DC2Anet: Generating Lumbar Spine MR Images from CT Scan Data Based on Semi-Supervised Learning
Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pace...
Saved in:
Published in | Applied sciences Vol. 9; no. 12; p. 2521 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
20.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT) scans are much less expensive, are faster, and do not face the same limitations. In this paper, we propose a method for estimating lumbar spine MR images based on CT images using a novel objective function and a dual cycle-consistent adversarial network (DC 2 Anet) with semi-supervised learning. The objective function includes six independent loss terms to balance quantitative and qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC 2 Anet is also capable of semi-supervised learning, and the network is general enough for supervised or unsupervised setups. Experimental results prove that the method is accurate, being able to construct MR images that closely approximate reference MR images, while also outperforming four other state-of-the-art methods. |
---|---|
AbstractList | [...]some patients with claustrophobia or cardiac pacemakers are prevented from receiving an MRI due to possible injury. [...]the ability to generate a reliable magnetic resonance (MR) image from a CT scan for these patients is vital. [...]in this study, we propose a synthesis method based on convolutional neural networks (CNNs) [1,2] with adversarial training [3] to construct a lumbar spine MR image from CT scan data. In response to this, we propose a synthesis method based on convolutional neural networks (CNNs) [1] with adversarial training [3] to produce a lumbar spine MR image from a CT scan. Literature Review of Medical Imaging Synthesis In medical imaging, a number of methods have been proposed for generating one image domain from another, e.g., constructing a CT image from MRI data or a positron emission tomography (PET) image from CT data. Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT) scans are much less expensive, are faster, and do not face the same limitations. In this paper, we propose a method for estimating lumbar spine MR images based on CT images using a novel objective function and a dual cycle-consistent adversarial network (DC 2 Anet) with semi-supervised learning. The objective function includes six independent loss terms to balance quantitative and qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC 2 Anet is also capable of semi-supervised learning, and the network is general enough for supervised or unsupervised setups. Experimental results prove that the method is accurate, being able to construct MR images that closely approximate reference MR images, while also outperforming four other state-of-the-art methods. |
Author | Lee, Jae Il Han, In Ho Kim, Hakil Joo, Seongsu Jin, Cheng-Bin Liu, Mingjie Lee, Jung Hwan Cui, Xuenan Park, Eunsik Ahn, Young Saem |
Author_xml | – sequence: 1 givenname: Cheng-Bin orcidid: 0000-0001-8486-5738 surname: Jin fullname: Jin, Cheng-Bin – sequence: 2 givenname: Hakil orcidid: 0000-0003-4232-3804 surname: Kim fullname: Kim, Hakil – sequence: 3 givenname: Mingjie surname: Liu fullname: Liu, Mingjie – sequence: 4 givenname: In Ho orcidid: 0000-0001-7193-6533 surname: Han fullname: Han, In Ho – sequence: 5 givenname: Jae Il surname: Lee fullname: Lee, Jae Il – sequence: 6 givenname: Jung Hwan orcidid: 0000-0002-1393-7105 surname: Lee fullname: Lee, Jung Hwan – sequence: 7 givenname: Seongsu surname: Joo fullname: Joo, Seongsu – sequence: 8 givenname: Eunsik surname: Park fullname: Park, Eunsik – sequence: 9 givenname: Young Saem surname: Ahn fullname: Ahn, Young Saem – sequence: 10 givenname: Xuenan surname: Cui fullname: Cui, Xuenan |
BookMark | eNptkU1rGzEQhkVJoPnwpb9A0FthG32tV8otcdLE4BCInWvFWDsyMl5pq10H-u-rxC0NpXOZYeadh5eZU3IUU0RCPnH2VUrDLqDvDReiFvwDORGsmVZS8eboXf2RTIZhy0oYLjVnJ-T7zUxcRRwv6R1GzDCGuKGLfbeGTJd9iEgfnui8gw0O1OfU0dmKLh1EegMj0GsYsKUp0iV2oVrue8wv4bW1QMixoM7JsYfdgJPf-Yw8f7tdze6rxePdfHa1qJwwfKwag7UwTbvmiin0ayfb2sMUZBlr48E4j943TCoh61YjE45J1BqN9y3WTJ6R-YHbJtjaPocO8k-bINi3RsobC3kMboeWG9HyljXKKamU5loViuRaK99MncHC-nxg9Tn92OMw2m3a51jsWyEll7XivCkqdlC5nIYho7cujOV8KY4Zws5yZl-fYv8-pax8-Wflj9H_iH8By2SMPA |
CitedBy_id | crossref_primary_10_1088_1361_6560_aba5e9 crossref_primary_10_1038_s41591_024_03359_y crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1007_s00330_023_10534_1 crossref_primary_10_1016_j_jksuci_2023_101821 crossref_primary_10_1088_1361_6560_ac08b2 crossref_primary_10_1016_j_brachy_2023_05_005 crossref_primary_10_1088_1361_6560_ace674 crossref_primary_10_1016_j_compbiomed_2023_107842 crossref_primary_10_1148_radiol_220634 crossref_primary_10_1186_s41747_023_00385_2 crossref_primary_10_1002_acm2_13121 crossref_primary_10_3390_cancers15143565 crossref_primary_10_1097_MD_0000000000034161 crossref_primary_10_3390_diagnostics12020530 crossref_primary_10_1007_s00521_023_09254_w crossref_primary_10_1093_jamia_ocab192 crossref_primary_10_54615_2231_7805_47307 crossref_primary_10_1007_s00723_022_01482_y crossref_primary_10_1109_TRPMS_2022_3150322 crossref_primary_10_3390_s22114043 crossref_primary_10_1088_1742_6596_2824_1_012002 crossref_primary_10_3390_app9214676 crossref_primary_10_3389_fnins_2021_655019 crossref_primary_10_3389_fonc_2021_792516 |
Cites_doi | 10.1016/j.ijrobp.2015.07.001 10.1007/978-3-030-00889-5_30 10.1109/CVPR.2016.265 10.1118/1.4958676 10.1371/journal.pone.0203829 10.1109/CVPR.2017.632 10.1002/mp.12155 10.1038/nature21056 10.1109/CVPR.2010.5539801 10.1007/978-3-319-24574-4_28 10.2967/jnumed.109.069112 10.1109/CVPR.2017.728 10.1109/TIP.2003.819861 10.1109/CVPR.2015.7299155 10.1109/ISBI.2014.6868038 10.1109/CVPR.2015.7298594 10.1007/978-3-319-67564-0_5 10.1007/978-3-319-68127-6_2 10.1088/0031-9155/61/17/6531 10.1109/ICCV.2015.510 10.1088/0031-9155/58/23/8419 10.3109/0284186X.2012.692883 10.1109/ICCV.2017.244 10.1109/CVPR.2015.7298965 10.1109/TMI.2015.2461533 10.1007/978-3-319-68127-6_6 10.1007/978-3-642-15549-9_32 10.1109/CVPR.2016.308 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2017.241 10.1109/TPAMI.2012.59 10.1109/MSP.2008.930649 10.1145/3219104.3229250 10.1109/CVPR.2016.90 10.1118/1.4926756 10.1162/neco.1989.1.4.541 10.1007/978-3-319-46493-0_38 10.1109/ICCV.2019.00603 10.1109/ICCV.2017.304 10.1109/TPAMI.2009.186 10.1007/978-3-319-66179-7_48 10.3390/s19102361 10.1007/s11263-015-0816-y |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app9122521 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_192d1d074c43448184e9f31884f76c9e 10_3390_app9122521 |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c291t-79e5297db1404efbc3d5fa6a3c2989fa9cfeff7034235d8e02c03e88e9ffde503 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:16:25 EDT 2025 Mon Jun 30 11:13:11 EDT 2025 Tue Jul 01 03:00:50 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-79e5297db1404efbc3d5fa6a3c2989fa9cfeff7034235d8e02c03e88e9ffde503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4232-3804 0000-0001-7193-6533 0000-0001-8486-5738 0000-0002-1393-7105 |
OpenAccessLink | https://doaj.org/article/192d1d074c43448184e9f31884f76c9e |
PQID | 2331354117 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_192d1d074c43448184e9f31884f76c9e proquest_journals_2331354117 crossref_citationtrail_10_3390_app9122521 crossref_primary_10_3390_app9122521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-20 |
PublicationDateYYYYMMDD | 2019-06-20 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Russakovsky (ref_55) 2015; 115 ref_58 Kapanen (ref_6) 2013; 52 ref_56 ref_11 Ji (ref_38) 2013; 35 ref_54 ref_53 ref_19 Andreasen (ref_13) 2016; 43 Esteva (ref_18) 2017; 542 ref_17 ref_16 ref_15 ref_59 Wang (ref_51) 2004; 13 ref_60 ref_25 ref_24 ref_23 Catana (ref_12) 2010; 51 ref_20 ref_63 ref_62 Zheng (ref_5) 2015; 93 Su (ref_9) 2015; 42 ref_29 ref_28 ref_27 ref_26 Hsu (ref_4) 2013; 58 Han (ref_22) 2017; 44 Wang (ref_52) 2009; 26 ref_36 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Arabi (ref_14) 2016; 61 ref_39 ref_37 Tu (ref_40) 2010; 32 ref_47 ref_46 ref_45 ref_44 ref_43 LeCun (ref_2) 1989; 1 ref_42 Huynh (ref_10) 2016; 35 ref_41 Maas (ref_57) 2013; Volume 30 ref_1 ref_3 Tahmassebi (ref_61) 2018; Volume 10652 ref_49 ref_48 ref_8 Alex (ref_21) 2017; Volume 10133 ref_7 |
References_xml | – volume: 93 start-page: 497 year: 2015 ident: ref_5 article-title: Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2015.07.001 – ident: ref_19 doi: 10.1007/978-3-030-00889-5_30 – ident: ref_49 doi: 10.1109/CVPR.2016.265 – volume: 43 start-page: 4742 year: 2016 ident: ref_13 article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis publication-title: Med. Phys. doi: 10.1118/1.4958676 – ident: ref_26 – ident: ref_62 doi: 10.1371/journal.pone.0203829 – ident: ref_36 doi: 10.1109/CVPR.2017.632 – volume: 44 start-page: 1408 year: 2017 ident: ref_22 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med. Phys. doi: 10.1002/mp.12155 – volume: 542 start-page: 115 year: 2017 ident: ref_18 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: ref_54 doi: 10.1109/CVPR.2010.5539801 – ident: ref_23 doi: 10.1007/978-3-319-24574-4_28 – volume: 51 start-page: 1431 year: 2010 ident: ref_12 article-title: Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype publication-title: J. Nucl. Med. doi: 10.2967/jnumed.109.069112 – ident: ref_30 doi: 10.1109/CVPR.2017.728 – volume: 13 start-page: 600 year: 2004 ident: ref_51 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_50 doi: 10.1109/CVPR.2015.7299155 – ident: ref_1 – ident: ref_11 doi: 10.1109/ISBI.2014.6868038 – ident: ref_15 doi: 10.1109/CVPR.2015.7298594 – ident: ref_58 – ident: ref_33 doi: 10.1007/978-3-319-67564-0_5 – ident: ref_41 doi: 10.1007/978-3-319-68127-6_2 – ident: ref_8 – volume: 61 start-page: 6531 year: 2016 ident: ref_14 article-title: Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET–MRI-guided radiotherapy treatment planning publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/17/6531 – ident: ref_31 – ident: ref_56 – ident: ref_27 – ident: ref_39 doi: 10.1109/ICCV.2015.510 – volume: 58 start-page: 8419 year: 2013 ident: ref_4 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/23/8419 – volume: 52 start-page: 612 year: 2013 ident: ref_6 article-title: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning publication-title: Acta Oncol. doi: 10.3109/0284186X.2012.692883 – ident: ref_42 doi: 10.1109/ICCV.2017.244 – ident: ref_35 doi: 10.1109/CVPR.2015.7298965 – ident: ref_20 – ident: ref_7 – volume: 35 start-page: 174 year: 2016 ident: ref_10 article-title: Estimating CT image from MRI data using structured random forest and auto-context model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2461533 – ident: ref_28 – ident: ref_34 doi: 10.1007/978-3-319-68127-6_6 – ident: ref_3 – ident: ref_24 – ident: ref_53 doi: 10.1007/978-3-642-15549-9_32 – volume: Volume 10133 start-page: 101330G year: 2017 ident: ref_21 article-title: Generative adversarial networks for brain lesion detection publication-title: Medical Imaging 2017: Image Processing – ident: ref_16 doi: 10.1109/CVPR.2016.308 – ident: ref_48 doi: 10.1007/978-3-319-46475-6_43 – ident: ref_59 doi: 10.1109/CVPR.2017.241 – volume: Volume 30 start-page: 3 year: 2013 ident: ref_57 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc. icml – volume: 35 start-page: 221 year: 2013 ident: ref_38 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – volume: 26 start-page: 98 year: 2009 ident: ref_52 article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.930649 – ident: ref_17 doi: 10.1145/3219104.3229250 – ident: ref_46 doi: 10.1109/CVPR.2016.90 – volume: Volume 10652 start-page: 106520S year: 2018 ident: ref_61 article-title: ideeple: Deep learning in a flash publication-title: Disruptive Technologies in Information Sciences – ident: ref_63 – ident: ref_44 – volume: 42 start-page: 4974 year: 2015 ident: ref_9 article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering publication-title: Med. Phys. doi: 10.1118/1.4926756 – ident: ref_25 – ident: ref_29 – volume: 1 start-page: 541 year: 1989 ident: ref_2 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: ref_47 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_32 doi: 10.1109/ICCV.2019.00603 – ident: ref_43 doi: 10.1109/ICCV.2017.304 – ident: ref_60 – volume: 32 start-page: 1744 year: 2010 ident: ref_40 article-title: Auto-context and its application to high-level vision tasks and 3D brain image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.186 – ident: ref_37 doi: 10.1007/978-3-319-66179-7_48 – ident: ref_45 doi: 10.3390/s19102361 – volume: 115 start-page: 211 year: 2015 ident: ref_55 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y |
SSID | ssj0000913810 |
Score | 2.2783692 |
Snippet | Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost... [...]some patients with claustrophobia or cardiac pacemakers are prevented from receiving an MRI due to possible injury. [...]the ability to generate a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2521 |
SubjectTerms | adversarial training dual cycle-consistent adversarial network image cross-modality synthesis lumbar spine Medical imaging Methods Neural networks NMR Nuclear magnetic resonance semi-supervised learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3fT9swEMctfryMBzTYppWxyRJ7GA_R7DhO4r1MtIDYNBCiIPG0yLHPCImmXZv-_7tL3cI0xKvjSNGd_fWdY3-Osc9lrq01tUgMFGlC-Jakdh4DOaF0XohaQndR-PwiP7vJft7q27jhNovHKpea2Am1HzvaI_-aKiWVzqQsvk_-JFQ1iv6uxhIa62wTJbjE5Guzf3JxebXaZSHqZSnFgkuqML-n_8JG4iBO5T8rUQfs_0-Pu0Xm9DXbjtEhP1q4c4etQbPLtp4wA3fZTpyNM_4lIqMP37Dfx4P0qIH2G1-00Vlm_ms-qu2UDyf4Mj-_4j9GqB0zThdK-OCaD9Go_Ni2lvdxJfN83PAhjO6T4XxC-kFNEb5695bdnJ5cD86SWDkhcamRbVIY0KkpfE3wHAi1U14Hm1vlCLgerHEBQig6_J_2JYjUCQVlCSYED1qod2yjGTfwnnEIuaqFBSkoU6PKiQrQraivhc1UqXvscGnFykWsOFW3eKgwvSCLV48W77GDVd_JAqbxbK8-OWPVgwDYXcN4elfF-VRhYOqlx_jHZQozTMxT8dtRn8osFLkz0GP7S1dWcVbOqscxtPfy4w_sFQZGhGdAFdlnG-10Dh8x-GjrT3GE_QV2q9b1 priority: 102 providerName: ProQuest |
Title | DC2Anet: Generating Lumbar Spine MR Images from CT Scan Data Based on Semi-Supervised Learning |
URI | https://www.proquest.com/docview/2331354117 https://doaj.org/article/192d1d074c43448184e9f31884f76c9e |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIZHFC70UPFVdVtYWYIDHCLiOE5ibuzCQitAFQsSJyLHGaNK3bBis_-_M0mArVqJC1fLUaLx-J0ZxX4GYC9LtLWmCAODaRQwviUoXEmJXKh0koaFxOai8OVVcn4b_7jTdwutvvhMWIsHbg13SBlIKUsKdC5WVEpQQYLGkyNmsU8TZ5DVl2LeQjHVaLCRjK5qeaSK6nr-H2wkOW8k_4pADaj_Hx1ugstoDT51WaE4br9mHZaw2oCPC6zADVjvduFM7Heo6INNuD8ZRscV1keiHeMzzOJiPinskxhP6WFxeS2-T0gzZoIvkojhjRiTMcWJra0YUAQrxWMlxjj5FYznU9YNHuqgqw9bcDs6vRmeB13HhMBFRtZBalBHJi0LhuagL5wqtbeJVY5B694a59H7tMH-6TLDMHKhwiwjk_oSdag-w3L1WOEXEOgTVYQWZcgVGndMVEjLSbqa2lhlugcHz1bMXYcT564Wv3MqK9ji-avFe7D7MnfaQjT-O2vAi_Eyg8HXzQC5Q965Q_6WO_Rg-3kp8243zvJIKal0LGX69T3e8Q1WKW1ieANpzDYs109z3KHUpC768CEbnfVhZXB69fO63_jkHz9632o |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOUAPiBZQAwUsARI9rLDX-zISQm1CSGjSA0mlnli83nGFRDYh2Qjxp_iNzOwjLSri1qsfq9U8Ps_48Q1jL5MoNEZnwtMQ-x7Rt3iZzTGQEyqMYpFJqB4Kj0-jwVnw6Tw832K_27cwdK2yxcQKqPO5pT3yN75SUoWBlPH7xQ-PqkbR6WpbQqM2ixP49RNTttW7YQ_1-8r3-x-m3YHXVBXwrK9l6cUaQl_HeUbEMuAyq_LQmcgoS2TkzmjrwLm4osYL8wSEb4WCJAHtXA6hUPjdW-x2oJQmj0r6Hzd7OsSxmUhRs6Biv6BTaC3RZXz517pXlQe4hv7Vkta_z-41sSg_qo1nl21Bscd2rjAU7rHdxvdX_HVDUH34gH3pdf2jAsq3vG6jm9N8tJ5lZsknC5zMx5_5cIZIteL0fIV3p3yCKuQ9Uxp-jOtmzucFn8DsmzdZLwitqKmher14yM5uRKKP2HYxL2CfcXCRyoQBKSgvpDqNCtCIEM1jE6gk7LDDVoqpbUjMqZbG9xSTGZJ4einxDnuxGbuoqTv-OeqYlLEZQXTbVcN8eZE23ptiGJzLHKMtGyjMZzErxn9HNEwCF0dWQ4cdtKpMGwxYpZcW-_j_3c_ZncF0PEpHw9OTJ-wuhmREDIH4dcC2y-UanmLYU2bPKlvj7OtNG_cffqAT_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgNgAURhgCZDYQzQ7zi8jIbS2q1a2VdO6SXtacBJ7QqJpaVMh_jX-Ou4SpwOBeNur40TR3fm7O_v8HcCbJAq1Vhn3lIl9j-hbvCwvMJDjMoxinglTXxQ-GUeHF8Gny_ByA362d2GorLLFxBqoi1lOe-R7vpRChoEQ8Z51ZRGng-HH-TePOkjRSWvbTqMxkSPz4zumb8sPowHq-q3vDw_O-4ee6zDg5b4SlRcrE_oqLjIimTE2y2URWh1pmRMxudUqt8bauKbJC4vEcD_n0iSJUdYWJuQSv3sHNmPMingHNnsH49Oz9Q4PMW4mgjecqFIqTmfSSuAC8sUfXrBuFvCXL6gd3PAhPHCRKdtvTGkLNky5Dfd_4yvchi2HBEv2ztFV7z6Cq0Hf3y9N9Z41Y1RHzY5X00wv2GSOL7OTMzaaIm4tGV1mYf1zNkGFsoGuNOuhFy3YrGQTM_3iTVZzwi4acsSv14_h4lZk-gQ65aw0T4EZG8mMayM4ZYnUtVEaNCnE9lgHMgm7sNtKMc0dpTl11viaYmpDEk9vJN6F1-u584bI45-zeqSM9Qwi364HZovr1K3lFIPiQhQYe-WBxOwWc2T8d8TGJLBxlCvThZ1WlalDhGV6Y7_P_v_4FdxFw06PR-Oj53AP4zNiiUAw24FOtViZFxgDVdlLZ2wMPt-2ff8C2fUZkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC2Anet%3A+Generating+Lumbar+Spine+MR+Images+from+CT+Scan+Data+Based+on+Semi-Supervised+Learning&rft.jtitle=Applied+sciences&rft.au=Jin%2C+Cheng-Bin&rft.au=Kim%2C+Hakil&rft.au=Liu%2C+Mingjie&rft.au=Han%2C+In+Ho&rft.date=2019-06-20&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=9&rft.issue=12&rft.spage=2521&rft_id=info:doi/10.3390%2Fapp9122521&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app9122521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |