Tensor RNN With Bayesian Nonparametric Mixture for Radar HRRP Modeling and Target Recognition

To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 69; pp. 1995 - 2009
Main Authors Chen, Wenchao, Chen, Bo, Peng, Xiaojun, Liu, Jiaqi, Yang, Yang, Zhang, Hao, Liu, Hongwei
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2021.3065847

Cover

Loading…
Abstract To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems as it ignores non-stationary sequential relationship between time-steps by sharing same parameters among all time-steps. Given this issue, we propose tensor recurrent neural network with Gaussian mixture model (GmTRNN) for HRRP, not only making use of temporal characteristic but also modeling the variation among its patterns. Specifically, a novel tensor RNN is developed by extending all the parameters in the form of tensor to explore diverse temporal dependence between range cells within an HRRP sample, where a mixture model is introduced to determine the parameters of each time-step in tensor RNN. Moreover, to take advantage of Bayesian nonparametrics in handling the unknown number of mixture components, we further propose the tensor recurrent neural network with Dirichlet process mixture (DPmTRNN). For scalable and joint training of clustering and recognition, we present effective hybrid online variational inference and stochastic gradient descent method. Experiments on benchmark data, measured and simulated HRRP data demonstrate the the effectiveness and efficiency of our models and its robustness to HRRP shift.
AbstractList To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems as it ignores non-stationary sequential relationship between time-steps by sharing same parameters among all time-steps. Given this issue, we propose tensor recurrent neural network with Gaussian mixture model (GmTRNN) for HRRP, not only making use of temporal characteristic but also modeling the variation among its patterns. Specifically, a novel tensor RNN is developed by extending all the parameters in the form of tensor to explore diverse temporal dependence between range cells within an HRRP sample, where a mixture model is introduced to determine the parameters of each time-step in tensor RNN. Moreover, to take advantage of Bayesian nonparametrics in handling the unknown number of mixture components, we further propose the tensor recurrent neural network with Dirichlet process mixture (DPmTRNN). For scalable and joint training of clustering and recognition, we present effective hybrid online variational inference and stochastic gradient descent method. Experiments on benchmark data, measured and simulated HRRP data demonstrate the the effectiveness and efficiency of our models and its robustness to HRRP shift.
Author Liu, Hongwei
Liu, Jiaqi
Chen, Wenchao
Zhang, Hao
Peng, Xiaojun
Chen, Bo
Yang, Yang
Author_xml – sequence: 1
  givenname: Wenchao
  surname: Chen
  fullname: Chen, Wenchao
  email: wcchen_xidian@163.com
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0001-5151-9388
  surname: Chen
  fullname: Chen, Bo
  email: bchen@mail.xidian.edu.cn
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China
– sequence: 3
  givenname: Xiaojun
  surname: Peng
  fullname: Peng, Xiaojun
  email: pengxiaojun@139.com
  organization: Research Academy of Rocket, Beijing, China
– sequence: 4
  givenname: Jiaqi
  surname: Liu
  fullname: Liu, Jiaqi
  email: 398912146@qq.com
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China
– sequence: 5
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  email: 1062001920@qq.com
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-2928-2692
  surname: Zhang
  fullname: Zhang, Hao
  email: haz4007@med.cornell.edu
  organization: Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
– sequence: 7
  givenname: Hongwei
  orcidid: 0000-0003-4046-163X
  surname: Liu
  fullname: Liu, Hongwei
  email: hwliu@xidian.edu.cn
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China
BookMark eNp9kE1PGzEQhi1EpQLtvRIXSz1vmPHHevcIqAUkCChNVS5o5XjHqVGwU68jwb9no6AeOHCaObzPvJrnkO3HFImxbwgTRGhP5r_uJgIETiTUulFmjx1gq7ACZer9cQctK92Y-8_scBgeAVCptj5gD3OKQ8p8Np3yP6H85Wf2hYZgI5-muLbZPlHJwfGb8Fw2mbjfZm1vM7-cze74TeppFeKS29jzuc1LKnxGLi1jKCHFL-yTt6uBvr7NI_b754_5-WV1fXtxdX56XTnRYqmMbJ0yC_KiRvBWaIvGy1b0C-mtAgItvEaHyqDuvQJsnHELY-tGEVrdyyP2fXd3ndO_DQ2le0ybHMfKTmiUsoXa6DEFu5TLaRgy-W6dw5PNLx1Ct5XYjRK7rcTuTeKI1O8QF4rdvlayDauPwOMdGIjof08rGxAC5CtmBYAY
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_patcog_2024_111264
crossref_primary_10_1109_JSTSP_2022_3160241
crossref_primary_10_1016_j_eswa_2024_123417
crossref_primary_10_1109_JSEN_2024_3515204
crossref_primary_10_3233_JIFS_211638
crossref_primary_10_3390_rs13204021
crossref_primary_10_1016_j_sigpro_2024_109876
crossref_primary_10_1109_LGRS_2023_3289138
crossref_primary_10_1109_TIM_2025_3546410
crossref_primary_10_1016_j_sigpro_2024_109391
crossref_primary_10_3390_rs16173135
crossref_primary_10_1109_TAES_2024_3353718
crossref_primary_10_3390_rs15164083
crossref_primary_10_1515_pjbr_2022_0120
crossref_primary_10_3390_rs15020468
crossref_primary_10_1016_j_sigpro_2024_109409
crossref_primary_10_1155_2022_1558409
crossref_primary_10_3390_electronics13234587
crossref_primary_10_23919_JSEE_2023_000136
crossref_primary_10_1109_TSP_2023_3326650
crossref_primary_10_3390_rs14205254
crossref_primary_10_1016_j_sigpro_2021_108213
crossref_primary_10_1109_LGRS_2023_3279992
crossref_primary_10_1109_TSP_2022_3160535
crossref_primary_10_1109_TGRS_2023_3235881
crossref_primary_10_1109_TAES_2023_3331339
crossref_primary_10_1109_TRS_2024_3466134
crossref_primary_10_1016_j_trc_2024_104831
crossref_primary_10_1016_j_ins_2023_119156
crossref_primary_10_1109_TITS_2023_3279332
crossref_primary_10_1109_JSTARS_2024_3375806
crossref_primary_10_1109_TAES_2024_3441548
Cites_doi 10.1109/TFUZZ.2004.840104
10.1016/j.sigpro.2019.01.006
10.1109/TIM.2017.2654552
10.1016/j.sigpro.2018.09.041
10.1214/aos/1176342360
10.1049/iet-rsn:20050119
10.1023/A:1007665907178
10.1186/1687-6180-2012-86
10.1186/s13634-019-0603-y
10.1109/TAES.2012.6237604
10.1109/TSP.2009.2024987
10.1016/j.sigpro.2007.11.003
10.1145/1961189.1961199
10.1049/el:19981307
10.1109/TSP.2005.849161
10.1109/7.845214
10.1016/j.patcog.2015.10.020
10.1109/5.18626
10.1109/TSP.2006.873534
10.1109/TNNLS.2012.2200299
10.1016/j.patcog.2016.08.012
10.1109/TSP.2011.2141664
10.1049/cce:19920031
10.1109/ICASSP.2010.5495353
10.21236/ADA238689
10.1109/TSP.2007.892708
10.1109/ICASSP.2012.6288339
10.1109/TNN.2009.2034851
10.1109/UPINLBS.2016.7809986
10.1109/TSP.2010.2088391
10.1162/neco.2006.18.7.1527
10.1214/06-BA104
10.1038/nature14539
10.1109/TNN.2010.2080319
10.1049/SBRA001E_ch10
10.1109/78.942617
10.1109/TAES.2002.1145746
10.1109/ICASSP.2013.6638947
10.1109/TIP.1997.552076
10.3115/v1/W14-4012
10.1109/TSP.2012.2191965
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2021.3065847
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2009
ExternalDocumentID 10_1109_TSP_2021_3065847
9380220
Genre orig-research
GrantInformation_xml – fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B18039
  funderid: 10.13039/501100013314
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61525105
  funderid: 10.13039/501100001809
– fundername: Chinese Central Government
– fundername: Shaanxi Innovation Team Project
– fundername: National Natural Science Foundation of China
  grantid: 61771361
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-739c47bef2610fa25a17f392db3fa40e052f51c14715df4018c7cb7a684e1a5d3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Mon Jun 30 10:22:01 EDT 2025
Tue Jul 01 02:53:23 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-739c47bef2610fa25a17f392db3fa40e052f51c14715df4018c7cb7a684e1a5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4046-163X
0000-0001-5151-9388
0000-0002-2928-2692
PQID 2513390675
PQPubID 85478
PageCount 15
ParticipantIDs crossref_primary_10_1109_TSP_2021_3065847
ieee_primary_9380220
crossref_citationtrail_10_1109_TSP_2021_3065847
proquest_journals_2513390675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
huynh (ref42) 2015; 45
ref14
ref52
ref55
ref11
xanthopoulos (ref53) 2015
ref10
zhu (ref28) 0
wang (ref57) 0
ref17
du (ref30) 2012; 60
ref19
le (ref47) 0
kurihara (ref40) 0
laurens (ref59) 2008; 9
lecun (ref16) 2015; 521
ref51
sutskever (ref37) 0
ref45
shahbaba (ref26) 2007; 10
campos (ref50) 0
ref44
ref43
kingma (ref54) 0
wisdom (ref49) 0
ref8
ref7
ref4
ref3
ref6
xu (ref9) 2019; 155
ref5
du (ref31) 2006; 54
ref35
ref36
informatik (ref46) 2001
ref33
ref32
hannah (ref27) 2010; 12
arjovsky (ref48) 0
ref2
ref1
pan (ref21) 0
du (ref18) 2019; 158
ref38
rasmussen (ref25) 0
michael (ref41) 0
fu (ref34) 2010; 21
blei (ref39) 2006; 1
ref24
ref23
ref20
ref22
ref29
nizar (ref58) 2010; 21
References_xml – start-page: 4880
  year: 0
  ident: ref49
  article-title: Full-capacity unitary recurrent neural networks
  publication-title: Proc Conf Workshop Neural Inf Process Syst
– ident: ref36
  doi: 10.1109/TFUZZ.2004.840104
– start-page: 2796
  year: 0
  ident: ref40
  article-title: Collapsed variational Dirichlet process mixture models
  publication-title: Proc Int Joint Conf Artif Intell
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref59
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– start-page: 662
  year: 0
  ident: ref57
  article-title: Radar HRRP target recognition based on linear dynamic model
  publication-title: Proc CIE Int Conf of Radar
– volume: 158
  start-page: 176
  year: 2019
  ident: ref18
  article-title: Factorized discriminative conditional variational auto-encoder for radar HRRP target recognition
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.01.006
– start-page: 1133
  year: 0
  ident: ref41
  article-title: Memoized online variational inference for Dirichlet process mixture models
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref35
  doi: 10.1109/TIM.2017.2654552
– volume: 10
  start-page: 1829
  year: 2007
  ident: ref26
  article-title: Nonlinear models using Dirichlet process mixtures
  publication-title: J Mach Learn Res
– volume: 155
  start-page: 268
  year: 2019
  ident: ref9
  article-title: Target-aware recurrent attentional network for radar HRRP target recognition
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.09.041
– year: 0
  ident: ref47
  article-title: A simple way to initialize recurrent networks of rectified linear units
  publication-title: arXiv 1504 00941
– ident: ref24
  doi: 10.1214/aos/1176342360
– ident: ref14
  doi: 10.1049/iet-rsn:20050119
– start-page: 237
  year: 2001
  ident: ref46
  article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
  publication-title: A Field Guide to Dynamical Recurrent Networks
– ident: ref43
  doi: 10.1023/A:1007665907178
– ident: ref20
  doi: 10.1186/1687-6180-2012-86
– ident: ref19
  doi: 10.1186/s13634-019-0603-y
– ident: ref7
  doi: 10.1109/TAES.2012.6237604
– start-page: 1120
  year: 0
  ident: ref48
  article-title: Unitary evolution recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/TSP.2009.2024987
– ident: ref32
  doi: 10.1016/j.sigpro.2007.11.003
– ident: ref52
  doi: 10.1145/1961189.1961199
– ident: ref12
  doi: 10.1049/el:19981307
– ident: ref13
  doi: 10.1109/TSP.2005.849161
– start-page: 617
  year: 0
  ident: ref28
  article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1109/7.845214
– ident: ref45
  doi: 10.1016/j.patcog.2015.10.020
– ident: ref4
  doi: 10.1109/5.18626
– start-page: 1017
  year: 0
  ident: ref37
  article-title: Generating text with recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– volume: 54
  start-page: 2226
  year: 2006
  ident: ref31
  article-title: A two-distribution compounded statistical model for radar hrrp target recognition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.873534
– ident: ref33
  doi: 10.1109/TNNLS.2012.2200299
– ident: ref8
  doi: 10.1016/j.patcog.2016.08.012
– ident: ref5
  doi: 10.1109/TSP.2011.2141664
– ident: ref56
  doi: 10.1049/cce:19920031
– ident: ref15
  doi: 10.1109/ICASSP.2010.5495353
– ident: ref38
  doi: 10.21236/ADA238689
– ident: ref11
  doi: 10.1109/TSP.2007.892708
– ident: ref44
  doi: 10.1109/ICASSP.2012.6288339
– volume: 21
  start-page: 107
  year: 2010
  ident: ref58
  article-title: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2009.2034851
– year: 0
  ident: ref54
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Representations
– ident: ref17
  doi: 10.1109/UPINLBS.2016.7809986
– ident: ref6
  doi: 10.1109/TSP.2010.2088391
– start-page: 881
  year: 0
  ident: ref25
  article-title: Infinite mixtures of Gaussian process experts
  publication-title: Proc Int Conf Neural Inf Process Syst Natural Synthetic
– ident: ref55
  doi: 10.1162/neco.2006.18.7.1527
– volume: 1
  start-page: 121
  year: 2006
  ident: ref39
  article-title: Variational inference for Dirichlet process mixtures
  publication-title: Bayesian Anal
  doi: 10.1214/06-BA104
– start-page: 650
  year: 0
  ident: ref21
  article-title: Multitask hidden Markov model for radar automatic target recognition
  publication-title: Proc CIE Int Conf of Radar
– volume: 521
  start-page: 436
  year: 2015
  ident: ref16
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 27
  year: 2015
  ident: ref53
  article-title: Linear discriminant analysis
  publication-title: Robust Data Mining
– volume: 21
  start-page: 1963
  year: 2010
  ident: ref34
  article-title: Mixing linear SVMs for nonlinear classification
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2010.2080319
– ident: ref29
  doi: 10.1049/SBRA001E_ch10
– year: 0
  ident: ref50
  article-title: Skip RNN: Learning to skip state updates in recurrent neural networks
  publication-title: Proc Int Conf Learn Representations
– volume: 45
  start-page: 237
  year: 2015
  ident: ref42
  article-title: Streaming variational inference for Dirichlet process mixtures
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1109/78.942617
– ident: ref10
  doi: 10.1109/TAES.2002.1145746
– ident: ref23
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref3
  doi: 10.1109/TIP.1997.552076
– volume: 12
  start-page: 1923
  year: 2010
  ident: ref27
  article-title: Dirichlet process mixtures of generalized linear models
  publication-title: J Mach Learn Res
– ident: ref51
  doi: 10.3115/v1/W14-4012
– volume: 60
  start-page: 3546
  year: 2012
  ident: ref30
  article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2012.2191965
SSID ssj0014496
Score 2.542749
Snippet To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN),...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1995
SubjectTerms Bayesian analysis
Clustering
Data models
Dependence
Dirichlet problem
Dirichlet process mixture
Feature extraction
Feature recognition
Gaussian mixture model (GMM)
Hidden Markov models
high resolution range profile (HRRP)
Indexes
Materials handling
Model testing
Modelling
Neural networks
Nonparametric statistics
online variational inference
Parameters
Probabilistic models
Radar
Radar automatic target recognition (RATR)
Recurrent neural networks
stochastic gradient descent
Target recognition
tensor recurrent neural network (TRNN)
Tensors
Title Tensor RNN With Bayesian Nonparametric Mixture for Radar HRRP Modeling and Target Recognition
URI https://ieeexplore.ieee.org/document/9380220
https://www.proquest.com/docview/2513390675
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFH-kOXWHbf0Yy5YOHXopzIltyZZ9XEtLGCQEz6W5FCPJEitb7ZI5sPWvr55sh64dozcfnoTQk_XeT-_jB3AccXRChfQMlaXHrIftyUSFHlUsNH6QJDLGeuf5Ip5dsq-raDWAz9taGK21Sz7TE_x0sfyyVht8Kpum1BWG7sCOBW5trdY2YsCY4-Ky7gL1ooSv-pCkn07zb0sLBMNgQp295X-ZIMep8uwidtbl4g3M-3W1SSU_JptGTtT9k5aNL134W3jduZnkS3su9mCgq3149aj54AFc5xbB1muSLRbk6qb5Tk7FH40llWRRV9gR_BbJthSZ3_zGKAMxKCtKsSazLFsSJFHDUnYiqpLkLp-cZH02Ul0dwuXFeX428zqyBU-FadB4nKaKcamNhVS-EWEkAm6s81RKagTztR-FJgpUYI1ZVBqLyhLFleQiTpgORFTSdzCs6kq_ByLtlSlN7GuLvRgXOjF2FmxcKnVMqWAjmPb7X6iuEzkSYvwsHCLx08JqrECNFZ3GRnCyHXHXduH4j-wBKmAr1-39CMa9iovuN_1VhMhukyJo-vDvUR9hF-du31zGMGzWG31kvZBGfnLH7wENM9gy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lB6gD5AbFuKD70gkd0kduLkCIhqW3aj1ZKKvaDIdmxRURK0zUq0v74eJ1kBRYhbDuPE8jie-TyPD-A04uiECukZKkuPWQ_bk4kKPapYaPwgSWSM9c7TLB5fsotFtNiAN-taGK21Sz7TQ3x0sfyyViu8Khul1BWGPoIta_dZ2lZrrWMGjDk2LuswUC9K-KIPSvrpKP80s1AwDIbUWVz-mxFyrCoPjmJnX86ewrSfWZtW8m24auRQ3f3RtPF_p74LTzpHk7xtd8YebOhqH3Z-aT94AF9yi2HrJZlnGfl81Xwl78StxqJKktUV9gT_jnRbikyvfmKcgRiUFaVYkvF8PiNIo4bF7ERUJcldRjmZ9_lIdfUMLs8-5O_HXke34KkwDRqP01QxLrWxoMo3IoxEwI11n0pJjWC-9qPQRIEKrDmLSmNxWaK4klzECdOBiEr6HDarutIvgEh7aEoT-9qiL8aFTox9C7YulTqmVLABjPr1L1TXixwpMa4Lh0n8tLAaK1BjRaexAbxej_jR9uH4h-wBKmAt1639AI57FRfdj3pThMhvkyJsOvz7qFewPc6nk2Jynn08gsf4nfYG5hg2m-VKv7Q-SSNP3Fa8B5CW24I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+RNN+With+Bayesian+Nonparametric+Mixture+for+Radar+HRRP+Modeling+and+Target+Recognition&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chen%2C+Wenchao&rft.au=Chen%2C+Bo&rft.au=Peng%2C+Xiaojun&rft.au=Liu%2C+Jiaqi&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=1995&rft.epage=2009&rft_id=info:doi/10.1109%2FTSP.2021.3065847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2021_3065847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon