Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition
In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time-frequency representation (TFR) of electroencephalogram (...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2021.3090164 |
Cover
Loading…
Abstract | In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time-frequency representation (TFR) of electroencephalogram (EEG) signals on each channel and extract rich information from different frequency bands for subsequent analysis. Brain networks are then constructed in multiple bands to characterize the spatial connections hidden in the multichannel EEG signals. Based on brain networks, we further develop core brain networks through a set of key nodes determined by DE. These core brain networks are associated with brain activities and differ markedly between different emotional states. The final designed MCNN model takes DE features and core brain networks as inputs for emotion recognition. We evaluate our method on the SJTU emotion EEG dataset, and the average accuracy of 15 subjects achieves 91.45%. Utilizing the complementary features of DE and brain network, the proposed method provides an efficient framework for accurate emotion recognition from EEG signals. |
---|---|
AbstractList | In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time–frequency representation (TFR) of electroencephalogram (EEG) signals on each channel and extract rich information from different frequency bands for subsequent analysis. Brain networks are then constructed in multiple bands to characterize the spatial connections hidden in the multichannel EEG signals. Based on brain networks, we further develop core brain networks through a set of key nodes determined by DE. These core brain networks are associated with brain activities and differ markedly between different emotional states. The final designed MCNN model takes DE features and core brain networks as inputs for emotion recognition. We evaluate our method on the SJTU emotion EEG dataset, and the average accuracy of 15 subjects achieves 91.45%. Utilizing the complementary features of DE and brain network, the proposed method provides an efficient framework for accurate emotion recognition from EEG signals. |
Author | Rui, Linge Sun, Xinlin Ma, Chao Gao, Zhongke Li, Rumei |
Author_xml | – sequence: 1 givenname: Zhongke orcidid: 0000-0002-9551-202X surname: Gao fullname: Gao, Zhongke email: zhongkegao@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Rumei orcidid: 0000-0001-7353-6242 surname: Li fullname: Li, Rumei email: rumeili@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Chao orcidid: 0000-0001-6981-0165 surname: Ma fullname: Ma, Chao email: chao.ma@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Linge orcidid: 0000-0002-9114-7838 surname: Rui fullname: Rui, Linge organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 5 givenname: Xinlin orcidid: 0000-0002-5257-6285 surname: Sun fullname: Sun, Xinlin organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China |
BookMark | eNp9kEFLw0AQhRepYFu9C14CnlNnN8lu9mhL1UJbQSp4C5vtrKSm2bqbKP33Jm3x4MHTG5jvDW_egPQqWyEh1xRGlIK8W80WIwaMjiKQQHl8Rvo0SUQoOWc90gegaSjjhF-QgfcbABA8Fn3yNrEOw7FTRRUusf627iMcK4_rYNGUdVGqPbpgYqsvWzZ1YStVBkts3EEOdGCsC6Zb2y2DF9T2vSq6-ZKcG1V6vDrpkLw-TFeTp3D-_Dib3M9DzSStQyEjpUWqTQoxRhgludRxKhjPqZE51VoxoIbKHDChBtYqAiEiBOBCcG1MNCS3x7s7Zz8b9HW2sY1rc_qMJTEXNI1p2lL8SGlnvXdoMl3UqstZt6-XGYWsazFrW8y6FrNTi60R_hh3rtgqt__PcnO0FIj4i8uYMwks-gEA-X9U |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3263670 crossref_primary_10_1109_MNET_003_2300012 crossref_primary_10_1109_TIM_2023_3280529 crossref_primary_10_3390_app14062636 crossref_primary_10_1109_JSEN_2023_3335229 crossref_primary_10_1109_JBHI_2024_3404146 crossref_primary_10_1109_ACCESS_2022_3195028 crossref_primary_10_1109_TIM_2022_3165280 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1109_TIM_2023_3269117 crossref_primary_10_1186_s13636_023_00302_w crossref_primary_10_1109_TNSRE_2023_3236434 crossref_primary_10_1109_JSEN_2022_3172133 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_1109_JSEN_2023_3330090 crossref_primary_10_1109_TIM_2022_3147876 crossref_primary_10_1109_TIM_2023_3272383 crossref_primary_10_3389_fpsyg_2021_808414 crossref_primary_10_1093_cercor_bhae477 crossref_primary_10_1109_TIM_2023_3336748 |
Cites_doi | 10.1016/j.bbe.2020.01.010 10.1142/S0218127417501231 10.1109/ACCESS.2020.3011882 10.1109/TSMCB.2005.854502 10.1587/transinf.E97.D.610 10.1109/TSMC.2020.2964684 10.1016/j.euroneuro.2012.10.010 10.1109/TII.2019.2955447 10.1109/BIBM.2018.8621147 10.1109/NER.2013.6695876 10.1109/ICME.2014.6890166 10.1007/s11571-013-9267-8 10.1109/TCYB.2017.2788081 10.1109/TAFFC.2017.2714671 10.1113/jphysiol.2006.125633 10.1109/TNNLS.2018.2886414 10.1109/TAMD.2015.2431497 10.1162/neco.1989.1.4.541 10.1016/S0022-460X(02)01032-5 10.1109/IPACT.2017.8245212 10.1162/neco.1989.1.2.270 10.1109/TIT.2018.2815687 10.4249/scholarpedia.5947 10.4018/IJCINI.2019070103 10.3390/e21040353 10.1109/TAFFC.2018.2817622 10.3390/s19235218 10.1016/j.neunet.2018.04.018 10.1109/JBHI.2020.3008229 10.1016/j.neucom.2013.06.046 10.1007/978-3-319-46672-9_58 10.1142/S0218127420501187 10.1109/IJCNN.2014.6889618 10.3233/IDA-170881 10.1007/s00521-016-2646-4 10.1109/TITB.2009.2034649 10.1109/TIM.2018.2851422 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2021.3090164 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 9 |
ExternalDocumentID | 10_1109_TIM_2021_3090164 9462902 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61922062; 61903270; 61873181 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-793ac78cf804e3e35b9c48726b1f9b1cca201f19b0e51f0da30773e006776cff3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:07:48 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 03:07:04 EDT 2025 Wed Aug 27 02:26:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-793ac78cf804e3e35b9c48726b1f9b1cca201f19b0e51f0da30773e006776cff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5257-6285 0000-0001-6981-0165 0000-0001-7353-6242 0000-0002-9551-202X 0000-0002-9114-7838 |
PQID | 2546718418 |
PQPubID | 85462 |
PageCount | 9 |
ParticipantIDs | ieee_primary_9462902 crossref_primary_10_1109_TIM_2021_3090164 proquest_journals_2546718418 crossref_citationtrail_10_1109_TIM_2021_3090164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref24 mehmood (ref7) 2021; 70 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref6 ref5 mcgilloway (ref3) 2000 ref40 yuen (ref18) 2009; 1 |
References_xml | – ident: ref37 doi: 10.1016/j.bbe.2020.01.010 – volume: 70 start-page: 1 year: 2021 ident: ref7 article-title: Children emotion regulation: Development of neural marker by investigating human brain signals publication-title: IEEE Trans Instrum Meas – ident: ref25 doi: 10.1142/S0218127417501231 – ident: ref35 doi: 10.1109/ACCESS.2020.3011882 – ident: ref2 doi: 10.1109/TSMCB.2005.854502 – ident: ref4 doi: 10.1587/transinf.E97.D.610 – ident: ref27 doi: 10.1109/TSMC.2020.2964684 – ident: ref24 doi: 10.1016/j.euroneuro.2012.10.010 – ident: ref36 doi: 10.1109/TII.2019.2955447 – ident: ref13 doi: 10.1109/BIBM.2018.8621147 – ident: ref22 doi: 10.1109/NER.2013.6695876 – ident: ref23 doi: 10.1109/ICME.2014.6890166 – ident: ref39 doi: 10.1007/s11571-013-9267-8 – ident: ref12 doi: 10.1109/TCYB.2017.2788081 – volume: 1 start-page: 1 year: 2009 ident: ref18 article-title: Classification of human emotions from EEG signals using statistical features and neural network publication-title: Int J Integr Eng – ident: ref1 doi: 10.1109/TAFFC.2017.2714671 – ident: ref8 doi: 10.1113/jphysiol.2006.125633 – ident: ref9 doi: 10.1109/TNNLS.2018.2886414 – ident: ref10 doi: 10.1109/TAMD.2015.2431497 – ident: ref29 doi: 10.1162/neco.1989.1.4.541 – ident: ref17 doi: 10.1016/S0022-460X(02)01032-5 – ident: ref6 doi: 10.1109/IPACT.2017.8245212 – ident: ref30 doi: 10.1162/neco.1989.1.2.270 – ident: ref40 doi: 10.1109/TIT.2018.2815687 – ident: ref28 doi: 10.4249/scholarpedia.5947 – ident: ref15 doi: 10.4018/IJCINI.2019070103 – ident: ref26 doi: 10.3390/e21040353 – ident: ref11 doi: 10.1109/TAFFC.2018.2817622 – ident: ref33 doi: 10.3390/s19235218 – ident: ref34 doi: 10.1016/j.neunet.2018.04.018 – start-page: 207 year: 2000 ident: ref3 article-title: Approaching automatic recognition of emotion from voice: A rough benchmark publication-title: Proc ISCA workshop Speech Emotion – ident: ref14 doi: 10.1109/JBHI.2020.3008229 – ident: ref19 doi: 10.1016/j.neucom.2013.06.046 – ident: ref32 doi: 10.1007/978-3-319-46672-9_58 – ident: ref31 doi: 10.1142/S0218127420501187 – ident: ref21 doi: 10.1109/IJCNN.2014.6889618 – ident: ref5 doi: 10.3233/IDA-170881 – ident: ref16 doi: 10.1007/s00521-016-2646-4 – ident: ref20 doi: 10.1109/TITB.2009.2034649 – ident: ref38 doi: 10.1109/TIM.2018.2851422 |
SSID | ssj0007647 |
Score | 2.451869 |
Snippet | In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Brain Brain network Continuous wavelet transform Continuous wavelet transforms convolutional neural network (CNN) Correlation Deep learning differential entropy (DE) electroencephalogram (EEG) signals Electroencephalography Emotion recognition Emotional factors Emotions Entropy Feature extraction Frequencies Multilayers Neural networks Spearman correlation coefficient Wavelet transforms |
Title | Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/9462902 https://www.proquest.com/docview/2546718418 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qIOjBVxWrVfbgRTDtPrKPHLUoVagHsdDbkufFsit268Ff7yS7W3whnnYPkxD4ksw3yeQbgPNICpUJyolh2hAac06yhCmC1JRRqRKu3Y3p5CEZT-n9LJ514HL1FkZr7ZLP9MD-urt8VcqlPSobMpqEzCpHrmHgVr_VWu26aUJrfcwAFzCygvZK0mfDp7sJBoJhMIh8ZhWlvrggV1Plx0bsvMvtDkzacdVJJc-DZSUG8v2bZON_B74L2w3N9K7qebEHHV3sw9Yn8cF92HDJn3LRhdkI-yPXtlgEeajTwsk1ejfluee5c4603BuVxVszTbFjq-nhPs7aQ-br3dQFgbzHNiWpLA5genvzNBqTpuICkSELKoKLlcs0kybzqY50FAsmMaIJExEYJgJEG_mCCZjwdRwYX3HcIdJIW5eXJtKY6BDWi7LQR-AhHZaZySKFdtTISPgi5spPQy5jFTPTg2ELQi4bOXJbFWOeu7DEZznCllvY8ga2HlysWrzUUhx_2HYtCiu7BoAe9Fuc82atLnJbEQA9NA2y499bncCm7bs-eOnDevW61KdIRSpx5ubgB6Fx20Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2hIgQcWFoQZc2BCxJusziLj1CBytIeUCv1Fnm9gFIELQe-nrGTVGxCnJLD2In0bM-zPfMG4DSSQmWCcmKYNoTGnJMsYYogNWVUqoRrd2M6GCb9Mb2dxJMlOF_kwmitXfCZ7thXd5evpnJuj8q6jCYhs8qRy7FNxi2ztRbrbprQUiEzwCmMvKC-lPRZd3QzwK1gGHQin1lNqS9OyFVV-bEUO_9yvQmD-s_KsJLHznwmOvL9m2jjf399CzYqouldlCNjG5Z00YT1T_KDTVhx4Z_ytQWTHvZHLm25CDIsA8PJJfo35bkE3SeOxNzrTYu3aqBix1bVwz2ctYfc17sqSwJ5D3VQ0rTYgfH11ajXJ1XNBSJDFswITlcu00yazKc60lEsmMQ9TZiIwDARIN7IGEzAhK_jwPiK4xqRRto6vTSRxkS70Cimhd4DDwmxzEwWKbSjRkbCFzFXfhpyGauYmTZ0axByWQmS27oYT7nbmPgsR9hyC1tewdaGs0WL51KM4w_blkVhYVcB0IbDGue8mq2vua0JgD6aBtn-761OYLU_Gtzn9zfDuwNYs98pj2EOoTF7mesjJCYzcezG4wc42t6O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-Brain-Network-Based+Multilayer+Convolutional+Neural+Network+for+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Gao%2C+Zhongke&rft.au=Li%2C+Rumei&rft.au=Ma%2C+Chao&rft.au=Rui%2C+Linge&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2021.3090164&rft.externalDocID=9462902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |