Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition

In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time-frequency representation (TFR) of electroencephalogram (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 9
Main Authors Gao, Zhongke, Li, Rumei, Ma, Chao, Rui, Linge, Sun, Xinlin
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2021.3090164

Cover

Loading…
Abstract In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time-frequency representation (TFR) of electroencephalogram (EEG) signals on each channel and extract rich information from different frequency bands for subsequent analysis. Brain networks are then constructed in multiple bands to characterize the spatial connections hidden in the multichannel EEG signals. Based on brain networks, we further develop core brain networks through a set of key nodes determined by DE. These core brain networks are associated with brain activities and differ markedly between different emotional states. The final designed MCNN model takes DE features and core brain networks as inputs for emotion recognition. We evaluate our method on the SJTU emotion EEG dataset, and the average accuracy of 15 subjects achieves 91.45%. Utilizing the complementary features of DE and brain network, the proposed method provides an efficient framework for accurate emotion recognition from EEG signals.
AbstractList In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE) and brain network. First, we use continuous wavelet transform (CWT) to get the time–frequency representation (TFR) of electroencephalogram (EEG) signals on each channel and extract rich information from different frequency bands for subsequent analysis. Brain networks are then constructed in multiple bands to characterize the spatial connections hidden in the multichannel EEG signals. Based on brain networks, we further develop core brain networks through a set of key nodes determined by DE. These core brain networks are associated with brain activities and differ markedly between different emotional states. The final designed MCNN model takes DE features and core brain networks as inputs for emotion recognition. We evaluate our method on the SJTU emotion EEG dataset, and the average accuracy of 15 subjects achieves 91.45%. Utilizing the complementary features of DE and brain network, the proposed method provides an efficient framework for accurate emotion recognition from EEG signals.
Author Rui, Linge
Sun, Xinlin
Ma, Chao
Gao, Zhongke
Li, Rumei
Author_xml – sequence: 1
  givenname: Zhongke
  orcidid: 0000-0002-9551-202X
  surname: Gao
  fullname: Gao, Zhongke
  email: zhongkegao@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Rumei
  orcidid: 0000-0001-7353-6242
  surname: Li
  fullname: Li, Rumei
  email: rumeili@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0001-6981-0165
  surname: Ma
  fullname: Ma, Chao
  email: chao.ma@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Linge
  orcidid: 0000-0002-9114-7838
  surname: Rui
  fullname: Rui, Linge
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Xinlin
  orcidid: 0000-0002-5257-6285
  surname: Sun
  fullname: Sun, Xinlin
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BookMark eNp9kEFLw0AQhRepYFu9C14CnlNnN8lu9mhL1UJbQSp4C5vtrKSm2bqbKP33Jm3x4MHTG5jvDW_egPQqWyEh1xRGlIK8W80WIwaMjiKQQHl8Rvo0SUQoOWc90gegaSjjhF-QgfcbABA8Fn3yNrEOw7FTRRUusf627iMcK4_rYNGUdVGqPbpgYqsvWzZ1YStVBkts3EEOdGCsC6Zb2y2DF9T2vSq6-ZKcG1V6vDrpkLw-TFeTp3D-_Dib3M9DzSStQyEjpUWqTQoxRhgludRxKhjPqZE51VoxoIbKHDChBtYqAiEiBOBCcG1MNCS3x7s7Zz8b9HW2sY1rc_qMJTEXNI1p2lL8SGlnvXdoMl3UqstZt6-XGYWsazFrW8y6FrNTi60R_hh3rtgqt__PcnO0FIj4i8uYMwks-gEA-X9U
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3263670
crossref_primary_10_1109_MNET_003_2300012
crossref_primary_10_1109_TIM_2023_3280529
crossref_primary_10_3390_app14062636
crossref_primary_10_1109_JSEN_2023_3335229
crossref_primary_10_1109_JBHI_2024_3404146
crossref_primary_10_1109_ACCESS_2022_3195028
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_1109_TIM_2023_3240230
crossref_primary_10_1109_TIM_2023_3269117
crossref_primary_10_1186_s13636_023_00302_w
crossref_primary_10_1109_TNSRE_2023_3236434
crossref_primary_10_1109_JSEN_2022_3172133
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_1109_JSEN_2023_3330090
crossref_primary_10_1109_TIM_2022_3147876
crossref_primary_10_1109_TIM_2023_3272383
crossref_primary_10_3389_fpsyg_2021_808414
crossref_primary_10_1093_cercor_bhae477
crossref_primary_10_1109_TIM_2023_3336748
Cites_doi 10.1016/j.bbe.2020.01.010
10.1142/S0218127417501231
10.1109/ACCESS.2020.3011882
10.1109/TSMCB.2005.854502
10.1587/transinf.E97.D.610
10.1109/TSMC.2020.2964684
10.1016/j.euroneuro.2012.10.010
10.1109/TII.2019.2955447
10.1109/BIBM.2018.8621147
10.1109/NER.2013.6695876
10.1109/ICME.2014.6890166
10.1007/s11571-013-9267-8
10.1109/TCYB.2017.2788081
10.1109/TAFFC.2017.2714671
10.1113/jphysiol.2006.125633
10.1109/TNNLS.2018.2886414
10.1109/TAMD.2015.2431497
10.1162/neco.1989.1.4.541
10.1016/S0022-460X(02)01032-5
10.1109/IPACT.2017.8245212
10.1162/neco.1989.1.2.270
10.1109/TIT.2018.2815687
10.4249/scholarpedia.5947
10.4018/IJCINI.2019070103
10.3390/e21040353
10.1109/TAFFC.2018.2817622
10.3390/s19235218
10.1016/j.neunet.2018.04.018
10.1109/JBHI.2020.3008229
10.1016/j.neucom.2013.06.046
10.1007/978-3-319-46672-9_58
10.1142/S0218127420501187
10.1109/IJCNN.2014.6889618
10.3233/IDA-170881
10.1007/s00521-016-2646-4
10.1109/TITB.2009.2034649
10.1109/TIM.2018.2851422
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3090164
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2021_3090164
9462902
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922062; 61903270; 61873181
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-793ac78cf804e3e35b9c48726b1f9b1cca201f19b0e51f0da30773e006776cff3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:07:48 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 03:07:04 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-793ac78cf804e3e35b9c48726b1f9b1cca201f19b0e51f0da30773e006776cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5257-6285
0000-0001-6981-0165
0000-0001-7353-6242
0000-0002-9551-202X
0000-0002-9114-7838
PQID 2546718418
PQPubID 85462
PageCount 9
ParticipantIDs ieee_primary_9462902
crossref_primary_10_1109_TIM_2021_3090164
proquest_journals_2546718418
crossref_citationtrail_10_1109_TIM_2021_3090164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref24
mehmood (ref7) 2021; 70
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref6
ref5
mcgilloway (ref3) 2000
ref40
yuen (ref18) 2009; 1
References_xml – ident: ref37
  doi: 10.1016/j.bbe.2020.01.010
– volume: 70
  start-page: 1
  year: 2021
  ident: ref7
  article-title: Children emotion regulation: Development of neural marker by investigating human brain signals
  publication-title: IEEE Trans Instrum Meas
– ident: ref25
  doi: 10.1142/S0218127417501231
– ident: ref35
  doi: 10.1109/ACCESS.2020.3011882
– ident: ref2
  doi: 10.1109/TSMCB.2005.854502
– ident: ref4
  doi: 10.1587/transinf.E97.D.610
– ident: ref27
  doi: 10.1109/TSMC.2020.2964684
– ident: ref24
  doi: 10.1016/j.euroneuro.2012.10.010
– ident: ref36
  doi: 10.1109/TII.2019.2955447
– ident: ref13
  doi: 10.1109/BIBM.2018.8621147
– ident: ref22
  doi: 10.1109/NER.2013.6695876
– ident: ref23
  doi: 10.1109/ICME.2014.6890166
– ident: ref39
  doi: 10.1007/s11571-013-9267-8
– ident: ref12
  doi: 10.1109/TCYB.2017.2788081
– volume: 1
  start-page: 1
  year: 2009
  ident: ref18
  article-title: Classification of human emotions from EEG signals using statistical features and neural network
  publication-title: Int J Integr Eng
– ident: ref1
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref8
  doi: 10.1113/jphysiol.2006.125633
– ident: ref9
  doi: 10.1109/TNNLS.2018.2886414
– ident: ref10
  doi: 10.1109/TAMD.2015.2431497
– ident: ref29
  doi: 10.1162/neco.1989.1.4.541
– ident: ref17
  doi: 10.1016/S0022-460X(02)01032-5
– ident: ref6
  doi: 10.1109/IPACT.2017.8245212
– ident: ref30
  doi: 10.1162/neco.1989.1.2.270
– ident: ref40
  doi: 10.1109/TIT.2018.2815687
– ident: ref28
  doi: 10.4249/scholarpedia.5947
– ident: ref15
  doi: 10.4018/IJCINI.2019070103
– ident: ref26
  doi: 10.3390/e21040353
– ident: ref11
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref33
  doi: 10.3390/s19235218
– ident: ref34
  doi: 10.1016/j.neunet.2018.04.018
– start-page: 207
  year: 2000
  ident: ref3
  article-title: Approaching automatic recognition of emotion from voice: A rough benchmark
  publication-title: Proc ISCA workshop Speech Emotion
– ident: ref14
  doi: 10.1109/JBHI.2020.3008229
– ident: ref19
  doi: 10.1016/j.neucom.2013.06.046
– ident: ref32
  doi: 10.1007/978-3-319-46672-9_58
– ident: ref31
  doi: 10.1142/S0218127420501187
– ident: ref21
  doi: 10.1109/IJCNN.2014.6889618
– ident: ref5
  doi: 10.3233/IDA-170881
– ident: ref16
  doi: 10.1007/s00521-016-2646-4
– ident: ref20
  doi: 10.1109/TITB.2009.2034649
– ident: ref38
  doi: 10.1109/TIM.2018.2851422
SSID ssj0007647
Score 2.451869
Snippet In this article, we propose a method for emotion classification based on multilayer convolutional neural network (MCNN) and combining differential entropy (DE)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Brain
Brain network
Continuous wavelet transform
Continuous wavelet transforms
convolutional neural network (CNN)
Correlation
Deep learning
differential entropy (DE)
electroencephalogram (EEG) signals
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Entropy
Feature extraction
Frequencies
Multilayers
Neural networks
Spearman correlation coefficient
Wavelet transforms
Title Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition
URI https://ieeexplore.ieee.org/document/9462902
https://www.proquest.com/docview/2546718418
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qIOjBVxWrVfbgRTDtPrKPHLUoVagHsdDbkufFsit268Ff7yS7W3whnnYPkxD4ksw3yeQbgPNICpUJyolh2hAac06yhCmC1JRRqRKu3Y3p5CEZT-n9LJ514HL1FkZr7ZLP9MD-urt8VcqlPSobMpqEzCpHrmHgVr_VWu26aUJrfcwAFzCygvZK0mfDp7sJBoJhMIh8ZhWlvrggV1Plx0bsvMvtDkzacdVJJc-DZSUG8v2bZON_B74L2w3N9K7qebEHHV3sw9Yn8cF92HDJn3LRhdkI-yPXtlgEeajTwsk1ejfluee5c4603BuVxVszTbFjq-nhPs7aQ-br3dQFgbzHNiWpLA5genvzNBqTpuICkSELKoKLlcs0kybzqY50FAsmMaIJExEYJgJEG_mCCZjwdRwYX3HcIdJIW5eXJtKY6BDWi7LQR-AhHZaZySKFdtTISPgi5spPQy5jFTPTg2ELQi4bOXJbFWOeu7DEZznCllvY8ga2HlysWrzUUhx_2HYtCiu7BoAe9Fuc82atLnJbEQA9NA2y499bncCm7bs-eOnDevW61KdIRSpx5ubgB6Fx20Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2hIgQcWFoQZc2BCxJusziLj1CBytIeUCv1Fnm9gFIELQe-nrGTVGxCnJLD2In0bM-zPfMG4DSSQmWCcmKYNoTGnJMsYYogNWVUqoRrd2M6GCb9Mb2dxJMlOF_kwmitXfCZ7thXd5evpnJuj8q6jCYhs8qRy7FNxi2ztRbrbprQUiEzwCmMvKC-lPRZd3QzwK1gGHQin1lNqS9OyFVV-bEUO_9yvQmD-s_KsJLHznwmOvL9m2jjf399CzYqouldlCNjG5Z00YT1T_KDTVhx4Z_ytQWTHvZHLm25CDIsA8PJJfo35bkE3SeOxNzrTYu3aqBix1bVwz2ctYfc17sqSwJ5D3VQ0rTYgfH11ajXJ1XNBSJDFswITlcu00yazKc60lEsmMQ9TZiIwDARIN7IGEzAhK_jwPiK4xqRRto6vTSRxkS70Cimhd4DDwmxzEwWKbSjRkbCFzFXfhpyGauYmTZ0axByWQmS27oYT7nbmPgsR9hyC1tewdaGs0WL51KM4w_blkVhYVcB0IbDGue8mq2vua0JgD6aBtn-761OYLU_Gtzn9zfDuwNYs98pj2EOoTF7mesjJCYzcezG4wc42t6O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-Brain-Network-Based+Multilayer+Convolutional+Neural+Network+for+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Gao%2C+Zhongke&rft.au=Li%2C+Rumei&rft.au=Ma%2C+Chao&rft.au=Rui%2C+Linge&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2021.3090164&rft.externalDocID=9462902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon