A One-Shot Learning Approach for Similarity Retrieval of Wafer Bin Maps With Unknown Failure Pattern
Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns...
Saved in:
Published in | IEEE transactions on semiconductor manufacturing Vol. 35; no. 1; pp. 40 - 49 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns can help to track down the new faults. To explore the similarity between defective WBMs, a retrieval method based on deep learning is adopted to detect WBMs with unknown failure patterns. Since there are few available WBMs with unknown patterns at the initial troubleshooting stage, more WBMs with unknown patterns are generated by morphology transformation. The deep retrieval model is trained by real and generated WBMs, which has a similar structure to the generative adversarial networks (GANs) and can create more WBMs to provide more information. Experiments on a real-world dataset have demonstrated that the proposed method has a high precision for measuring WBM similarity and retrieving similar unknown pattern wafers. |
---|---|
AbstractList | Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns can help to track down the new faults. To explore the similarity between defective WBMs, a retrieval method based on deep learning is adopted to detect WBMs with unknown failure patterns. Since there are few available WBMs with unknown patterns at the initial troubleshooting stage, more WBMs with unknown patterns are generated by morphology transformation. The deep retrieval model is trained by real and generated WBMs, which has a similar structure to the generative adversarial networks (GANs) and can create more WBMs to provide more information. Experiments on a real-world dataset have demonstrated that the proposed method has a high precision for measuring WBM similarity and retrieving similar unknown pattern wafers. |
Author | Ni, Dong Kong, Yuting |
Author_xml | – sequence: 1 givenname: Yuting orcidid: 0000-0002-1087-9931 surname: Kong fullname: Kong, Yuting organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Dong orcidid: 0000-0002-2227-2555 surname: Ni fullname: Ni, Dong email: dni@zju.edu.cn organization: College of Control Science and Engineering and the State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China |
BookMark | eNp9kMFPwjAUxhuDiYDeTbw08Txsu7Vbj0hETSAYgXBcyvYqxdHOrmj47x3BePDg6R3e93vf-74e6lhnAaFrSgaUEnm3mE8HjDA6iCmLmSRnqEs5zyIWJ7yDuiSTSSQ4SS9Qr2m2hNAkkWkXlUM8sxDNNy7gCShvjX3Dw7r2ThUbrJ3Hc7MzlfImHPArBG_gU1XYabxSGjy-NxZPVd3glQkbvLTv1n1ZPFam2nvALyoE8PYSnWtVNXD1M_toOX5YjJ6iyezxeTScRAWTNESpoiXlEJeKp8AkaAK6kESVGU1lRlIKa6nXWq_bbZYqoRNIy7LgQgvRRi7iPro93W3f_9hDE_Kt23vbWuZMMB4LQSVpVeSkKrxrGg86r73ZKX_IKcmPXeZtl_mxy_ynyxYRf5DCBBWMs8G3Uf8Db06gAYBfH8kzQTIWfwP3QoNn |
CODEN | ITSMED |
CitedBy_id | crossref_primary_10_1007_s00170_023_12939_0 crossref_primary_10_1016_j_cie_2024_110486 crossref_primary_10_1007_s10845_024_02351_0 crossref_primary_10_1016_j_eswa_2022_119363 crossref_primary_10_1115_1_4065255 |
Cites_doi | 10.1109/TPAMI.2006.79 10.7726/jac.2014.1007 10.1038/nature14539 10.1142/S0129167X95000328 10.1109/ICPR.2016.7899663 10.1109/TSM.2019.2937793 10.1109/TSM.2019.2897690 10.1109/TSM.2014.2364237 10.1109/TC.1977.1674847 10.1109/TSM.2018.2795466 10.1109/TSM.2019.2902657 10.1609/aaai.v34i07.7000 10.1109/TSM.2020.3012183 10.1109/CVPR.2006.100 10.1007/s10845-020-01571-4 10.1080/00207543.2012.737943 10.1007/978-3-319-46466-4_15 10.1016/j.cie.2020.106358 10.1109/TSM.2015.2497264 10.1007/s10845-020-01540-x 10.1109/TASE.2013.2277603 10.1109/TKDE.2009.191 10.1109/CVPR.2005.202 10.1007/978-0-387-21637-9_6 10.1109/TSM.2020.2964581 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TSM.2021.3123290 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1558-2345 |
EndPage | 49 |
ExternalDocumentID | 10_1109_TSM_2021_3123290 9586082 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation China grantid: 62173298; U1609213 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-7a1d15e3da57e29ef0efc90ad81798071eb9fbffb7e287a6f4e7ddc56f66329c3 |
IEDL.DBID | RIE |
ISSN | 0894-6507 |
IngestDate | Sun Jun 29 16:08:36 EDT 2025 Tue Jul 01 03:16:24 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 Wed Aug 27 03:00:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-7a1d15e3da57e29ef0efc90ad81798071eb9fbffb7e287a6f4e7ddc56f66329c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1087-9931 0000-0002-2227-2555 |
PQID | 2625366190 |
PQPubID | 85442 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2625366190 ieee_primary_9586082 crossref_primary_10_1109_TSM_2021_3123290 crossref_citationtrail_10_1109_TSM_2021_3123290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on semiconductor manufacturing |
PublicationTitleAbbrev | TSM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 Katsuminomizu (ref25) 1995; 6 ref2 ref1 ref17 ref16 Oriol (ref19) ref18 Gonzalez (ref23) 2008; 28 Kingma (ref33) 2014 ref24 ref20 ref22 Laurens (ref34) 2008; 9 Inoue (ref27) 2018 Chaudhari (ref13) 2013; 1 ref29 ref8 Odena (ref28); 70 ref7 ref9 ref4 ref3 Goodfellow (ref21) 2014; 27 ref6 ref5 Harris (ref26) 2020 |
References_xml | – ident: ref16 doi: 10.1109/TPAMI.2006.79 – volume: 1 start-page: 386 issue: 5 year: 2013 ident: ref13 article-title: Content based image retrieval using color and shape features publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng. – start-page: 3637 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. ident: ref19 article-title: Matching networks for one shot learning – ident: ref32 doi: 10.7726/jac.2014.1007 – ident: ref30 doi: 10.1038/nature14539 – volume: 27 start-page: 2672 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: ref21 article-title: Generative adversarial nets – volume: 6 start-page: 749 issue: 5 year: 1995 ident: ref25 article-title: Affine differential geometry publication-title: Int. J. Math. doi: 10.1142/S0129167X95000328 – ident: ref14 doi: 10.1109/ICPR.2016.7899663 – year: 2014 ident: ref33 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref10 doi: 10.1109/TSM.2019.2937793 – ident: ref4 doi: 10.1109/TSM.2019.2897690 – ident: ref6 doi: 10.1109/TSM.2014.2364237 – ident: ref22 doi: 10.1109/TC.1977.1674847 – ident: ref9 doi: 10.1109/TSM.2018.2795466 – ident: ref8 doi: 10.1109/TSM.2019.2902657 – volume: 9 start-page: 2579 issue: 2605 year: 2008 ident: ref34 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref24 doi: 10.1609/aaai.v34i07.7000 – ident: ref12 doi: 10.1109/TSM.2020.3012183 – volume: 28 start-page: 484 volume-title: Digital Image Processing year: 2008 ident: ref23 – volume: 70 start-page: 2642 volume-title: Proc. Mach. Learn. Res. ident: ref28 article-title: Conditional image synthesis with auxiliary classifier gans – ident: ref29 doi: 10.1109/CVPR.2006.100 – ident: ref11 doi: 10.1007/s10845-020-01571-4 – ident: ref1 doi: 10.1080/00207543.2012.737943 – ident: ref15 doi: 10.1007/978-3-319-46466-4_15 – ident: ref7 doi: 10.1016/j.cie.2020.106358 – year: 2020 ident: ref26 article-title: Understanding and enhancing mixed sample data augmentation publication-title: arXiv:2002.12047 – ident: ref2 doi: 10.1109/TSM.2015.2497264 – ident: ref3 doi: 10.1007/s10845-020-01540-x – ident: ref5 doi: 10.1109/TASE.2013.2277603 – ident: ref17 doi: 10.1109/TKDE.2009.191 – year: 2018 ident: ref27 article-title: Data augmentation by pairing samples for images classification publication-title: arXiv:1801.02929 – ident: ref18 doi: 10.1109/CVPR.2005.202 – ident: ref20 doi: 10.1007/978-0-387-21637-9_6 – ident: ref31 doi: 10.1109/TSM.2020.2964581 |
SSID | ssj0014497 |
Score | 2.3167145 |
Snippet | Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 40 |
SubjectTerms | Commonality Convolutional neural networks Deep learning Failure Failure analysis Feature extraction Generative adversarial networks Generators Morphology one-shot learning Retrieval Semiconductor device modeling semiconductor manufacturing Similarity Training Troubleshooting unknown pattern detection Wafer map retrieval |
Title | A One-Shot Learning Approach for Similarity Retrieval of Wafer Bin Maps With Unknown Failure Pattern |
URI | https://ieeexplore.ieee.org/document/9586082 https://www.proquest.com/docview/2625366190 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB21vQAHKC2IQIt84IKEk13H--FjqBpVSAFEGrW3lT_GdAVsqmZz4dcz9u5GFSDEbaW1JUtvbL_xzLwBeGNU6qw1jgfVUy6JEHDtMOfGokxFrr2Uod558TG_WMkP19n1Hrzb1cIgYkw-w3H4jLF8t7bb8FQ2UVmZ05W1D_vkuHW1WruIgZSqU_VUkhPrKIaQZKIml8sFOYIiJf-U-EM4fe9dQbGnyh8Hcbxd5k9gMayrSyr5Nt62Zmx__ibZ-L8LP4THPc1ks84unsIeNkfwYKhC3hzBo3tChMfgZuxTg3x5s25Zr7j6lc16uXFGvJYt6x81OcHE2dmX2ISLLJStPbvSHu_Y-7phC327YVd1e8NWTXipa9hc1yHpnX2OGp7NM1jNzy_PLnjff4FbodKWFzp1aYZTp7MChUKfoLcq0a4MKmfETdAob7w39LcsdO4lFs7ZLPdEY4Sy0-dw0KwbfAEs0aXwdJwIQ-jrUprSZ9J6mfpM-zyzI5gMkFS2FycPPTK-V9FJSVRFIFYBxKoHcQRvdzNuO2GOf4w9DpjsxvVwjOBkQL3qd-6mEuQQTom0qOTl32e9gocilEDEzO0TOGjvtnhKxKQ1r6NF_gITHt_v |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4zA4MNiYKGzgAxck0iauncTHMq0qsAxEW223yD9ZBKTTml7463l2kmoChLhFii1Z-uz3vme_9z2A10okRmtlIq96GjEkBJE0No2UtiyhqXSM-Xrn4iKdLdmHK361A2-3tTDW2pB8Zof-M7zlm5Xe-KuykeB5ii7rHtxHv8-Ttlpr-2bAmGh1PQWLkHdk_aNkLEaLeYGhIE0wQkUG4e3vHScUuqr8YYqDf5nuQ9GvrE0r-TbcNGqof_4m2vi_S38MjzqiSSbtzngCO7Y-gL2-Dnl9AA_vSBEegpmQT7WN5terhnSaq1_JpBMcJ8hsybz6UWEYjKydfAltuHCPkpUjl9LZW_Kuqkkhb9bksmquybL2d3U1mcrKp72Tz0HFs34Ky-nZ4nQWdR0YIk1F0kSZTEzC7dhInlkqrIut0yKWJvc6Z8hOrBJOOafwb57J1DGbGaN56pDIUKHHR7Bbr2r7DEgsc-rQoFCF-Mucqdxxph1LHJcu5XoAox6SUnfy5L5LxvcyhCmxKBHE0oNYdiAO4M12xk0rzfGPsYcek-24Do4BHPeol93ZXZcUQ8Ix0hYRP__7rFewN1sU5-X5-4uPL-AB9QURIY_7GHab2409QZrSqJdhd_4C6e_jOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Shot+Learning+Approach+for+Similarity+Retrieval+of+Wafer+Bin+Maps+With+Unknown+Failure+Pattern&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Kong%2C+Yuting&rft.au=Ni%2C+Dong&rft.date=2022-02-01&rft.issn=0894-6507&rft.eissn=1558-2345&rft.volume=35&rft.issue=1&rft.spage=40&rft.epage=49&rft_id=info:doi/10.1109%2FTSM.2021.3123290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSM_2021_3123290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon |