Tensor RNN With Bayesian Nonparametric Mixture for Radar HRRP Modeling and Target Recognition
To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems a...
Saved in:
Published in | IEEE transactions on signal processing Vol. 69; pp. 1995 - 2009 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2021.3065847 |
Cover
Loading…
Abstract | To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems as it ignores non-stationary sequential relationship between time-steps by sharing same parameters among all time-steps. Given this issue, we propose tensor recurrent neural network with Gaussian mixture model (GmTRNN) for HRRP, not only making use of temporal characteristic but also modeling the variation among its patterns. Specifically, a novel tensor RNN is developed by extending all the parameters in the form of tensor to explore diverse temporal dependence between range cells within an HRRP sample, where a mixture model is introduced to determine the parameters of each time-step in tensor RNN. Moreover, to take advantage of Bayesian nonparametrics in handling the unknown number of mixture components, we further propose the tensor recurrent neural network with Dirichlet process mixture (DPmTRNN). For scalable and joint training of clustering and recognition, we present effective hybrid online variational inference and stochastic gradient descent method. Experiments on benchmark data, measured and simulated HRRP data demonstrate the the effectiveness and efficiency of our models and its robustness to HRRP shift. |
---|---|
AbstractList | To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN), have been employed to extract features for target recognition. However, RNN has difficulty in complex and diverse sequence modeling problems as it ignores non-stationary sequential relationship between time-steps by sharing same parameters among all time-steps. Given this issue, we propose tensor recurrent neural network with Gaussian mixture model (GmTRNN) for HRRP, not only making use of temporal characteristic but also modeling the variation among its patterns. Specifically, a novel tensor RNN is developed by extending all the parameters in the form of tensor to explore diverse temporal dependence between range cells within an HRRP sample, where a mixture model is introduced to determine the parameters of each time-step in tensor RNN. Moreover, to take advantage of Bayesian nonparametrics in handling the unknown number of mixture components, we further propose the tensor recurrent neural network with Dirichlet process mixture (DPmTRNN). For scalable and joint training of clustering and recognition, we present effective hybrid online variational inference and stochastic gradient descent method. Experiments on benchmark data, measured and simulated HRRP data demonstrate the the effectiveness and efficiency of our models and its robustness to HRRP shift. |
Author | Liu, Hongwei Liu, Jiaqi Chen, Wenchao Zhang, Hao Peng, Xiaojun Chen, Bo Yang, Yang |
Author_xml | – sequence: 1 givenname: Wenchao surname: Chen fullname: Chen, Wenchao email: wcchen_xidian@163.com organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China – sequence: 2 givenname: Bo orcidid: 0000-0001-5151-9388 surname: Chen fullname: Chen, Bo email: bchen@mail.xidian.edu.cn organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China – sequence: 3 givenname: Xiaojun surname: Peng fullname: Peng, Xiaojun email: pengxiaojun@139.com organization: Research Academy of Rocket, Beijing, China – sequence: 4 givenname: Jiaqi surname: Liu fullname: Liu, Jiaqi email: 398912146@qq.com organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China – sequence: 5 givenname: Yang surname: Yang fullname: Yang, Yang email: 1062001920@qq.com organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China – sequence: 6 givenname: Hao orcidid: 0000-0002-2928-2692 surname: Zhang fullname: Zhang, Hao email: haz4007@med.cornell.edu organization: Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA – sequence: 7 givenname: Hongwei orcidid: 0000-0003-4046-163X surname: Liu fullname: Liu, Hongwei email: hwliu@xidian.edu.cn organization: National Laboratory of Radar Signal Processing, Xidian University, Xian, China |
BookMark | eNp9kE1PGzEQhi1EpQLtvRIXSz1vmPHHevcIqAUkCChNVS5o5XjHqVGwU68jwb9no6AeOHCaObzPvJrnkO3HFImxbwgTRGhP5r_uJgIETiTUulFmjx1gq7ACZer9cQctK92Y-8_scBgeAVCptj5gD3OKQ8p8Np3yP6H85Wf2hYZgI5-muLbZPlHJwfGb8Fw2mbjfZm1vM7-cze74TeppFeKS29jzuc1LKnxGLi1jKCHFL-yTt6uBvr7NI_b754_5-WV1fXtxdX56XTnRYqmMbJ0yC_KiRvBWaIvGy1b0C-mtAgItvEaHyqDuvQJsnHELY-tGEVrdyyP2fXd3ndO_DQ2le0ybHMfKTmiUsoXa6DEFu5TLaRgy-W6dw5PNLx1Ct5XYjRK7rcTuTeKI1O8QF4rdvlayDauPwOMdGIjof08rGxAC5CtmBYAY |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_111264 crossref_primary_10_1109_JSTSP_2022_3160241 crossref_primary_10_1016_j_eswa_2024_123417 crossref_primary_10_1109_JSEN_2024_3515204 crossref_primary_10_3233_JIFS_211638 crossref_primary_10_3390_rs13204021 crossref_primary_10_1016_j_sigpro_2024_109876 crossref_primary_10_1109_LGRS_2023_3289138 crossref_primary_10_1109_TIM_2025_3546410 crossref_primary_10_1016_j_sigpro_2024_109391 crossref_primary_10_3390_rs16173135 crossref_primary_10_1109_TAES_2024_3353718 crossref_primary_10_3390_rs15164083 crossref_primary_10_1515_pjbr_2022_0120 crossref_primary_10_3390_rs15020468 crossref_primary_10_1016_j_sigpro_2024_109409 crossref_primary_10_1155_2022_1558409 crossref_primary_10_3390_electronics13234587 crossref_primary_10_23919_JSEE_2023_000136 crossref_primary_10_1109_TSP_2023_3326650 crossref_primary_10_3390_rs14205254 crossref_primary_10_1016_j_sigpro_2021_108213 crossref_primary_10_1109_LGRS_2023_3279992 crossref_primary_10_1109_TSP_2022_3160535 crossref_primary_10_1109_TGRS_2023_3235881 crossref_primary_10_1109_TAES_2023_3331339 crossref_primary_10_1109_TRS_2024_3466134 crossref_primary_10_1016_j_trc_2024_104831 crossref_primary_10_1016_j_ins_2023_119156 crossref_primary_10_1109_TITS_2023_3279332 crossref_primary_10_1109_JSTARS_2024_3375806 crossref_primary_10_1109_TAES_2024_3441548 |
Cites_doi | 10.1109/TFUZZ.2004.840104 10.1016/j.sigpro.2019.01.006 10.1109/TIM.2017.2654552 10.1016/j.sigpro.2018.09.041 10.1214/aos/1176342360 10.1049/iet-rsn:20050119 10.1023/A:1007665907178 10.1186/1687-6180-2012-86 10.1186/s13634-019-0603-y 10.1109/TAES.2012.6237604 10.1109/TSP.2009.2024987 10.1016/j.sigpro.2007.11.003 10.1145/1961189.1961199 10.1049/el:19981307 10.1109/TSP.2005.849161 10.1109/7.845214 10.1016/j.patcog.2015.10.020 10.1109/5.18626 10.1109/TSP.2006.873534 10.1109/TNNLS.2012.2200299 10.1016/j.patcog.2016.08.012 10.1109/TSP.2011.2141664 10.1049/cce:19920031 10.1109/ICASSP.2010.5495353 10.21236/ADA238689 10.1109/TSP.2007.892708 10.1109/ICASSP.2012.6288339 10.1109/TNN.2009.2034851 10.1109/UPINLBS.2016.7809986 10.1109/TSP.2010.2088391 10.1162/neco.2006.18.7.1527 10.1214/06-BA104 10.1038/nature14539 10.1109/TNN.2010.2080319 10.1049/SBRA001E_ch10 10.1109/78.942617 10.1109/TAES.2002.1145746 10.1109/ICASSP.2013.6638947 10.1109/TIP.1997.552076 10.3115/v1/W14-4012 10.1109/TSP.2012.2191965 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2021.3065847 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 2009 |
ExternalDocumentID | 10_1109_TSP_2021_3065847 9380220 |
Genre | orig-research |
GrantInformation_xml | – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B18039 funderid: 10.13039/501100013314 – fundername: National Natural Science Foundation of China; NSFC grantid: 61525105 funderid: 10.13039/501100001809 – fundername: Chinese Central Government – fundername: Shaanxi Innovation Team Project – fundername: National Natural Science Foundation of China grantid: 61771361 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-739c47bef2610fa25a17f392db3fa40e052f51c14715df4018c7cb7a684e1a5d3 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Mon Jun 30 10:22:01 EDT 2025 Tue Jul 01 02:53:23 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Wed Aug 27 02:30:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-739c47bef2610fa25a17f392db3fa40e052f51c14715df4018c7cb7a684e1a5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4046-163X 0000-0001-5151-9388 0000-0002-2928-2692 |
PQID | 2513390675 |
PQPubID | 85478 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TSP_2021_3065847 ieee_primary_9380220 crossref_citationtrail_10_1109_TSP_2021_3065847 proquest_journals_2513390675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 huynh (ref42) 2015; 45 ref14 ref52 ref55 ref11 xanthopoulos (ref53) 2015 ref10 zhu (ref28) 0 wang (ref57) 0 ref17 du (ref30) 2012; 60 ref19 le (ref47) 0 kurihara (ref40) 0 laurens (ref59) 2008; 9 lecun (ref16) 2015; 521 ref51 sutskever (ref37) 0 ref45 shahbaba (ref26) 2007; 10 campos (ref50) 0 ref44 ref43 kingma (ref54) 0 wisdom (ref49) 0 ref8 ref7 ref4 ref3 ref6 xu (ref9) 2019; 155 ref5 du (ref31) 2006; 54 ref35 ref36 informatik (ref46) 2001 ref33 ref32 hannah (ref27) 2010; 12 arjovsky (ref48) 0 ref2 ref1 pan (ref21) 0 du (ref18) 2019; 158 ref38 rasmussen (ref25) 0 michael (ref41) 0 fu (ref34) 2010; 21 blei (ref39) 2006; 1 ref24 ref23 ref20 ref22 ref29 nizar (ref58) 2010; 21 |
References_xml | – start-page: 4880 year: 0 ident: ref49 article-title: Full-capacity unitary recurrent neural networks publication-title: Proc Conf Workshop Neural Inf Process Syst – ident: ref36 doi: 10.1109/TFUZZ.2004.840104 – start-page: 2796 year: 0 ident: ref40 article-title: Collapsed variational Dirichlet process mixture models publication-title: Proc Int Joint Conf Artif Intell – volume: 9 start-page: 2579 year: 2008 ident: ref59 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – start-page: 662 year: 0 ident: ref57 article-title: Radar HRRP target recognition based on linear dynamic model publication-title: Proc CIE Int Conf of Radar – volume: 158 start-page: 176 year: 2019 ident: ref18 article-title: Factorized discriminative conditional variational auto-encoder for radar HRRP target recognition publication-title: Signal Process doi: 10.1016/j.sigpro.2019.01.006 – start-page: 1133 year: 0 ident: ref41 article-title: Memoized online variational inference for Dirichlet process mixture models publication-title: Proc Int Conf Neural Inf Process – ident: ref35 doi: 10.1109/TIM.2017.2654552 – volume: 10 start-page: 1829 year: 2007 ident: ref26 article-title: Nonlinear models using Dirichlet process mixtures publication-title: J Mach Learn Res – volume: 155 start-page: 268 year: 2019 ident: ref9 article-title: Target-aware recurrent attentional network for radar HRRP target recognition publication-title: Signal Process doi: 10.1016/j.sigpro.2018.09.041 – year: 0 ident: ref47 article-title: A simple way to initialize recurrent networks of rectified linear units publication-title: arXiv 1504 00941 – ident: ref24 doi: 10.1214/aos/1176342360 – ident: ref14 doi: 10.1049/iet-rsn:20050119 – start-page: 237 year: 2001 ident: ref46 article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies publication-title: A Field Guide to Dynamical Recurrent Networks – ident: ref43 doi: 10.1023/A:1007665907178 – ident: ref20 doi: 10.1186/1687-6180-2012-86 – ident: ref19 doi: 10.1186/s13634-019-0603-y – ident: ref7 doi: 10.1109/TAES.2012.6237604 – start-page: 1120 year: 0 ident: ref48 article-title: Unitary evolution recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref22 doi: 10.1109/TSP.2009.2024987 – ident: ref32 doi: 10.1016/j.sigpro.2007.11.003 – ident: ref52 doi: 10.1145/1961189.1961199 – ident: ref12 doi: 10.1049/el:19981307 – ident: ref13 doi: 10.1109/TSP.2005.849161 – start-page: 617 year: 0 ident: ref28 article-title: Infinite SVM: A Dirichlet process mixture of large-margin kernel machines publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1109/7.845214 – ident: ref45 doi: 10.1016/j.patcog.2015.10.020 – ident: ref4 doi: 10.1109/5.18626 – start-page: 1017 year: 0 ident: ref37 article-title: Generating text with recurrent neural networks publication-title: Proc Int Conf Mach Learn – volume: 54 start-page: 2226 year: 2006 ident: ref31 article-title: A two-distribution compounded statistical model for radar hrrp target recognition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.873534 – ident: ref33 doi: 10.1109/TNNLS.2012.2200299 – ident: ref8 doi: 10.1016/j.patcog.2016.08.012 – ident: ref5 doi: 10.1109/TSP.2011.2141664 – ident: ref56 doi: 10.1049/cce:19920031 – ident: ref15 doi: 10.1109/ICASSP.2010.5495353 – ident: ref38 doi: 10.21236/ADA238689 – ident: ref11 doi: 10.1109/TSP.2007.892708 – ident: ref44 doi: 10.1109/ICASSP.2012.6288339 – volume: 21 start-page: 107 year: 2010 ident: ref58 article-title: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2009.2034851 – year: 0 ident: ref54 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Representations – ident: ref17 doi: 10.1109/UPINLBS.2016.7809986 – ident: ref6 doi: 10.1109/TSP.2010.2088391 – start-page: 881 year: 0 ident: ref25 article-title: Infinite mixtures of Gaussian process experts publication-title: Proc Int Conf Neural Inf Process Syst Natural Synthetic – ident: ref55 doi: 10.1162/neco.2006.18.7.1527 – volume: 1 start-page: 121 year: 2006 ident: ref39 article-title: Variational inference for Dirichlet process mixtures publication-title: Bayesian Anal doi: 10.1214/06-BA104 – start-page: 650 year: 0 ident: ref21 article-title: Multitask hidden Markov model for radar automatic target recognition publication-title: Proc CIE Int Conf of Radar – volume: 521 start-page: 436 year: 2015 ident: ref16 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 27 year: 2015 ident: ref53 article-title: Linear discriminant analysis publication-title: Robust Data Mining – volume: 21 start-page: 1963 year: 2010 ident: ref34 article-title: Mixing linear SVMs for nonlinear classification publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2010.2080319 – ident: ref29 doi: 10.1049/SBRA001E_ch10 – year: 0 ident: ref50 article-title: Skip RNN: Learning to skip state updates in recurrent neural networks publication-title: Proc Int Conf Learn Representations – volume: 45 start-page: 237 year: 2015 ident: ref42 article-title: Streaming variational inference for Dirichlet process mixtures publication-title: J Mach Learn Res – ident: ref2 doi: 10.1109/78.942617 – ident: ref10 doi: 10.1109/TAES.2002.1145746 – ident: ref23 doi: 10.1109/ICASSP.2013.6638947 – ident: ref3 doi: 10.1109/TIP.1997.552076 – volume: 12 start-page: 1923 year: 2010 ident: ref27 article-title: Dirichlet process mixtures of generalized linear models publication-title: J Mach Learn Res – ident: ref51 doi: 10.3115/v1/W14-4012 – volume: 60 start-page: 3546 year: 2012 ident: ref30 article-title: Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2012.2191965 |
SSID | ssj0014496 |
Score | 2.542749 |
Snippet | To deal with the temporal dependence between range cells in high resolution range profile (HRRP), dynamic methods, especially recurrent neural network (RNN),... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1995 |
SubjectTerms | Bayesian analysis Clustering Data models Dependence Dirichlet problem Dirichlet process mixture Feature extraction Feature recognition Gaussian mixture model (GMM) Hidden Markov models high resolution range profile (HRRP) Indexes Materials handling Model testing Modelling Neural networks Nonparametric statistics online variational inference Parameters Probabilistic models Radar Radar automatic target recognition (RATR) Recurrent neural networks stochastic gradient descent Target recognition tensor recurrent neural network (TRNN) Tensors |
Title | Tensor RNN With Bayesian Nonparametric Mixture for Radar HRRP Modeling and Target Recognition |
URI | https://ieeexplore.ieee.org/document/9380220 https://www.proquest.com/docview/2513390675 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFH-kOXWHbf0Yy5YOHXopzIltyZZ9XEtLGCQEz6W5FCPJEitb7ZI5sPWvr55sh64dozcfnoTQk_XeT-_jB3AccXRChfQMlaXHrIftyUSFHlUsNH6QJDLGeuf5Ip5dsq-raDWAz9taGK21Sz7TE_x0sfyyVht8Kpum1BWG7sCOBW5trdY2YsCY4-Ky7gL1ooSv-pCkn07zb0sLBMNgQp295X-ZIMep8uwidtbl4g3M-3W1SSU_JptGTtT9k5aNL134W3jduZnkS3su9mCgq3149aj54AFc5xbB1muSLRbk6qb5Tk7FH40llWRRV9gR_BbJthSZ3_zGKAMxKCtKsSazLFsSJFHDUnYiqpLkLp-cZH02Ul0dwuXFeX428zqyBU-FadB4nKaKcamNhVS-EWEkAm6s81RKagTztR-FJgpUYI1ZVBqLyhLFleQiTpgORFTSdzCs6kq_ByLtlSlN7GuLvRgXOjF2FmxcKnVMqWAjmPb7X6iuEzkSYvwsHCLx08JqrECNFZ3GRnCyHXHXduH4j-wBKmAr1-39CMa9iovuN_1VhMhukyJo-vDvUR9hF-du31zGMGzWG31kvZBGfnLH7wENM9gy |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lB6gD5AbFuKD70gkd0kduLkCIhqW3aj1ZKKvaDIdmxRURK0zUq0v74eJ1kBRYhbDuPE8jie-TyPD-A04uiECukZKkuPWQ_bk4kKPapYaPwgSWSM9c7TLB5fsotFtNiAN-taGK21Sz7TQ3x0sfyyViu8Khul1BWGPoIta_dZ2lZrrWMGjDk2LuswUC9K-KIPSvrpKP80s1AwDIbUWVz-mxFyrCoPjmJnX86ewrSfWZtW8m24auRQ3f3RtPF_p74LTzpHk7xtd8YebOhqH3Z-aT94AF9yi2HrJZlnGfl81Xwl78StxqJKktUV9gT_jnRbikyvfmKcgRiUFaVYkvF8PiNIo4bF7ERUJcldRjmZ9_lIdfUMLs8-5O_HXke34KkwDRqP01QxLrWxoMo3IoxEwI11n0pJjWC-9qPQRIEKrDmLSmNxWaK4klzECdOBiEr6HDarutIvgEh7aEoT-9qiL8aFTox9C7YulTqmVLABjPr1L1TXixwpMa4Lh0n8tLAaK1BjRaexAbxej_jR9uH4h-wBKmAt1639AI57FRfdj3pThMhvkyJsOvz7qFewPc6nk2Jynn08gsf4nfYG5hg2m-VKv7Q-SSNP3Fa8B5CW24I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+RNN+With+Bayesian+Nonparametric+Mixture+for+Radar+HRRP+Modeling+and+Target+Recognition&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Chen%2C+Wenchao&rft.au=Chen%2C+Bo&rft.au=Peng%2C+Xiaojun&rft.au=Liu%2C+Jiaqi&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=1995&rft.epage=2009&rft_id=info:doi/10.1109%2FTSP.2021.3065847&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2021_3065847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |