DC2Anet: Generating Lumbar Spine MR Images from CT Scan Data Based on Semi-Supervised Learning

Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pace...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 12; p. 2521
Main Authors Jin, Cheng-Bin, Kim, Hakil, Liu, Mingjie, Han, In Ho, Lee, Jae Il, Lee, Jung Hwan, Joo, Seongsu, Park, Eunsik, Ahn, Young Saem, Cui, Xuenan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT) scans are much less expensive, are faster, and do not face the same limitations. In this paper, we propose a method for estimating lumbar spine MR images based on CT images using a novel objective function and a dual cycle-consistent adversarial network (DC 2 Anet) with semi-supervised learning. The objective function includes six independent loss terms to balance quantitative and qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC 2 Anet is also capable of semi-supervised learning, and the network is general enough for supervised or unsupervised setups. Experimental results prove that the method is accurate, being able to construct MR images that closely approximate reference MR images, while also outperforming four other state-of-the-art methods.
AbstractList [...]some patients with claustrophobia or cardiac pacemakers are prevented from receiving an MRI due to possible injury. [...]the ability to generate a reliable magnetic resonance (MR) image from a CT scan for these patients is vital. [...]in this study, we propose a synthesis method based on convolutional neural networks (CNNs) [1,2] with adversarial training [3] to construct a lumbar spine MR image from CT scan data. In response to this, we propose a synthesis method based on convolutional neural networks (CNNs) [1] with adversarial training [3] to produce a lumbar spine MR image from a CT scan. Literature Review of Medical Imaging Synthesis In medical imaging, a number of methods have been proposed for generating one image domain from another, e.g., constructing a CT image from MRI data or a positron emission tomography (PET) image from CT data.
Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT) scans are much less expensive, are faster, and do not face the same limitations. In this paper, we propose a method for estimating lumbar spine MR images based on CT images using a novel objective function and a dual cycle-consistent adversarial network (DC 2 Anet) with semi-supervised learning. The objective function includes six independent loss terms to balance quantitative and qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC 2 Anet is also capable of semi-supervised learning, and the network is general enough for supervised or unsupervised setups. Experimental results prove that the method is accurate, being able to construct MR images that closely approximate reference MR images, while also outperforming four other state-of-the-art methods.
Author Lee, Jae Il
Han, In Ho
Kim, Hakil
Joo, Seongsu
Jin, Cheng-Bin
Liu, Mingjie
Lee, Jung Hwan
Cui, Xuenan
Park, Eunsik
Ahn, Young Saem
Author_xml – sequence: 1
  givenname: Cheng-Bin
  orcidid: 0000-0001-8486-5738
  surname: Jin
  fullname: Jin, Cheng-Bin
– sequence: 2
  givenname: Hakil
  orcidid: 0000-0003-4232-3804
  surname: Kim
  fullname: Kim, Hakil
– sequence: 3
  givenname: Mingjie
  surname: Liu
  fullname: Liu, Mingjie
– sequence: 4
  givenname: In Ho
  orcidid: 0000-0001-7193-6533
  surname: Han
  fullname: Han, In Ho
– sequence: 5
  givenname: Jae Il
  surname: Lee
  fullname: Lee, Jae Il
– sequence: 6
  givenname: Jung Hwan
  orcidid: 0000-0002-1393-7105
  surname: Lee
  fullname: Lee, Jung Hwan
– sequence: 7
  givenname: Seongsu
  surname: Joo
  fullname: Joo, Seongsu
– sequence: 8
  givenname: Eunsik
  surname: Park
  fullname: Park, Eunsik
– sequence: 9
  givenname: Young Saem
  surname: Ahn
  fullname: Ahn, Young Saem
– sequence: 10
  givenname: Xuenan
  surname: Cui
  fullname: Cui, Xuenan
BookMark eNptkU1rGzEQhkVJoPnwpb9A0FthG32tV8otcdLE4BCInWvFWDsyMl5pq10H-u-rxC0NpXOZYeadh5eZU3IUU0RCPnH2VUrDLqDvDReiFvwDORGsmVZS8eboXf2RTIZhy0oYLjVnJ-T7zUxcRRwv6R1GzDCGuKGLfbeGTJd9iEgfnui8gw0O1OfU0dmKLh1EegMj0GsYsKUp0iV2oVrue8wv4bW1QMixoM7JsYfdgJPf-Yw8f7tdze6rxePdfHa1qJwwfKwag7UwTbvmiin0ayfb2sMUZBlr48E4j943TCoh61YjE45J1BqN9y3WTJ6R-YHbJtjaPocO8k-bINi3RsobC3kMboeWG9HyljXKKamU5loViuRaK99MncHC-nxg9Tn92OMw2m3a51jsWyEll7XivCkqdlC5nIYho7cujOV8KY4Zws5yZl-fYv8-pax8-Wflj9H_iH8By2SMPA
CitedBy_id crossref_primary_10_1088_1361_6560_aba5e9
crossref_primary_10_1038_s41591_024_03359_y
crossref_primary_10_1016_j_ejmp_2021_04_016
crossref_primary_10_1007_s00330_023_10534_1
crossref_primary_10_1016_j_jksuci_2023_101821
crossref_primary_10_1088_1361_6560_ac08b2
crossref_primary_10_1016_j_brachy_2023_05_005
crossref_primary_10_1088_1361_6560_ace674
crossref_primary_10_1016_j_compbiomed_2023_107842
crossref_primary_10_1148_radiol_220634
crossref_primary_10_1186_s41747_023_00385_2
crossref_primary_10_1002_acm2_13121
crossref_primary_10_3390_cancers15143565
crossref_primary_10_1097_MD_0000000000034161
crossref_primary_10_3390_diagnostics12020530
crossref_primary_10_1007_s00521_023_09254_w
crossref_primary_10_1093_jamia_ocab192
crossref_primary_10_54615_2231_7805_47307
crossref_primary_10_1007_s00723_022_01482_y
crossref_primary_10_1109_TRPMS_2022_3150322
crossref_primary_10_3390_s22114043
crossref_primary_10_1088_1742_6596_2824_1_012002
crossref_primary_10_3390_app9214676
crossref_primary_10_3389_fnins_2021_655019
crossref_primary_10_3389_fonc_2021_792516
Cites_doi 10.1016/j.ijrobp.2015.07.001
10.1007/978-3-030-00889-5_30
10.1109/CVPR.2016.265
10.1118/1.4958676
10.1371/journal.pone.0203829
10.1109/CVPR.2017.632
10.1002/mp.12155
10.1038/nature21056
10.1109/CVPR.2010.5539801
10.1007/978-3-319-24574-4_28
10.2967/jnumed.109.069112
10.1109/CVPR.2017.728
10.1109/TIP.2003.819861
10.1109/CVPR.2015.7299155
10.1109/ISBI.2014.6868038
10.1109/CVPR.2015.7298594
10.1007/978-3-319-67564-0_5
10.1007/978-3-319-68127-6_2
10.1088/0031-9155/61/17/6531
10.1109/ICCV.2015.510
10.1088/0031-9155/58/23/8419
10.3109/0284186X.2012.692883
10.1109/ICCV.2017.244
10.1109/CVPR.2015.7298965
10.1109/TMI.2015.2461533
10.1007/978-3-319-68127-6_6
10.1007/978-3-642-15549-9_32
10.1109/CVPR.2016.308
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2017.241
10.1109/TPAMI.2012.59
10.1109/MSP.2008.930649
10.1145/3219104.3229250
10.1109/CVPR.2016.90
10.1118/1.4926756
10.1162/neco.1989.1.4.541
10.1007/978-3-319-46493-0_38
10.1109/ICCV.2019.00603
10.1109/ICCV.2017.304
10.1109/TPAMI.2009.186
10.1007/978-3-319-66179-7_48
10.3390/s19102361
10.1007/s11263-015-0816-y
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9122521
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_192d1d074c43448184e9f31884f76c9e
10_3390_app9122521
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c291t-79e5297db1404efbc3d5fa6a3c2989fa9cfeff7034235d8e02c03e88e9ffde503
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:16:25 EDT 2025
Mon Jun 30 11:13:11 EDT 2025
Tue Jul 01 03:00:50 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-79e5297db1404efbc3d5fa6a3c2989fa9cfeff7034235d8e02c03e88e9ffde503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4232-3804
0000-0001-7193-6533
0000-0001-8486-5738
0000-0002-1393-7105
OpenAccessLink https://doaj.org/article/192d1d074c43448184e9f31884f76c9e
PQID 2331354117
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_192d1d074c43448184e9f31884f76c9e
proquest_journals_2331354117
crossref_citationtrail_10_3390_app9122521
crossref_primary_10_3390_app9122521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-20
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-20
  day: 20
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Russakovsky (ref_55) 2015; 115
ref_58
Kapanen (ref_6) 2013; 52
ref_56
ref_11
Ji (ref_38) 2013; 35
ref_54
ref_53
ref_19
Andreasen (ref_13) 2016; 43
Esteva (ref_18) 2017; 542
ref_17
ref_16
ref_15
ref_59
Wang (ref_51) 2004; 13
ref_60
ref_25
ref_24
ref_23
Catana (ref_12) 2010; 51
ref_20
ref_63
ref_62
Zheng (ref_5) 2015; 93
Su (ref_9) 2015; 42
ref_29
ref_28
ref_27
ref_26
Hsu (ref_4) 2013; 58
Han (ref_22) 2017; 44
Wang (ref_52) 2009; 26
ref_36
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Arabi (ref_14) 2016; 61
ref_39
ref_37
Tu (ref_40) 2010; 32
ref_47
ref_46
ref_45
ref_44
ref_43
LeCun (ref_2) 1989; 1
ref_42
Huynh (ref_10) 2016; 35
ref_41
Maas (ref_57) 2013; Volume 30
ref_1
ref_3
Tahmassebi (ref_61) 2018; Volume 10652
ref_49
ref_48
ref_8
Alex (ref_21) 2017; Volume 10133
ref_7
References_xml – volume: 93
  start-page: 497
  year: 2015
  ident: ref_5
  article-title: Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2015.07.001
– ident: ref_19
  doi: 10.1007/978-3-030-00889-5_30
– ident: ref_49
  doi: 10.1109/CVPR.2016.265
– volume: 43
  start-page: 4742
  year: 2016
  ident: ref_13
  article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis
  publication-title: Med. Phys.
  doi: 10.1118/1.4958676
– ident: ref_26
– ident: ref_62
  doi: 10.1371/journal.pone.0203829
– ident: ref_36
  doi: 10.1109/CVPR.2017.632
– volume: 44
  start-page: 1408
  year: 2017
  ident: ref_22
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med. Phys.
  doi: 10.1002/mp.12155
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_18
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref_54
  doi: 10.1109/CVPR.2010.5539801
– ident: ref_23
  doi: 10.1007/978-3-319-24574-4_28
– volume: 51
  start-page: 1431
  year: 2010
  ident: ref_12
  article-title: Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.109.069112
– ident: ref_30
  doi: 10.1109/CVPR.2017.728
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_51
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_50
  doi: 10.1109/CVPR.2015.7299155
– ident: ref_1
– ident: ref_11
  doi: 10.1109/ISBI.2014.6868038
– ident: ref_15
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_58
– ident: ref_33
  doi: 10.1007/978-3-319-67564-0_5
– ident: ref_41
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref_8
– volume: 61
  start-page: 6531
  year: 2016
  ident: ref_14
  article-title: Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET–MRI-guided radiotherapy treatment planning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/17/6531
– ident: ref_31
– ident: ref_56
– ident: ref_27
– ident: ref_39
  doi: 10.1109/ICCV.2015.510
– volume: 58
  start-page: 8419
  year: 2013
  ident: ref_4
  article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/23/8419
– volume: 52
  start-page: 612
  year: 2013
  ident: ref_6
  article-title: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning
  publication-title: Acta Oncol.
  doi: 10.3109/0284186X.2012.692883
– ident: ref_42
  doi: 10.1109/ICCV.2017.244
– ident: ref_35
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_20
– ident: ref_7
– volume: 35
  start-page: 174
  year: 2016
  ident: ref_10
  article-title: Estimating CT image from MRI data using structured random forest and auto-context model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2461533
– ident: ref_28
– ident: ref_34
  doi: 10.1007/978-3-319-68127-6_6
– ident: ref_3
– ident: ref_24
– ident: ref_53
  doi: 10.1007/978-3-642-15549-9_32
– volume: Volume 10133
  start-page: 101330G
  year: 2017
  ident: ref_21
  article-title: Generative adversarial networks for brain lesion detection
  publication-title: Medical Imaging 2017: Image Processing
– ident: ref_16
  doi: 10.1109/CVPR.2016.308
– ident: ref_48
  doi: 10.1007/978-3-319-46475-6_43
– ident: ref_59
  doi: 10.1109/CVPR.2017.241
– volume: Volume 30
  start-page: 3
  year: 2013
  ident: ref_57
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. icml
– volume: 35
  start-page: 221
  year: 2013
  ident: ref_38
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 26
  start-page: 98
  year: 2009
  ident: ref_52
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– ident: ref_17
  doi: 10.1145/3219104.3229250
– ident: ref_46
  doi: 10.1109/CVPR.2016.90
– volume: Volume 10652
  start-page: 106520S
  year: 2018
  ident: ref_61
  article-title: ideeple: Deep learning in a flash
  publication-title: Disruptive Technologies in Information Sciences
– ident: ref_63
– ident: ref_44
– volume: 42
  start-page: 4974
  year: 2015
  ident: ref_9
  article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering
  publication-title: Med. Phys.
  doi: 10.1118/1.4926756
– ident: ref_25
– ident: ref_29
– volume: 1
  start-page: 541
  year: 1989
  ident: ref_2
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: ref_47
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_32
  doi: 10.1109/ICCV.2019.00603
– ident: ref_43
  doi: 10.1109/ICCV.2017.304
– ident: ref_60
– volume: 32
  start-page: 1744
  year: 2010
  ident: ref_40
  article-title: Auto-context and its application to high-level vision tasks and 3D brain image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.186
– ident: ref_37
  doi: 10.1007/978-3-319-66179-7_48
– ident: ref_45
  doi: 10.3390/s19102361
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_55
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
SSID ssj0000913810
Score 2.2783692
Snippet Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost...
[...]some patients with claustrophobia or cardiac pacemakers are prevented from receiving an MRI due to possible injury. [...]the ability to generate a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2521
SubjectTerms adversarial training
dual cycle-consistent adversarial network
image cross-modality synthesis
lumbar spine
Medical imaging
Methods
Neural networks
NMR
Nuclear magnetic resonance
semi-supervised learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3fT9swEMctfryMBzTYppWxyRJ7GA_R7DhO4r1MtIDYNBCiIPG0yLHPCImmXZv-_7tL3cI0xKvjSNGd_fWdY3-Osc9lrq01tUgMFGlC-Jakdh4DOaF0XohaQndR-PwiP7vJft7q27jhNovHKpea2Am1HzvaI_-aKiWVzqQsvk_-JFQ1iv6uxhIa62wTJbjE5Guzf3JxebXaZSHqZSnFgkuqML-n_8JG4iBO5T8rUQfs_0-Pu0Xm9DXbjtEhP1q4c4etQbPLtp4wA3fZTpyNM_4lIqMP37Dfx4P0qIH2G1-00Vlm_ms-qu2UDyf4Mj-_4j9GqB0zThdK-OCaD9Go_Ni2lvdxJfN83PAhjO6T4XxC-kFNEb5695bdnJ5cD86SWDkhcamRbVIY0KkpfE3wHAi1U14Hm1vlCLgerHEBQig6_J_2JYjUCQVlCSYED1qod2yjGTfwnnEIuaqFBSkoU6PKiQrQraivhc1UqXvscGnFykWsOFW3eKgwvSCLV48W77GDVd_JAqbxbK8-OWPVgwDYXcN4elfF-VRhYOqlx_jHZQozTMxT8dtRn8osFLkz0GP7S1dWcVbOqscxtPfy4w_sFQZGhGdAFdlnG-10Dh8x-GjrT3GE_QV2q9b1
  priority: 102
  providerName: ProQuest
Title DC2Anet: Generating Lumbar Spine MR Images from CT Scan Data Based on Semi-Supervised Learning
URI https://www.proquest.com/docview/2331354117
https://doaj.org/article/192d1d074c43448184e9f31884f76c9e
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIZHFC70UPFVdVtYWYIDHCLiOE5ibuzCQitAFQsSJyLHGaNK3bBis_-_M0mArVqJC1fLUaLx-J0ZxX4GYC9LtLWmCAODaRQwviUoXEmJXKh0koaFxOai8OVVcn4b_7jTdwutvvhMWIsHbg13SBlIKUsKdC5WVEpQQYLGkyNmsU8TZ5DVl2LeQjHVaLCRjK5qeaSK6nr-H2wkOW8k_4pADaj_Hx1ugstoDT51WaE4br9mHZaw2oCPC6zADVjvduFM7Heo6INNuD8ZRscV1keiHeMzzOJiPinskxhP6WFxeS2-T0gzZoIvkojhjRiTMcWJra0YUAQrxWMlxjj5FYznU9YNHuqgqw9bcDs6vRmeB13HhMBFRtZBalBHJi0LhuagL5wqtbeJVY5B694a59H7tMH-6TLDMHKhwiwjk_oSdag-w3L1WOEXEOgTVYQWZcgVGndMVEjLSbqa2lhlugcHz1bMXYcT564Wv3MqK9ji-avFe7D7MnfaQjT-O2vAi_Eyg8HXzQC5Q965Q_6WO_Rg-3kp8243zvJIKal0LGX69T3e8Q1WKW1ieANpzDYs109z3KHUpC768CEbnfVhZXB69fO63_jkHz9632o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOUAPiBZQAwUsARI9rLDX-zISQm1CSGjSA0mlnli83nGFRDYh2Qjxp_iNzOwjLSri1qsfq9U8Ps_48Q1jL5MoNEZnwtMQ-x7Rt3iZzTGQEyqMYpFJqB4Kj0-jwVnw6Tw832K_27cwdK2yxcQKqPO5pT3yN75SUoWBlPH7xQ-PqkbR6WpbQqM2ixP49RNTttW7YQ_1-8r3-x-m3YHXVBXwrK9l6cUaQl_HeUbEMuAyq_LQmcgoS2TkzmjrwLm4osYL8wSEb4WCJAHtXA6hUPjdW-x2oJQmj0r6Hzd7OsSxmUhRs6Biv6BTaC3RZXz517pXlQe4hv7Vkta_z-41sSg_qo1nl21Bscd2rjAU7rHdxvdX_HVDUH34gH3pdf2jAsq3vG6jm9N8tJ5lZsknC5zMx5_5cIZIteL0fIV3p3yCKuQ9Uxp-jOtmzucFn8DsmzdZLwitqKmher14yM5uRKKP2HYxL2CfcXCRyoQBKSgvpDqNCtCIEM1jE6gk7LDDVoqpbUjMqZbG9xSTGZJ4einxDnuxGbuoqTv-OeqYlLEZQXTbVcN8eZE23ptiGJzLHKMtGyjMZzErxn9HNEwCF0dWQ4cdtKpMGwxYpZcW-_j_3c_ZncF0PEpHw9OTJ-wuhmREDIH4dcC2y-UanmLYU2bPKlvj7OtNG_cffqAT_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgNgAURhgCZDYQzQ7zi8jIbS2q1a2VdO6SXtacBJ7QqJpaVMh_jX-Ou4SpwOBeNur40TR3fm7O_v8HcCbJAq1Vhn3lIl9j-hbvCwvMJDjMoxinglTXxQ-GUeHF8Gny_ByA362d2GorLLFxBqoi1lOe-R7vpRChoEQ8Z51ZRGng-HH-TePOkjRSWvbTqMxkSPz4zumb8sPowHq-q3vDw_O-4ee6zDg5b4SlRcrE_oqLjIimTE2y2URWh1pmRMxudUqt8bauKbJC4vEcD_n0iSJUdYWJuQSv3sHNmPMingHNnsH49Oz9Q4PMW4mgjecqFIqTmfSSuAC8sUfXrBuFvCXL6gd3PAhPHCRKdtvTGkLNky5Dfd_4yvchi2HBEv2ztFV7z6Cq0Hf3y9N9Z41Y1RHzY5X00wv2GSOL7OTMzaaIm4tGV1mYf1zNkGFsoGuNOuhFy3YrGQTM_3iTVZzwi4acsSv14_h4lZk-gQ65aw0T4EZG8mMayM4ZYnUtVEaNCnE9lgHMgm7sNtKMc0dpTl11viaYmpDEk9vJN6F1-u584bI45-zeqSM9Qwi364HZovr1K3lFIPiQhQYe-WBxOwWc2T8d8TGJLBxlCvThZ1WlalDhGV6Y7_P_v_4FdxFw06PR-Oj53AP4zNiiUAw24FOtViZFxgDVdlLZ2wMPt-2ff8C2fUZkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC2Anet%3A+Generating+Lumbar+Spine+MR+Images+from+CT+Scan+Data+Based+on+Semi-Supervised+Learning&rft.jtitle=Applied+sciences&rft.au=Jin%2C+Cheng-Bin&rft.au=Kim%2C+Hakil&rft.au=Liu%2C+Mingjie&rft.au=Han%2C+In+Ho&rft.date=2019-06-20&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=9&rft.issue=12&rft.spage=2521&rft_id=info:doi/10.3390%2Fapp9122521&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app9122521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon