Switching Anti-windup Control for Aircraft Engines
In this article, we propose a switching anti-windup scheme for the aircraft engine control. The linear engine model with asymmetric saturation is first transformed into a switched system, each subsystem of which is subject to symmetric saturation. A state-dependent switching logic is presented to or...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 2; pp. 1830 - 1840 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0046 1557-9948 |
DOI | 10.1109/TIE.2022.3163464 |
Cover
Abstract | In this article, we propose a switching anti-windup scheme for the aircraft engine control. The linear engine model with asymmetric saturation is first transformed into a switched system, each subsystem of which is subject to symmetric saturation. A state-dependent switching logic is presented to orchestrate the switching among multiple anti-windup compensators. We then establish the sufficient condition to guarantee the regional stability and <inline-formula><tex-math notation="LaTeX">\mathcal {L}_{2}</tex-math></inline-formula> performance of the resulting closed-loop system. This condition is less conservative since the non-symmetric nature of the saturation nonlinearity can be fully exploited in the control design. Optimization algorithms are further developed for the anti-windup gain design. The theoretical aspect of the proposed method is analyzed rigorously, and the effectiveness is validated through experiments performed on a semi-physical test bed. |
---|---|
AbstractList | In this article, we propose a switching anti-windup scheme for the aircraft engine control. The linear engine model with asymmetric saturation is first transformed into a switched system, each subsystem of which is subject to symmetric saturation. A state-dependent switching logic is presented to orchestrate the switching among multiple anti-windup compensators. We then establish the sufficient condition to guarantee the regional stability and [Formula Omitted] performance of the resulting closed-loop system. This condition is less conservative since the non-symmetric nature of the saturation nonlinearity can be fully exploited in the control design. Optimization algorithms are further developed for the anti-windup gain design. The theoretical aspect of the proposed method is analyzed rigorously, and the effectiveness is validated through experiments performed on a semi-physical test bed. In this article, we propose a switching anti-windup scheme for the aircraft engine control. The linear engine model with asymmetric saturation is first transformed into a switched system, each subsystem of which is subject to symmetric saturation. A state-dependent switching logic is presented to orchestrate the switching among multiple anti-windup compensators. We then establish the sufficient condition to guarantee the regional stability and <inline-formula><tex-math notation="LaTeX">\mathcal {L}_{2}</tex-math></inline-formula> performance of the resulting closed-loop system. This condition is less conservative since the non-symmetric nature of the saturation nonlinearity can be fully exploited in the control design. Optimization algorithms are further developed for the anti-windup gain design. The theoretical aspect of the proposed method is analyzed rigorously, and the effectiveness is validated through experiments performed on a semi-physical test bed. |
Author | Sun, Xi-Ming Wu, Fen Wang, Ke |
Author_xml | – sequence: 1 givenname: Ke orcidid: 0000-0002-3271-8506 surname: Wang fullname: Wang, Ke email: 2015wangke@mail.dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian, China – sequence: 2 givenname: Fen orcidid: 0000-0001-8917-4557 surname: Wu fullname: Wu, Fen email: fwu@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA – sequence: 3 givenname: Xi-Ming orcidid: 0000-0002-1883-3495 surname: Sun fullname: Sun, Xi-Ming email: sunxm@dlut.edu.cn organization: Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian, China |
BookMark | eNp9kEFPAjEQRhuDiYDeTbxs4nmxnd12t0dCEElIPIjnptudYgl2sS0h_nuXQDx48DSX780380Zk4DuPhNwzOmGMyqf1cj4BCjApmChKUV6RIeO8yqUs6wEZUqjqnNJS3JBRjFtKWckZHxJ4O7pkPpzfZFOfXH50vj3ss1nnU-h2me1CNnXBBG1TNvcb5zHekmurdxHvLnNM3p_n69lLvnpdLGfTVW5AspRXApua2aYVDKQENNo0JVqQFUfWWCkL0AJ5Adi2AG0jeIGIljNtqgYaLMbk8bx3H7qvA8aktt0h-L5SQQXASylr0afoOWVCF2NAq_bBferwrRhVJzOqN6NOZtTFTI-IP4hxSSd3-lm73X_gwxl0_aW_PbLqL4G6-AEHi3Ie |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0283734 crossref_primary_10_1109_ACCESS_2024_3423456 crossref_primary_10_1080_00207721_2025_2467223 crossref_primary_10_11648_j_acis_20241201_11 crossref_primary_10_1109_TSMC_2023_3306012 crossref_primary_10_1002_rnc_7335 crossref_primary_10_1109_TAES_2024_3350012 crossref_primary_10_1177_01423312241249830 crossref_primary_10_1115_1_4064512 |
Cites_doi | 10.23943/princeton/9780691153896.001.0001 10.1016/j.isatra.2020.11.030 10.1109/ChiCC.2014.6895600 10.1016/j.conengprac.2006.08.001 10.1109/CDC40024.2019.9030005 10.1109/TSMC.2020.3048735 10.1007/978-1-4612-0017-8 10.1007/978-1-4614-1171-0 10.1109/TAC.2004.841128 10.1109/TIE.2016.2516498 10.1109/TIE.2021.3095784 10.1016/j.automatica.2007.06.003 10.1080/00207179.2014.942884 10.1002/rnc.3976 10.1109/LCSYS.2020.2986997 10.2514/4.867057 10.1016/S0005-1098(01)00209-6 10.1109/TITS.2021.3052940 10.1109/TAC.2006.884942 10.1109/TNNLS.2014.2344019 10.1109/37.793443 10.1109/TII.2020.3038939 10.1109/TAC.2008.2012009 10.1109/TNNLS.2018.2860944 10.2514/1.55922 10.1016/j.automatica.2009.09.022 10.1109/9.486637 10.2514/1.G002562 10.1016/j.conengprac.2008.11.002 10.1109/TCSI.2011.2143170 10.2514/1.30591 10.1109/TSMC.2019.2895097 10.2514/1.G001802 10.1016/j.automatica.2020.108872 10.1016/j.isatra.2019.02.008 10.1007/s00034-014-9786-5 10.1016/j.ast.2019.05.061 10.1109/TAC.2008.921036 10.1080/00207179.2017.1313451 10.1109/TIE.2021.3097602 10.1016/j.fss.2019.09.001 10.1109/TSMC.2018.2866996 10.1109/TNNLS.2019.2952108 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2022.3163464 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 1840 |
ExternalDocumentID | 10_1109_TIE_2022_3163464 9749928 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61890920; 61890921; 62173060 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-76eb81fbd612992ecacb4ef2975e1bf9932a6e532edd22db653eeef51ac7b2be3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:11:32 EDT 2025 Tue Jul 01 00:16:47 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Aug 27 02:18:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-76eb81fbd612992ecacb4ef2975e1bf9932a6e532edd22db653eeef51ac7b2be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8917-4557 0000-0002-3271-8506 0000-0002-1883-3495 |
PQID | 2722549986 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9749928 crossref_citationtrail_10_1109_TIE_2022_3163464 crossref_primary_10_1109_TIE_2022_3163464 proquest_journals_2722549986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Zhou (ref39) 1998; 104 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref34 doi: 10.23943/princeton/9780691153896.001.0001 – ident: ref44 doi: 10.1016/j.isatra.2020.11.030 – ident: ref21 doi: 10.1109/ChiCC.2014.6895600 – ident: ref24 doi: 10.1016/j.conengprac.2006.08.001 – ident: ref20 doi: 10.1109/CDC40024.2019.9030005 – ident: ref8 doi: 10.1109/TSMC.2020.3048735 – ident: ref30 doi: 10.1007/978-1-4612-0017-8 – ident: ref4 doi: 10.1007/978-1-4614-1171-0 – ident: ref13 doi: 10.1109/TAC.2004.841128 – ident: ref10 doi: 10.1109/TIE.2016.2516498 – ident: ref7 doi: 10.1109/TIE.2021.3095784 – ident: ref14 doi: 10.1016/j.automatica.2007.06.003 – ident: ref19 doi: 10.1080/00207179.2014.942884 – ident: ref15 doi: 10.1002/rnc.3976 – ident: ref22 doi: 10.1109/LCSYS.2020.2986997 – ident: ref2 doi: 10.2514/4.867057 – ident: ref27 doi: 10.1016/S0005-1098(01)00209-6 – volume: 104 volume-title: Essentials of Robust Control year: 1998 ident: ref39 – ident: ref42 doi: 10.1109/TITS.2021.3052940 – ident: ref11 doi: 10.1109/TAC.2006.884942 – ident: ref23 doi: 10.1109/TNNLS.2014.2344019 – ident: ref37 doi: 10.1109/37.793443 – ident: ref9 doi: 10.1109/TII.2020.3038939 – ident: ref32 doi: 10.1109/TAC.2008.2012009 – ident: ref33 doi: 10.1109/TNNLS.2018.2860944 – ident: ref1 doi: 10.2514/1.55922 – ident: ref26 doi: 10.1016/j.automatica.2009.09.022 – ident: ref40 doi: 10.1109/9.486637 – ident: ref5 doi: 10.2514/1.G002562 – ident: ref12 doi: 10.1016/j.conengprac.2008.11.002 – ident: ref29 doi: 10.1109/TCSI.2011.2143170 – ident: ref38 doi: 10.2514/1.30591 – ident: ref36 doi: 10.1109/TSMC.2019.2895097 – ident: ref3 doi: 10.2514/1.G001802 – ident: ref31 doi: 10.1016/j.automatica.2020.108872 – ident: ref18 doi: 10.1016/j.isatra.2019.02.008 – ident: ref16 doi: 10.1007/s00034-014-9786-5 – ident: ref6 doi: 10.1016/j.ast.2019.05.061 – ident: ref28 doi: 10.1109/TAC.2008.921036 – ident: ref17 doi: 10.1080/00207179.2017.1313451 – ident: ref25 doi: 10.1109/TIE.2021.3097602 – ident: ref41 doi: 10.1016/j.fss.2019.09.001 – ident: ref43 doi: 10.1109/TSMC.2018.2866996 – ident: ref35 doi: 10.1109/TNNLS.2019.2952108 |
SSID | ssj0014515 |
Score | 2.4825027 |
Snippet | In this article, we propose a switching anti-windup scheme for the aircraft engine control. The linear engine model with asymmetric saturation is first... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1830 |
SubjectTerms | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> mathcal {L}_{2}</tex-math> </inline-formula> </named-content> gain Actuators Aircraft control aircraft engine control Aircraft engines Aircraft propulsion Algorithms Antiwindup compensators asymmetric saturation Control design Control systems Design optimization Engine control Engines Feedback control Fuels Physical tests Saturation switched system Switches Switching switching anti-windup |
Title | Switching Anti-windup Control for Aircraft Engines |
URI | https://ieeexplore.ieee.org/document/9749928 https://www.proquest.com/docview/2722549986 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB7UU3voy5ba2pJDL4VGk81mNzmKKLZgL1XwFnY3syAtKhoR-uu7ySbSF6WHQA47MMzMZufLzH4DcBcKL5Ak5W5IKXfNg26kme8yLoT2JY8sz_b4mY2m9GkWzmrwsL8Lg4hF8xl28teilp8u1Tb_VdY1uW8ck6gOdRNm9q7WvmJAQzutgOSMsQb0VSVJL-5OHgcGCBJi8CkLKKNfjqBipsqPD3FxugyPYVzpZZtKXjvbTHbU-zfKxv8qfgJHZZrp9GxcnEINF2dw-Il8sAnkZTfPik5Kp7fI5u7OoPPtyunb3nXHJLNOb75Wa6EzxwpuzmE6HEz6I7ecoOAqEvuZyxnKyNcyNXmMUQCVUJKizm_Toi-1yU2IYBgGBNOUkFSyMDC669AXiksiMbiAxmK5wEtwBBXCF4JRhSmNQiY0So9z9KTSIuKkBd3KqIkq6cXzKRdvSQEzvDgxbkhyNySlG1pwv5dYWWqNP9Y2c6vu15UGbUG78ltS7r1NQjgpUG_Ern6XuoaDfGi87b1uQyNbb_HGpBaZvC1i6gOp7Mpk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qHtSDb7FaNQcvgmmTzT6SYymVVlsvVvAWdjezUJRWaorgr3eTTYsvxEMghx0YZnYz82VnvgG4YDKIFMmEzygVvn3Qjw0PfS6kNKESsePZHt7x3gO9eWSPNbha9sIgYll8hs3itbzLz6Z6Xvwqa9ncN0lIvAJrNu5T5rq1lncGlLl5BaTgjLWwb3EpGSStUb9roSAhFqHyiHL6JQiVU1V-fIrL-HK9DcOFZq6s5Kk5z1VTv38jbfyv6juwVSWaXtvtjF2o4WQPNj_RD-4DuX8b52Utpdee5GP_zeLz-YvXcdXrnk1nvfZ4pmfS5J4TfD2Ah-vuqNPzqxkKviZJmPuCo4pDozKbyVgFUEutKJqinxZDZWx2QiRHFhHMMkIyxVlkdTcslFooojA6hNXJdIJH4EkqZSglpxozGjMuDapACAyUNjIWpA6thVFTXRGMF3MuntMSaARJat2QFm5IKzfU4XIp8eLINf5Yu19YdbmuMmgdGgu_pdXpe02JICXujfnx71LnsN4bDQfpoH93ewIbxQh5V4ndgNV8NsdTm2jk6qzcXx9uos2x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+Anti-windup+Control+for+Aircraft+Engines&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Wang%2C+Ke&rft.au=Wu%2C+Fen&rft.au=Xi-Ming%2C+Sun&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=2&rft.spage=1830&rft_id=info:doi/10.1109%2FTIE.2022.3163464&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |