Design and implementation of a photoplethysmography acquisition system with an optimized artificial neural network for accurate blood pressure measurement

A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is compri...

Full description

Saved in:
Bibliographic Details
Published inMicrosystem technologies : sensors, actuators, systems integration Vol. 27; no. 6; pp. 2345 - 2367
Main Authors Pandey, Rajeev Kumar, Lin, Tse-Yu, Chao, Paul C.-P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Subjects
Online AccessGet full text
ISSN0946-7076
1432-1858
DOI10.1007/s00542-020-05109-9

Cover

Loading…
Abstract A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is comprised of transimpedance amplifier, a digital tune high order band pass filter, programmable gain amplifier (PGA), time interleave OLED driver, micro-controller unit, and the Bluetooth transceiver. The obtained PPG signals are subsequently processed with quality checking, feature extraction, and into an NN for estimating BP. The feature extraction is assisted, by principal component analysis (PCA) to reduce the total number of input features to five with accuracy assured. 96 subjects participated in data collection for calibrating the designed NN. The resulted correlation is 0.81, while the errors for SBP and DBP are 2.00 ± 6.08 and 1.87 ± 4.09 mmHg, respectively. According to the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS), a BP device in Grade A needs to control its accuracy error less than ± 8 mmHg, based on which the BP sensor developed herein are in Grade A, since the resulted errors of ± 6.08 and ± 4.09 mmHg are both less than ± 8 mmHg, showing the satisfactory performance of the BP monitor developed by this study.
AbstractList A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is comprised of transimpedance amplifier, a digital tune high order band pass filter, programmable gain amplifier (PGA), time interleave OLED driver, micro-controller unit, and the Bluetooth transceiver. The obtained PPG signals are subsequently processed with quality checking, feature extraction, and into an NN for estimating BP. The feature extraction is assisted, by principal component analysis (PCA) to reduce the total number of input features to five with accuracy assured. 96 subjects participated in data collection for calibrating the designed NN. The resulted correlation is 0.81, while the errors for SBP and DBP are 2.00 ± 6.08 and 1.87 ± 4.09 mmHg, respectively. According to the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS), a BP device in Grade A needs to control its accuracy error less than ± 8 mmHg, based on which the BP sensor developed herein are in Grade A, since the resulted errors of ± 6.08 and ± 4.09 mmHg are both less than ± 8 mmHg, showing the satisfactory performance of the BP monitor developed by this study.
Author Lin, Tse-Yu
Pandey, Rajeev Kumar
Chao, Paul C.-P.
Author_xml – sequence: 1
  givenname: Rajeev Kumar
  surname: Pandey
  fullname: Pandey, Rajeev Kumar
  organization: EECS International Graduate Program, National Chiao Tung University
– sequence: 2
  givenname: Tse-Yu
  surname: Lin
  fullname: Lin, Tse-Yu
  organization: Department of Electrical Engineering, National Chiao Tung University
– sequence: 3
  givenname: Paul C.-P.
  surname: Chao
  fullname: Chao, Paul C.-P.
  email: pchao@mail.nctu.edu.tw
  organization: Department of Electrical Engineering, National Chiao Tung University
BookMark eNp9kE1u2zAQhYnABeqkvUBXvIDaISWb4jJIfxIgQDbJWhhTQ5uJRCokjUA9Sk9b2s4qC6_e4IHfm-G7ZAsfPDH2TcB3AaB-JIBVIyuQUMFKgK70BVuKppaVaFftgi1BN-tKgVp_ZpcpPUOBdFsv2b-flNzWc_Q9d-M00Eg-Y3bB82A58mkXcih23s1pDNuI027maF73LrnjqzSnTCN_c3lXQniYshvdX-o5xuysMw4H7mkfj5LfQnzhNsQSYYqXiW-GEHo-RUppH4mPhAc9XPGFfbI4JPr6rlfs6fevx5vb6v7hz93N9X1lpBa5UrWgBoUAAm1VbXs0uDF9GVuUdkVKKVkLDb3cFH-NjVU9SLRGKEANor5i8pRrYkgpku2m6EaMcyegO7TbndrtSrvdsd1OF6j9ABl36i1HdMN5tD6hqezxW4rdc9hHX754jvoP7uOXWg
CitedBy_id crossref_primary_10_1002_cjoc_202200686
crossref_primary_10_1002_aisy_202200345
crossref_primary_10_3390_s23198342
crossref_primary_10_3390_s21186022
crossref_primary_10_1007_s00542_022_05295_8
crossref_primary_10_1016_j_bspc_2024_106838
crossref_primary_10_3390_s22051873
crossref_primary_10_1016_j_heliyon_2022_e11698
crossref_primary_10_1016_j_measurement_2023_113150
crossref_primary_10_1007_s00542_022_05288_7
crossref_primary_10_1007_s00542_024_05846_1
crossref_primary_10_1038_s41598_022_22653_8
crossref_primary_10_1155_2022_3686643
Cites_doi 10.1007/s00421-011-1983-3
10.1007/s00542-020-04946-y
10.1007/s00542-018-3877-3
10.1109/TBME.2013.2243148
10.1109/LSSC.2019.2957261
10.1109/TNN.2006.875973
10.1007/s11517-015-1410-8
10.1109/TBME.2011.2180019
10.1038/s41598-017-11507-3
10.1109/JBHI.2016.2614962
10.1109/JSSC.2016.2642205
10.1109/JSEN.2017.2704098
10.1038/sdata.2018.76
10.1186/s12938-016-0302-y
10.1109/ACCESS.2019.2939798
10.1007/s00542-020-04895-6
10.1109/ACCESS.2020.2981903
10.1097/ALN.0b013e31824f94ed
10.1109/JSEN.2014.2329676
10.1109/JSTQE.2018.2871604
10.1109/TIM.2019.2947103
10.1109/TBME.2014.2318779
10.1109/IEMBS.2009.5332505
10.1109/EMBC.2019.8857108
10.1109/SENSORS43011.2019.8956825
10.1109/I2MTC.2013.6555424
10.23919/VLSIC.2019.8778004
10.1109/ICSEM.2010.14
10.1109/EMBC.2016.7592189
10.22489/CinC.2016.081-339
10.1145/3055635.3056634
10.1109/ICSENS.2018.8589796
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2021
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00542-020-05109-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1432-1858
EndPage 2367
ExternalDocumentID 10_1007_s00542_020_05109_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PDBOC
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-731e4a110e09f73fdacabcdf738a2f5e77723190d2babc6a4f7d02afc170a9013
IEDL.DBID U2A
ISSN 0946-7076
IngestDate Thu Apr 24 23:03:14 EDT 2025
Tue Jul 01 01:33:19 EDT 2025
Fri Feb 21 02:49:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-731e4a110e09f73fdacabcdf738a2f5e77723190d2babc6a4f7d02afc170a9013
PageCount 23
ParticipantIDs crossref_primary_10_1007_s00542_020_05109_9
crossref_citationtrail_10_1007_s00542_020_05109_9
springer_journals_10_1007_s00542_020_05109_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Micro- and Nanosystems Information Storage and Processing Systems
PublicationTitle Microsystem technologies : sensors, actuators, systems integration
PublicationTitleAbbrev Microsyst Technol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Bramwell, Hill (CR3) 1992; 93
Pribadi, Pandey, Chao (CR20) 2020
CR19
CR16
CR14
Song, Chung, Chang (CR26) 2020; 69
Tang, Tamura, Sekine, Huang, Chen, Yoshida, Sakatani, Kobayashi, Kanaya (CR28) 2017; 21
CR32
Shin, Min (CR24) 2017; 16
Wang, Yeh, Chao (CR31) 2020
CR1001
CR1000
Gesche, Grosskurth, Küchler, Patzak (CR8) 2012; 112
CR2
Khan, Han, Ting, Ahmed, Nagisetty, Arias (CR13) 2019; 7
Forouzanfar, Ahmad, Batkin, Dajani, Groza, Bolic (CR7) 2013; 60
Huang, Hung, Hong, Wang (CR9) 2014; 14
Ahmad, Chen, Soueidan, Batkin, BolicDajani, Groza (CR1) 2012; 59
Chen, Fan, Lin (CR4) 2006; 174
Cohen, Haxha (CR5) 2017; 17
CR29
Khalid, Liu, Zia, Zhang, Chen, Zheng (CR12) 2020; 8
Zheng, Yan, Zhang, Poon (CR33) 2014; 61
CR27
Liang, Elgendi, Chen (CR15) 2018; 5
Kao, Chao, Wey (CR11) 2018; 24
Martina, Westerhof, Goudoever, Beaumont, Truijen, Kim, Immink, Jöbsis, Hollmann, Lahpor, Mol, van Lieshout (CR18) 2012; 116
CR21
Kao, Chao, Wey (CR10) 2019; 25
Sharma, Polley, Seung, Sriram, Wen, Srinath (CR23) 2017
Ding, Yan, Zhang, Liu, Zhao, Tsang (CR6) 2017; 7
Marefat (CR17) 2020; 3
Sharma, Barbosa, Ho, Griggs, Ghirmai, Krishnan, Hsiai, Chiao, Cao (CR22) 2017; 5
Sommermeyer, Zou, Ficker, Randerath, Fischer, Penzel, Sanner, Hedner, Grote (CR25) 2016; 54
Wang, Zhou, Xing, Zhou (CR30) 2018; 2018
K Song (5109_CR26) 2020; 69
5109_CR27
YH Kao (5109_CR11) 2018; 24
Y Liang (5109_CR15) 2018; 5
5109_CR21
JC Bramwell (5109_CR3) 1992; 93
Z Cohen (5109_CR5) 2017; 17
A Sharma (5109_CR23) 2017
Y Khan (5109_CR13) 2019; 7
L Wang (5109_CR30) 2018; 2018
JR Martina (5109_CR18) 2012; 116
S Ahmad (5109_CR1) 2012; 59
5109_CR1000
5109_CR1001
JH Wang (5109_CR31) 2020
YH Kao (5109_CR10) 2019; 25
X Ding (5109_CR6) 2017; 7
5109_CR29
Y Zheng (5109_CR33) 2014; 61
5109_CR16
5109_CR14
D Sommermeyer (5109_CR25) 2016; 54
5109_CR32
H Gesche (5109_CR8) 2012; 112
SG Khalid (5109_CR12) 2020; 8
5109_CR2
S-C Huang (5109_CR9) 2014; 14
PH Chen (5109_CR4) 2006; 174
M Forouzanfar (5109_CR7) 2013; 60
M Sharma (5109_CR22) 2017; 5
EF Pribadi (5109_CR20) 2020
H Shin (5109_CR24) 2017; 16
F Marefat (5109_CR17) 2020; 3
Z Tang (5109_CR28) 2017; 21
5109_CR19
References_xml – volume: 112
  start-page: 309
  issue: 1
  year: 2012
  end-page: 315
  ident: CR8
  article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-011-1983-3
– year: 2020
  ident: CR31
  article-title: A fast digital chip implementing a real-time noise-resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-020-04946-y
– volume: 24
  start-page: 4621
  year: 2018
  ident: CR11
  article-title: Towards maximizing the sensing accuracy of an cuffless, optical blood pressure sensor using a high-order front-end filter
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-018-3877-3
– volume: 60
  start-page: 1814
  issue: 7
  year: 2013
  end-page: 1824
  ident: CR7
  article-title: Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2243148
– ident: CR14
– ident: CR1001
– ident: CR2
– ident: CR16
– volume: 3
  start-page: 17
  year: 2020
  end-page: 20
  ident: CR17
  article-title: A 1-V 8.1 µW PPG-recording front-end with > 92-dB DR using light-to-digital conversion with signal-aware DC subtraction and ambient light removal
  publication-title: IEEE Solid State Circuits Lett
  doi: 10.1109/LSSC.2019.2957261
– volume: 5
  start-page: 1
  issue: 21
  year: 2017
  end-page: 22
  ident: CR22
  article-title: Cuff-less and continuous blood pressure monitoring: a methodological review
  publication-title: Technologies
– volume: 174
  start-page: 893
  year: 2006
  end-page: 908
  ident: CR4
  article-title: A study on SMO-type decomposition methods for support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875973
– volume: 2018
  start-page: 7804243
  year: 2018
  ident: CR30
  article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram
  publication-title: J Healthc Eng
– ident: CR29
– volume: 54
  start-page: 1111
  issue: 7
  year: 2016
  end-page: 1121
  ident: CR25
  article-title: Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1410-8
– volume: 59
  start-page: 608
  issue: 3
  year: 2012
  end-page: 618
  ident: CR1
  article-title: Electrocardiogram-assisted blood pressure estimation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2180019
– ident: CR27
– volume: 7
  start-page: 11554
  issue: 1
  year: 2017
  ident: CR6
  article-title: Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11507-3
– ident: CR21
– volume: 21
  start-page: 1194
  issue: 5
  year: 2017
  end-page: 1205
  ident: CR28
  article-title: A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2614962
– ident: CR19
– year: 2017
  ident: CR23
  article-title: A sub-60-μA multimodal smart biosensing SoC with > 80-dB SNR, 35-μA photoplethysmography signal chain
  publication-title: IEEE J Solid State Circuits
  doi: 10.1109/JSSC.2016.2642205
– volume: 17
  start-page: 4258
  issue: 13
  year: 2017
  end-page: 4268
  ident: CR5
  article-title: Optical-based sensor prototype for continuous monitoring of the blood pressure
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2704098
– ident: CR1000
– volume: 5
  start-page: 180076
  year: 2018
  ident: CR15
  article-title: An optimal filter for short photoplethysmogram signals
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.76
– volume: 16
  start-page: 10
  year: 2017
  ident: CR24
  article-title: Feasibility study for the non-invasive blood pressure estimation based on PPG morphology: normotensive subject study
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-016-0302-y
– volume: 7
  start-page: 128114
  year: 2019
  end-page: 128124
  ident: CR13
  article-title: Organic multi-channel optoelectronic sensors for wearable health monitoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939798
– year: 2020
  ident: CR20
  article-title: Optimizing a novel PPG sensor patch via optical simulations towards accurate heart rates
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-020-04895-6
– ident: CR32
– volume: 8
  start-page: 58146
  year: 2020
  end-page: 58154
  ident: CR12
  article-title: Cuffless blood pressure estimation using single channel photoplethysmography: a two-step method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981903
– volume: 116
  start-page: 1092
  issue: 5
  year: 2012
  end-page: 1103
  ident: CR18
  article-title: Noninvasive continuous arterial blood pressure monitoring with Nexfin®
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31824f94ed
– volume: 93
  start-page: 298
  issue: 652
  year: 1992
  end-page: 306
  ident: CR3
  article-title: The velocity of the pulse wave in man
  publication-title: Proc R Soc Lond Biol Charact
– volume: 14
  start-page: 3685
  issue: 10
  year: 2014
  end-page: 3692
  ident: CR9
  article-title: A new image blood pressure sensor based on PPG, RRT, BPTT, and harmonic balancing
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2014.2329676
– volume: 25
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  ident: CR10
  article-title: Design and Validation of a New PPG Module to Acquire High-Quality Physiological Signals for High-Accuracy Biomedical Sensing
  publication-title: IEEE J Sel Topics Quantum Electron
  doi: 10.1109/JSTQE.2018.2871604
– volume: 69
  start-page: 4292
  issue: 7
  year: 2020
  end-page: 4302
  ident: CR26
  article-title: Cuffless deep learning-based blood pressure estimation for smart wristwatches
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2947103
– volume: 61
  start-page: 2179
  year: 2014
  end-page: 2186
  ident: CR33
  article-title: An armband wearable device for overnight and cuff-less blood pressure measurement
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2318779
– ident: 5109_CR1001
  doi: 10.1109/IEMBS.2009.5332505
– volume: 5
  start-page: 180076
  year: 2018
  ident: 5109_CR15
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.76
– volume: 14
  start-page: 3685
  issue: 10
  year: 2014
  ident: 5109_CR9
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2014.2329676
– year: 2017
  ident: 5109_CR23
  publication-title: IEEE J Solid State Circuits
  doi: 10.1109/JSSC.2016.2642205
– ident: 5109_CR29
  doi: 10.1109/EMBC.2019.8857108
– volume: 54
  start-page: 1111
  issue: 7
  year: 2016
  ident: 5109_CR25
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-015-1410-8
– volume: 16
  start-page: 10
  year: 2017
  ident: 5109_CR24
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-016-0302-y
– volume: 2018
  start-page: 7804243
  year: 2018
  ident: 5109_CR30
  publication-title: J Healthc Eng
– volume: 174
  start-page: 893
  year: 2006
  ident: 5109_CR4
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875973
– volume: 7
  start-page: 128114
  year: 2019
  ident: 5109_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939798
– ident: 5109_CR19
  doi: 10.1109/SENSORS43011.2019.8956825
– volume: 93
  start-page: 298
  issue: 652
  year: 1992
  ident: 5109_CR3
  publication-title: Proc R Soc Lond Biol Charact
– volume: 25
  start-page: 1
  issue: 1
  year: 2019
  ident: 5109_CR10
  publication-title: IEEE J Sel Topics Quantum Electron
  doi: 10.1109/JSTQE.2018.2871604
– volume: 7
  start-page: 11554
  issue: 1
  year: 2017
  ident: 5109_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11507-3
– volume: 116
  start-page: 1092
  issue: 5
  year: 2012
  ident: 5109_CR18
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e31824f94ed
– volume: 17
  start-page: 4258
  issue: 13
  year: 2017
  ident: 5109_CR5
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2017.2704098
– volume: 112
  start-page: 309
  issue: 1
  year: 2012
  ident: 5109_CR8
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-011-1983-3
– ident: 5109_CR14
  doi: 10.1109/I2MTC.2013.6555424
– volume: 8
  start-page: 58146
  year: 2020
  ident: 5109_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981903
– year: 2020
  ident: 5109_CR20
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-020-04895-6
– ident: 5109_CR16
  doi: 10.23919/VLSIC.2019.8778004
– volume: 60
  start-page: 1814
  issue: 7
  year: 2013
  ident: 5109_CR7
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2243148
– ident: 5109_CR27
  doi: 10.1109/ICSEM.2010.14
– ident: 5109_CR1000
  doi: 10.1109/EMBC.2016.7592189
– volume: 69
  start-page: 4292
  issue: 7
  year: 2020
  ident: 5109_CR26
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2947103
– volume: 59
  start-page: 608
  issue: 3
  year: 2012
  ident: 5109_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2180019
– ident: 5109_CR2
  doi: 10.22489/CinC.2016.081-339
– ident: 5109_CR32
  doi: 10.1145/3055635.3056634
– volume: 5
  start-page: 1
  issue: 21
  year: 2017
  ident: 5109_CR22
  publication-title: Technologies
– volume: 3
  start-page: 17
  year: 2020
  ident: 5109_CR17
  publication-title: IEEE Solid State Circuits Lett
  doi: 10.1109/LSSC.2019.2957261
– volume: 24
  start-page: 4621
  year: 2018
  ident: 5109_CR11
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-018-3877-3
– volume: 21
  start-page: 1194
  issue: 5
  year: 2017
  ident: 5109_CR28
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2614962
– year: 2020
  ident: 5109_CR31
  publication-title: Microsyst Technol
  doi: 10.1007/s00542-020-04946-y
– volume: 61
  start-page: 2179
  year: 2014
  ident: 5109_CR33
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2318779
– ident: 5109_CR21
  doi: 10.1109/ICSENS.2018.8589796
SSID ssj0007983
Score 2.3513484
Snippet A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG)....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2345
SubjectTerms Electronics and Microelectronics
Engineering
Instrumentation
Mechanical Engineering
Nanotechnology
Technical Paper
Title Design and implementation of a photoplethysmography acquisition system with an optimized artificial neural network for accurate blood pressure measurement
URI https://link.springer.com/article/10.1007/s00542-020-05109-9
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrE-yhy8aWCbTTfNsWprUSwiFuppyWYTLNiHfVz8Kf5aJ9ndakEKnrIskxwyyeSb5MsXQi5YGlrJTUJZpBnlmCjTJJSapohlhRQsCT2b8LEbdXr8vl_v55fCZgXbvTiS9JF6ednNoQtGXbrjBpKkcpOU65i7OyJfjzWX8VfITHxT8ogKTNPzqzJ_t7G6HK2ehfolpr1LdnJsCM3MmXtkw4z2yfYvxcAD8nXrGReA-T8MhgX323UujC0omLyN544S7rp_mKtRg9Ifi0HGzYJMuRnc9is2AmOMGMPBp0nBDaFMTQKcxqUvPEMcENZiE3rhRCXAE93Bs2cXUwPDny3GQ9Jrt15uOjR_XoFqJmtzKsKa4QqXfxNIK0KbKq0SneJnQzFbNwKBN07QIGUJ_o8UtyINmLK6JgKFMCI8IqXReGSOCTCHMnhDmiDBBM1aiXGER41AJjpkJuQVUit6Oda59rh7AuM9Xqome8_E6JnYeyaWFXK5rDPJlDfWWl8VzovzWThbY37yP_NTssUcl8XvvpyR0ny6MOcIRuZJlZSbd68PLSyvW92n56ofi9-gW9u1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5VA4QClUXQplDr0Vo6xj4vURFeiW14mV4BTZji1W7e7ySC78FH4tYydZHqqQOCWKHMvyjMff2J8_A_zgReqVcIbxzHImKFFmJlWWFYRlpZLcpJFNeHqWDYbi6GL3ojkUdtey3dstyRipZ4fdArrgLKQ7wZEUU3MwLygHFx2Y3_t9eXwwi8BS1fKbSmRMUqLeHJb5fy0vJ6SXu6FxkjlchmHbvJpb8nenKs2OvX-l3Pje9n-CpQZ14l7tJivwwU0-w-IzLcJVeNiPXA7UkwJH45ZVHsyGU48ar6-mZSCbB8OOG51r1PamGtWsL6w1oTEs7FIlOKVYNB7duwKDc9Y6FRjUM-Mjcs-RADNVYasgV4GRQo-Rl1vdOhw_LV6uwfDw4PzXgDUXNzDLVa9kMu05oQlYuER5mfpCW21sQa99zf2ukwTpaegnBTf0PdPCyyLh2tueTDQBlPQLdCbTifsKyAN-EX3lEkOpn_eKIpTI-okyNuUuFV3otdbLbaNqHi7X-JfP9Jhjv-fU73ns91x14efsn-ta0-PN0tutPfNmfN-9UXz9fcW34OPg_PQkP_lzdvwNFnhgzMQ1ng3olLeV2yTIU5rvjYc_AiA5-Gc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJwoJSHKH0wB27gNuu48fpYtd0WWioOVCqnyE-xgs0uJbn0p_BrGTvJ9qGqEuKUKHKsxDOZfGN_8xngHXd5UMIbxgvLmaBEmZlcWeYIy0oluckTm_DzaXF0Jj6d75xfq-JPbPd-SbKtaYgqTVW9PXdhe1H4FpEGZzH1iU6lmHoISyKKsw9gaffw2_HBIhpL1UpxKlEwSUl7Vzhzdy83f043V0bTD2e8DLp_1JZn8mOrqc2Wvbyl4vg_7_IMnnZoFHdb91mBB756Dk-uaRS-gD_7ieOBunI4mfZs82hOnAXUOP8-qyMJPRp82ulfo7a_mknLBsNWKxrjhC91gjOKUdPJpXcYnbbVr8CoqpkOiZOOBKSpC9tEGQtM1HpMfN3mwuP0alLzJZyND77uHbFuQwdmuRrWTOZDLzQBDp-pIPPgtNXGOjodaR52vCSoTyEhc9zQ9UKLIF3GdbBDmWkCLvkrGFSzyr8G5BHXiJHymaGUMARFkUsUo0wZm3Ofi1UY9pYsbad2Hjfd-FkudJrTuJc07mUa91KtwvvFPfNW6-Pe1h9625bdd__7nuZv_q35W3j0ZX9cnnw8PV6DxzwSadLUzzoM6ovGbxASqs1m5-x_AZkEAVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+a+photoplethysmography+acquisition+system+with+an+optimized+artificial+neural+network+for+accurate+blood+pressure+measurement&rft.jtitle=Microsystem+technologies+%3A+sensors%2C+actuators%2C+systems+integration&rft.au=Pandey%2C+Rajeev+Kumar&rft.au=Lin%2C+Tse-Yu&rft.au=Chao%2C+Paul+C.-P.&rft.date=2021-06-01&rft.issn=0946-7076&rft.eissn=1432-1858&rft.volume=27&rft.issue=6&rft.spage=2345&rft.epage=2367&rft_id=info:doi/10.1007%2Fs00542-020-05109-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00542_020_05109_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-7076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-7076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-7076&client=summon