy1qaVBpH0Zb9-Z9etBEyItzycJcufz3eXu_sO4K1GcpmhKslzlImucpuYkakT1iSZ5t5AFr53eHqejy_02eXwcgveb3phiCgUn1Hff4Zcft3g0v8qG3C05ulNHsBDtvvarLq1NjkDDjRCc3ShFOu41OukZGoGZ5OZr-IyfWm0yZT6zQiFqSp_PcXBvpzswnS9s1VZyU1_2dk-3v5B2vi_W38KO9HRFB9WN-MZbNFiD3aj0ymiSrd78CjUgGK7D98CUcePhk_-GsWXq6bztLmt-H7dXQnfxuGJnAQHr6wcIsguWhFKDsTHZTVPTr-KaVPHcWDimObz9jnMTj7NjsdJHLmQoDRZlxRoCszciNW6VkOqcomVsRlJp13OAWddsPuk6iwvnB1ZW5gUiVFFdBlZTNUBbC-aBb0AgValhliIUdEqdVWdWi0dOWlxRE73YLCGoMRIR-6nYszLEJakpmTQSg9aGUHrwbvNip8rKo5_yO57DDZy8fh7cLRGuYy62pZSDTX7eew3vrx_1Rt4PJ5NJ-Xk9PzzITyRPuL2I2GGR7Dd_VrSK3ZLOvs63MY7f6reAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+Photonics+With+Coherent+Linear+Neurons+Using+Dual-IQ+Modulation+Cells&rft.jtitle=Journal+of+lightwave+technology&rft.au=Mourgias-Alexandris%2C+George&rft.au=Totovic%2C+Angelina&rft.au=Tsakyridis%2C+Apostolos&rft.au=Passalis%2C+Nikolaos&rft.date=2020-02-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=4&rft.spage=811&rft.epage=819&rft_id=info:doi/10.1109%2FJLT.2019.2949133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2949133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |