Largest Eigenvalue Distribution of Noncircularly Symmetric Wishart-Type Matrices With Application to Hoyt-Faded MIMO Communications
This paper is concerned with the largest eigenvalue of the Wishart-type random matrix <inline-formula> <tex-math notation="LaTeX">\mathbf {{W}}=\mathbf {{X}}\mathbf {{X}}^\dagger</tex-math></inline-formula> (or <inline-formula><tex-math notation="LaTeX...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 67; no. 3; pp. 2756 - 2760 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2017.2737718 |
Cover
Loading…
Summary: | This paper is concerned with the largest eigenvalue of the Wishart-type random matrix <inline-formula> <tex-math notation="LaTeX">\mathbf {{W}}=\mathbf {{X}}\mathbf {{X}}^\dagger</tex-math></inline-formula> (or <inline-formula><tex-math notation="LaTeX">\mathbf {{W}}=\mathbf {{X}}^\dagger \mathbf {{X}}</tex-math> </inline-formula>), where <inline-formula><tex-math notation="LaTeX">\mathbf {{X}}</tex-math></inline-formula> is a complex Gaussian matrix with unequal variances in the real and imaginary parts of its entries, i.e., <inline-formula> <tex-math notation="LaTeX">\mathbf {X}</tex-math></inline-formula> belongs to the noncircularly symmetric Gaussian subclass. By establishing a novel connection with the well-known complex Wishart ensemble, we here derive exact and asymptotic expressions for the largest eigenvalue distribution of <inline-formula><tex-math notation="LaTeX">\mathbf {{W}}</tex-math></inline-formula>, which provide new insights on the effect of the real-imaginary variance imbalance of the entries of <inline-formula><tex-math notation="LaTeX">\mathbf {X}</tex-math></inline-formula>. These new results are then leveraged to analyze the outage performance of multiantenna systems with maximal ratio combining subject to Nakagami-<inline-formula><tex-math notation="LaTeX">q</tex-math></inline-formula> (Hoyt) fading. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2017.2737718 |