A One-Shot Learning Approach for Similarity Retrieval of Wafer Bin Maps With Unknown Failure Pattern

Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on semiconductor manufacturing Vol. 35; no. 1; pp. 40 - 49
Main Authors Kong, Yuting, Ni, Dong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns can help to track down the new faults. To explore the similarity between defective WBMs, a retrieval method based on deep learning is adopted to detect WBMs with unknown failure patterns. Since there are few available WBMs with unknown patterns at the initial troubleshooting stage, more WBMs with unknown patterns are generated by morphology transformation. The deep retrieval model is trained by real and generated WBMs, which has a similar structure to the generative adversarial networks (GANs) and can create more WBMs to provide more information. Experiments on a real-world dataset have demonstrated that the proposed method has a high precision for measuring WBM similarity and retrieving similar unknown pattern wafers.
AbstractList Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps (WBMs). Similar patterns have a high probability of being induced by the identical process failure. The commonality analysis of unknown patterns can help to track down the new faults. To explore the similarity between defective WBMs, a retrieval method based on deep learning is adopted to detect WBMs with unknown failure patterns. Since there are few available WBMs with unknown patterns at the initial troubleshooting stage, more WBMs with unknown patterns are generated by morphology transformation. The deep retrieval model is trained by real and generated WBMs, which has a similar structure to the generative adversarial networks (GANs) and can create more WBMs to provide more information. Experiments on a real-world dataset have demonstrated that the proposed method has a high precision for measuring WBM similarity and retrieving similar unknown pattern wafers.
Author Ni, Dong
Kong, Yuting
Author_xml – sequence: 1
  givenname: Yuting
  orcidid: 0000-0002-1087-9931
  surname: Kong
  fullname: Kong, Yuting
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-2227-2555
  surname: Ni
  fullname: Ni, Dong
  email: dni@zju.edu.cn
  organization: College of Control Science and Engineering and the State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
BookMark eNp9kMFPwjAUxhuDiYDeTbw08Txsu7Vbj0hETSAYgXBcyvYqxdHOrmj47x3BePDg6R3e93vf-74e6lhnAaFrSgaUEnm3mE8HjDA6iCmLmSRnqEs5zyIWJ7yDuiSTSSQ4SS9Qr2m2hNAkkWkXlUM8sxDNNy7gCShvjX3Dw7r2ThUbrJ3Hc7MzlfImHPArBG_gU1XYabxSGjy-NxZPVd3glQkbvLTv1n1ZPFam2nvALyoE8PYSnWtVNXD1M_toOX5YjJ6iyezxeTScRAWTNESpoiXlEJeKp8AkaAK6kESVGU1lRlIKa6nXWq_bbZYqoRNIy7LgQgvRRi7iPro93W3f_9hDE_Kt23vbWuZMMB4LQSVpVeSkKrxrGg86r73ZKX_IKcmPXeZtl_mxy_ynyxYRf5DCBBWMs8G3Uf8Db06gAYBfH8kzQTIWfwP3QoNn
CODEN ITSMED
CitedBy_id crossref_primary_10_1007_s00170_023_12939_0
crossref_primary_10_1016_j_cie_2024_110486
crossref_primary_10_1007_s10845_024_02351_0
crossref_primary_10_1016_j_eswa_2022_119363
crossref_primary_10_1115_1_4065255
Cites_doi 10.1109/TPAMI.2006.79
10.7726/jac.2014.1007
10.1038/nature14539
10.1142/S0129167X95000328
10.1109/ICPR.2016.7899663
10.1109/TSM.2019.2937793
10.1109/TSM.2019.2897690
10.1109/TSM.2014.2364237
10.1109/TC.1977.1674847
10.1109/TSM.2018.2795466
10.1109/TSM.2019.2902657
10.1609/aaai.v34i07.7000
10.1109/TSM.2020.3012183
10.1109/CVPR.2006.100
10.1007/s10845-020-01571-4
10.1080/00207543.2012.737943
10.1007/978-3-319-46466-4_15
10.1016/j.cie.2020.106358
10.1109/TSM.2015.2497264
10.1007/s10845-020-01540-x
10.1109/TASE.2013.2277603
10.1109/TKDE.2009.191
10.1109/CVPR.2005.202
10.1007/978-0-387-21637-9_6
10.1109/TSM.2020.2964581
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TSM.2021.3123290
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-2345
EndPage 49
ExternalDocumentID 10_1109_TSM_2021_3123290
9586082
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation China
  grantid: 62173298; U1609213
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-7a1d15e3da57e29ef0efc90ad81798071eb9fbffb7e287a6f4e7ddc56f66329c3
IEDL.DBID RIE
ISSN 0894-6507
IngestDate Sun Jun 29 16:08:36 EDT 2025
Tue Jul 01 03:16:24 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
Wed Aug 27 03:00:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7a1d15e3da57e29ef0efc90ad81798071eb9fbffb7e287a6f4e7ddc56f66329c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1087-9931
0000-0002-2227-2555
PQID 2625366190
PQPubID 85442
PageCount 10
ParticipantIDs proquest_journals_2625366190
ieee_primary_9586082
crossref_primary_10_1109_TSM_2021_3123290
crossref_citationtrail_10_1109_TSM_2021_3123290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on semiconductor manufacturing
PublicationTitleAbbrev TSM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
Katsuminomizu (ref25) 1995; 6
ref2
ref1
ref17
ref16
Oriol (ref19)
ref18
Gonzalez (ref23) 2008; 28
Kingma (ref33) 2014
ref24
ref20
ref22
Laurens (ref34) 2008; 9
Inoue (ref27) 2018
Chaudhari (ref13) 2013; 1
ref29
ref8
Odena (ref28); 70
ref7
ref9
ref4
ref3
Goodfellow (ref21) 2014; 27
ref6
ref5
Harris (ref26) 2020
References_xml – ident: ref16
  doi: 10.1109/TPAMI.2006.79
– volume: 1
  start-page: 386
  issue: 5
  year: 2013
  ident: ref13
  article-title: Content based image retrieval using color and shape features
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– start-page: 3637
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Matching networks for one shot learning
– ident: ref32
  doi: 10.7726/jac.2014.1007
– ident: ref30
  doi: 10.1038/nature14539
– volume: 27
  start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: ref21
  article-title: Generative adversarial nets
– volume: 6
  start-page: 749
  issue: 5
  year: 1995
  ident: ref25
  article-title: Affine differential geometry
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X95000328
– ident: ref14
  doi: 10.1109/ICPR.2016.7899663
– year: 2014
  ident: ref33
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref10
  doi: 10.1109/TSM.2019.2937793
– ident: ref4
  doi: 10.1109/TSM.2019.2897690
– ident: ref6
  doi: 10.1109/TSM.2014.2364237
– ident: ref22
  doi: 10.1109/TC.1977.1674847
– ident: ref9
  doi: 10.1109/TSM.2018.2795466
– ident: ref8
  doi: 10.1109/TSM.2019.2902657
– volume: 9
  start-page: 2579
  issue: 2605
  year: 2008
  ident: ref34
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref24
  doi: 10.1609/aaai.v34i07.7000
– ident: ref12
  doi: 10.1109/TSM.2020.3012183
– volume: 28
  start-page: 484
  volume-title: Digital Image Processing
  year: 2008
  ident: ref23
– volume: 70
  start-page: 2642
  volume-title: Proc. Mach. Learn. Res.
  ident: ref28
  article-title: Conditional image synthesis with auxiliary classifier gans
– ident: ref29
  doi: 10.1109/CVPR.2006.100
– ident: ref11
  doi: 10.1007/s10845-020-01571-4
– ident: ref1
  doi: 10.1080/00207543.2012.737943
– ident: ref15
  doi: 10.1007/978-3-319-46466-4_15
– ident: ref7
  doi: 10.1016/j.cie.2020.106358
– year: 2020
  ident: ref26
  article-title: Understanding and enhancing mixed sample data augmentation
  publication-title: arXiv:2002.12047
– ident: ref2
  doi: 10.1109/TSM.2015.2497264
– ident: ref3
  doi: 10.1007/s10845-020-01540-x
– ident: ref5
  doi: 10.1109/TASE.2013.2277603
– ident: ref17
  doi: 10.1109/TKDE.2009.191
– year: 2018
  ident: ref27
  article-title: Data augmentation by pairing samples for images classification
  publication-title: arXiv:1801.02929
– ident: ref18
  doi: 10.1109/CVPR.2005.202
– ident: ref20
  doi: 10.1007/978-0-387-21637-9_6
– ident: ref31
  doi: 10.1109/TSM.2020.2964581
SSID ssj0014497
Score 2.3167145
Snippet Due to the increasing complexity of semiconductor manufacturing, new process failures occur and cause unknown types of defective patterns on wafer bin maps...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms Commonality
Convolutional neural networks
Deep learning
Failure
Failure analysis
Feature extraction
Generative adversarial networks
Generators
Morphology
one-shot learning
Retrieval
Semiconductor device modeling
semiconductor manufacturing
Similarity
Training
Troubleshooting
unknown pattern detection
Wafer map retrieval
Title A One-Shot Learning Approach for Similarity Retrieval of Wafer Bin Maps With Unknown Failure Pattern
URI https://ieeexplore.ieee.org/document/9586082
https://www.proquest.com/docview/2625366190
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB21vQAHKC2IQIt84IKEk13H--FjqBpVSAFEGrW3lT_GdAVsqmZz4dcz9u5GFSDEbaW1JUtvbL_xzLwBeGNU6qw1jgfVUy6JEHDtMOfGokxFrr2Uod558TG_WMkP19n1Hrzb1cIgYkw-w3H4jLF8t7bb8FQ2UVmZ05W1D_vkuHW1WruIgZSqU_VUkhPrKIaQZKIml8sFOYIiJf-U-EM4fe9dQbGnyh8Hcbxd5k9gMayrSyr5Nt62Zmx__ibZ-L8LP4THPc1ks84unsIeNkfwYKhC3hzBo3tChMfgZuxTg3x5s25Zr7j6lc16uXFGvJYt6x81OcHE2dmX2ISLLJStPbvSHu_Y-7phC327YVd1e8NWTXipa9hc1yHpnX2OGp7NM1jNzy_PLnjff4FbodKWFzp1aYZTp7MChUKfoLcq0a4MKmfETdAob7w39LcsdO4lFs7ZLPdEY4Sy0-dw0KwbfAEs0aXwdJwIQ-jrUprSZ9J6mfpM-zyzI5gMkFS2FycPPTK-V9FJSVRFIFYBxKoHcQRvdzNuO2GOf4w9DpjsxvVwjOBkQL3qd-6mEuQQTom0qOTl32e9gocilEDEzO0TOGjvtnhKxKQ1r6NF_gITHt_v
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4zA4MNiYKGzgAxck0iauncTHMq0qsAxEW223yD9ZBKTTml7463l2kmoChLhFii1Z-uz3vme_9z2A10okRmtlIq96GjEkBJE0No2UtiyhqXSM-Xrn4iKdLdmHK361A2-3tTDW2pB8Zof-M7zlm5Xe-KuykeB5ii7rHtxHv8-Ttlpr-2bAmGh1PQWLkHdk_aNkLEaLeYGhIE0wQkUG4e3vHScUuqr8YYqDf5nuQ9GvrE0r-TbcNGqof_4m2vi_S38MjzqiSSbtzngCO7Y-gL2-Dnl9AA_vSBEegpmQT7WN5terhnSaq1_JpBMcJ8hsybz6UWEYjKydfAltuHCPkpUjl9LZW_Kuqkkhb9bksmquybL2d3U1mcrKp72Tz0HFs34Ky-nZ4nQWdR0YIk1F0kSZTEzC7dhInlkqrIut0yKWJvc6Z8hOrBJOOafwb57J1DGbGaN56pDIUKHHR7Bbr2r7DEgsc-rQoFCF-Mucqdxxph1LHJcu5XoAox6SUnfy5L5LxvcyhCmxKBHE0oNYdiAO4M12xk0rzfGPsYcek-24Do4BHPeol93ZXZcUQ8Ix0hYRP__7rFewN1sU5-X5-4uPL-AB9QURIY_7GHab2409QZrSqJdhd_4C6e_jOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Shot+Learning+Approach+for+Similarity+Retrieval+of+Wafer+Bin+Maps+With+Unknown+Failure+Pattern&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Kong%2C+Yuting&rft.au=Ni%2C+Dong&rft.date=2022-02-01&rft.issn=0894-6507&rft.eissn=1558-2345&rft.volume=35&rft.issue=1&rft.spage=40&rft.epage=49&rft_id=info:doi/10.1109%2FTSM.2021.3123290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSM_2021_3123290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon