Neuromorphic Photonics With Coherent Linear Neurons Using Dual-IQ Modulation Cells

Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic funct...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 38; no. 4; pp. 811 - 819
Main Authors Mourgias-Alexandris, George, Totovic, Angelina, Tsakyridis, Apostolos, Passalis, Nikolaos, Vyrsokinos, Konstantinos, Tefas, Anastasios, Pleros, Nikos
Format Journal Article
LanguageEnglish
Published New York IEEE 15.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2019.2949133

Cover

Loading…
Abstract Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete N-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively.
AbstractList Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete [Formula Omitted]-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively.
Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort, photonic neurons are trying to combine the optical interconnect segments with optics that can realize all critical constituent neuromorphic functions, including the linear neuron stage and the activation function. However, aligning this new platform with well-established neural network training models in order to allow for the synergy of the photonic hardware with the best-in-class training algorithms, the following requirements should apply: i) the linear photonic neuron has to be able to handle both positive and negative weight values, ii) the activation function has to closely follow the widely used mathematical activation functions that have already shown an enormous performance in demonstrated neural networks so far. Herein, we demonstrate a coherent linear neuron architecture that relies on a dual-IQ modulation cell as its basic neuron element, introducing distinct optical elements for weight amplitude and weight sign representation and exploiting binary optical carrier phase-encoding for positive/negative number representation. We present experimental results of a typical IQ modulator performing as an elementary two-input linear neuron cell and successfully implementing all-optical linear algebraic operations with 104-ps long optical pulses. We also provide the theoretical proof and formulation of how to extend a dual-IQ modulation cell into a complete N-input coherent linear neuron stage that requires only a single-wavelength optical input and avoids the resource-consuming Wavelength Division Multiplexing (WDM) weighting schemes. An 8-input coherent linear neuron is then combined with an experimentally validated optical sigmoid activation function into a physical layer simulation environment, with respective training and physical layer simulation results for the MNIST dataset revealing an average accuracy of 97.24% and 94.37%, respectively.
Author Passalis, Nikolaos
Tefas, Anastasios
Totovic, Angelina
Tsakyridis, Apostolos
Mourgias-Alexandris, George
Pleros, Nikos
Vyrsokinos, Konstantinos
Author_xml – sequence: 1
  givenname: George
  orcidid: 0000-0002-9646-3119
  surname: Mourgias-Alexandris
  fullname: Mourgias-Alexandris, George
  email: mourgias@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 2
  givenname: Angelina
  orcidid: 0000-0003-0267-7368
  surname: Totovic
  fullname: Totovic, Angelina
  email: angelina@auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 3
  givenname: Apostolos
  orcidid: 0000-0003-1498-4904
  surname: Tsakyridis
  fullname: Tsakyridis, Apostolos
  email: atsakyrid@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 4
  givenname: Nikolaos
  orcidid: 0000-0003-1177-9139
  surname: Passalis
  fullname: Passalis, Nikolaos
  email: passalis@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 5
  givenname: Konstantinos
  surname: Vyrsokinos
  fullname: Vyrsokinos, Konstantinos
  email: kv@auth.gr
  organization: Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 6
  givenname: Anastasios
  surname: Tefas
  fullname: Tefas, Anastasios
  email: tefas@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 7
  givenname: Nikos
  orcidid: 0000-0003-2931-4540
  surname: Pleros
  fullname: Pleros, Nikos
  email: npleros@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
BookMark eNp9kLlOxDAQQC0EEsvRI9FYos7isZ3YLtFyazm1iDJKnAlrFOzFTgr-nj0QBQXVNO_NjN4e2fbBIyFHwMYAzJzeTmdjzsCMuZEGhNgiI8hznXEOYpuMmBIi04rLXbKX0jtjIKVWI_J8j0MMHyEu5s7Sx3nog3c20VfXz-kkzDGi7-nUeawiXbM-0Zfk_Bs9H6ouu3mid6EZuqp3wdMJdl06IDtt1SU8_Jn7ZHZ5MZtcZ9OHq5vJ2TSz3ECfKWuUhVZLrRuRY1VwW5kakLeyLYzSjZISRAOFamtd18owiw1ya1vA2jKxT042axcxfA6Y-vI9DNEvL5Zc5LIALkW-pIoNZWNIKWJbWtevn-1j5boSWLnKVy7zlat85U--pcj-iIvoPqr49Z9yvFEcIv7iWmsmNYhvBO19Kg
CODEN JLTEDG
CitedBy_id crossref_primary_10_1088_2634_4386_ad4b5b
crossref_primary_10_1002_lpor_202401520
crossref_primary_10_1364_PRJ_471950
crossref_primary_10_1364_OME_452138
crossref_primary_10_1063_5_0134156
crossref_primary_10_1364_OME_497644
crossref_primary_10_1109_JLT_2022_3171831
crossref_primary_10_1109_JLT_2020_3038890
crossref_primary_10_1145_3711845
crossref_primary_10_1364_OE_452803
crossref_primary_10_3390_nano13243139
crossref_primary_10_1109_JSTQE_2025_3534636
crossref_primary_10_1109_JSTQE_2022_3219288
crossref_primary_10_1145_3459009
crossref_primary_10_1109_TETCI_2022_3182765
crossref_primary_10_1109_JSTQE_2020_2995830
crossref_primary_10_34133_icomputing_0032
crossref_primary_10_1038_s41598_022_09370_y
crossref_primary_10_1364_OE_471519
crossref_primary_10_1007_s00521_022_07243_z
crossref_primary_10_1364_OME_450226
crossref_primary_10_1038_s41377_021_00666_8
crossref_primary_10_1038_s41467_022_33259_z
crossref_primary_10_1515_nanoph_2022_0423
crossref_primary_10_1515_nanoph_2022_0362
crossref_primary_10_1109_JLT_2024_3415436
crossref_primary_10_1063_5_0047946
crossref_primary_10_1515_nanoph_2022_0485
crossref_primary_10_1038_s41467_022_30906_3
crossref_primary_10_1002_aisy_202200417
crossref_primary_10_1063_5_0066350
crossref_primary_10_1103_PhysRevLett_125_093901
crossref_primary_10_1109_JSTQE_2022_3228318
crossref_primary_10_1109_JLT_2023_3234689
crossref_primary_10_1002_adpr_202000212
crossref_primary_10_1038_s41467_024_49768_y
crossref_primary_10_1109_TCAD_2022_3197538
crossref_primary_10_1109_JSTQE_2020_2975579
crossref_primary_10_1109_JSTQE_2021_3108573
Cites_doi 10.1109/5.726791
10.1145/24680.24681
10.1109/JSTQE.2016.2573583
10.1109/MM.2018.112130359
10.1109/MCSE.2017.29
10.1038/s41586-018-0028-z
10.1038/s41598-017-07754-z
10.1109/TCAD.2015.2474396
10.1109/ICASSP.2019.8682218
10.1109/LPT.2004.833896
10.1109/JSTQE.2016.2593636
10.1109/JLT.2015.2510962
10.1038/nphoton.2017.93
10.1109/TETCI.2019.2923001
10.1364/OE.27.014009
10.1109/OECC.2009.5213285
10.1109/JLT.2006.878071
10.1364/OE.23.012758
10.1364/OME.8.003851
10.1364/OFC.2019.Th2A.37
10.1109/ICCV.2015.123
10.1002/wics.101
10.1109/JSTQE.2018.2840448
10.1109/JPHOT.2018.2873673
10.1038/s41467-019-09724-7
10.1109/TC.2012.142
10.1364/JOCN.9.000D42
10.1109/LPT.2016.2516440
10.1364/OE.27.009620
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2019.2949133
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 819
ExternalDocumentID 10_1109_JLT_2019_2949133
8880481
Genre orig-research
GrantInformation_xml – fundername: ICT-PLASMONIAC
  grantid: 871391
– fundername: H2020 Projects ICT-MASSTART
  grantid: 825109
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-7c97c1f8488d35ea62ca9b1e2f4f6978d74413d167fb8bb790cede2ccf1ebc03
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:22:20 EDT 2025
Tue Jul 01 01:01:52 EDT 2025
Thu Apr 24 23:00:50 EDT 2025
Wed Aug 27 02:36:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7c97c1f8488d35ea62ca9b1e2f4f6978d74413d167fb8bb790cede2ccf1ebc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9646-3119
0000-0003-1177-9139
0000-0003-1498-4904
0000-0003-2931-4540
0000-0003-0267-7368
PQID 2354612435
PQPubID 85485
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_JLT_2019_2949133
ieee_primary_8880481
proquest_journals_2354612435
crossref_primary_10_1109_JLT_2019_2949133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref10
moralis-pegios (ref6) 0
ref2
ref1
ref17
ref16
ref19
ref18
wolf (ref35) 0
glorot (ref15) 0
kingma (ref32) 2014
pitris (ref8) 0
(ref28) 0
a aimone (ref34) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref30
  doi: 10.1109/5.726791
– start-page: 1
  year: 0
  ident: ref6
  article-title: Chip-to-chip interconnect for 8-socket direct connectivity using 25 gb/s o-band integrated transceiver and routing circuits
  publication-title: Proc Eur Conf Opt Commun
– start-page: w3e.2
  year: 0
  ident: ref8
  article-title: A $4\times 40$ Gb/s o-band WDM silicon photonic transmitter based on micro-ring modulators
  publication-title: Proc Opt Fiber Commun Conf
– ident: ref33
  doi: 10.1145/24680.24681
– ident: ref19
  doi: 10.1109/JSTQE.2016.2573583
– ident: ref4
  doi: 10.1109/MM.2018.112130359
– ident: ref1
  doi: 10.1109/MCSE.2017.29
– ident: ref5
  doi: 10.1038/s41586-018-0028-z
– ident: ref10
  doi: 10.1038/s41598-017-07754-z
– start-page: 315
  year: 0
  ident: ref15
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref2
  doi: 10.1109/TCAD.2015.2474396
– ident: ref14
  doi: 10.1109/ICASSP.2019.8682218
– ident: ref27
  doi: 10.1109/LPT.2004.833896
– ident: ref37
  doi: 10.1109/JSTQE.2016.2593636
– ident: ref25
  doi: 10.1109/JLT.2015.2510962
– ident: ref9
  doi: 10.1038/nphoton.2017.93
– ident: ref13
  doi: 10.1109/TETCI.2019.2923001
– ident: ref12
  doi: 10.1364/OE.27.014009
– ident: ref23
  doi: 10.1109/OECC.2009.5213285
– start-page: 1
  year: 2016
  ident: ref34
  article-title: DAC-Free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module
  publication-title: Optical Fiber Communication Conf Exhibit (OFC)
– year: 2014
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv 1412 6980
– ident: ref29
  doi: 10.1109/JLT.2006.878071
– ident: ref18
  doi: 10.1364/OE.23.012758
– ident: ref20
  doi: 10.1364/OME.8.003851
– ident: ref22
  doi: 10.1364/OFC.2019.Th2A.37
– ident: ref16
  doi: 10.1109/ICCV.2015.123
– ident: ref31
  doi: 10.1002/wics.101
– ident: ref11
  doi: 10.1109/JSTQE.2018.2840448
– ident: ref7
  doi: 10.1109/JPHOT.2018.2873673
– ident: ref36
  doi: 10.1038/s41467-019-09724-7
– ident: ref3
  doi: 10.1109/TC.2012.142
– ident: ref24
  doi: 10.1364/JOCN.9.000D42
– ident: ref26
  doi: 10.1109/LPT.2016.2516440
– ident: ref21
  doi: 10.1364/OE.27.009620
– start-page: th5c
  year: 0
  ident: ref35
  article-title: Silicon-organic hybrid (SOH) IQ modulator for 100 GBd 16 QAM operation
  publication-title: Proc Opt Fiber Commun Conf
– year: 0
  ident: ref28
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014487
Score 2.5772994
Snippet Neuromorphic photonics aims to transfer the high-bandwidth and low-energy credentials of optics into neuromorphic computing architectures. In this effort,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 811
SubjectTerms Activation
Algorithms
All-optical signal processing
Coherence
Computer networks
Computer simulation
Integrated optics
Linear algebra
Modulation
Neural networks
neuromorphic computing
neuromorphic photonics
Neurons
Optical components
Optical interconnects
Optical interferometry
Optical modulation
optical neural network accelerators
Optical pulses
Optics
Photonics
Representations
Wave division multiplexing
Wavelength division multiplexing
Weight
Title Neuromorphic Photonics With Coherent Linear Neurons Using Dual-IQ Modulation Cells
URI https://ieeexplore.ieee.org/document/8880481
https://www.proquest.com/docview/2354612435
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BElIv5atVt1DkAxekZjexvcn6iCgIEIvaaqtyi-LJWKBuNxXJXvj1jL3elVoqxC2HsWT5eex58cwbgCON5DJDVZLnKBNd5TYxI1Mn7Ekyzf0FWfja4fFNfvFDX90Ob9fg86oWhohC8hn1_Wd4y68bnPtfZQNma17eZB3WmbgtarVWLwZMM0JpdKEUe7jUyyfJ1Ayuric-h8v0pdEmU-qvKyj0VHl2EIfb5XwLxst5LZJKfvXnne3j4z-Sja-d-Da8jWGmOFnsix1Yo9kubMWQU0SHbndhM2SAYrsH34NMx--G1_0exde7pvOiua34ed_dCV_E4WWcBFNXdg0RbGetCAkH4su8miaX38S4qWMzMHFK02n7DibnZ5PTiyQ2XEhQmqxLCjQFZm7ETl2rIVW5xMrYjKTTLme6WRccPKk6ywtnR9YWJkViTBFdRhZT9R42Zs2MPoBAq1JDbMSoaJW6qk6tlo6ctDgip3swWEJQYhQj9z0xpmUgJakpGbTSg1ZG0HpwvBrxZyHE8YLtnsdgZReXvwcHS5TL6KltKdVQc5THUePH_4_ahzfSc2zfBGZ4ABvdw5w-cSDS2cOwA58A3GDasA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6NIQQvG2xMlA3wAy9IpE1sN6kf0WDqRjsB6sTeovhy1qaVBpH0Zb9-Z9etBEyItzycJcufz3eXu_sO4K1GcpmhKslzlImucpuYkakT1iSZ5t5AFr53eHqejy_02eXwcgveb3phiCgUn1Hff4Zcft3g0v8qG3C05ulNHsBDtvvarLq1NjkDDjRCc3ShFOu41OukZGoGZ5OZr-IyfWm0yZT6zQiFqSp_PcXBvpzswnS9s1VZyU1_2dk-3v5B2vi_W38KO9HRFB9WN-MZbNFiD3aj0ymiSrd78CjUgGK7D98CUcePhk_-GsWXq6bztLmt-H7dXQnfxuGJnAQHr6wcIsguWhFKDsTHZTVPTr-KaVPHcWDimObz9jnMTj7NjsdJHLmQoDRZlxRoCszciNW6VkOqcomVsRlJp13OAWddsPuk6iwvnB1ZW5gUiVFFdBlZTNUBbC-aBb0AgValhliIUdEqdVWdWi0dOWlxRE73YLCGoMRIR-6nYszLEJakpmTQSg9aGUHrwbvNip8rKo5_yO57DDZy8fh7cLRGuYy62pZSDTX7eew3vrx_1Rt4PJ5NJ-Xk9PzzITyRPuL2I2GGR7Dd_VrSK3ZLOvs63MY7f6reAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+Photonics+With+Coherent+Linear+Neurons+Using+Dual-IQ+Modulation+Cells&rft.jtitle=Journal+of+lightwave+technology&rft.au=Mourgias-Alexandris%2C+George&rft.au=Totovic%2C+Angelina&rft.au=Tsakyridis%2C+Apostolos&rft.au=Passalis%2C+Nikolaos&rft.date=2020-02-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=4&rft.spage=811&rft.epage=819&rft_id=info:doi/10.1109%2FJLT.2019.2949133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2949133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon