Design and implementation of a photoplethysmography acquisition system with an optimized artificial neural network for accurate blood pressure measurement
A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is compri...
Saved in:
Published in | Microsystem technologies : sensors, actuators, systems integration Vol. 27; no. 6; pp. 2345 - 2367 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0946-7076 1432-1858 |
DOI | 10.1007/s00542-020-05109-9 |
Cover
Loading…
Abstract | A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is comprised of transimpedance amplifier, a digital tune high order band pass filter, programmable gain amplifier (PGA), time interleave OLED driver, micro-controller unit, and the Bluetooth transceiver. The obtained PPG signals are subsequently processed with quality checking, feature extraction, and into an NN for estimating BP. The feature extraction is assisted, by principal component analysis (PCA) to reduce the total number of input features to five with accuracy assured. 96 subjects participated in data collection for calibrating the designed NN. The resulted correlation is 0.81, while the errors for SBP and DBP are 2.00 ± 6.08 and 1.87 ± 4.09 mmHg, respectively. According to the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS), a BP device in Grade A needs to control its accuracy error less than ± 8 mmHg, based on which the BP sensor developed herein are in Grade A, since the resulted errors of ± 6.08 and ± 4.09 mmHg are both less than ± 8 mmHg, showing the satisfactory performance of the BP monitor developed by this study. |
---|---|
AbstractList | A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG). The PPG system consists of an OLED/OPD module to detect the pulsation of blood vessels, followed by a readout circuitry. The circuit is comprised of transimpedance amplifier, a digital tune high order band pass filter, programmable gain amplifier (PGA), time interleave OLED driver, micro-controller unit, and the Bluetooth transceiver. The obtained PPG signals are subsequently processed with quality checking, feature extraction, and into an NN for estimating BP. The feature extraction is assisted, by principal component analysis (PCA) to reduce the total number of input features to five with accuracy assured. 96 subjects participated in data collection for calibrating the designed NN. The resulted correlation is 0.81, while the errors for SBP and DBP are 2.00 ± 6.08 and 1.87 ± 4.09 mmHg, respectively. According to the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS), a BP device in Grade A needs to control its accuracy error less than ± 8 mmHg, based on which the BP sensor developed herein are in Grade A, since the resulted errors of ± 6.08 and ± 4.09 mmHg are both less than ± 8 mmHg, showing the satisfactory performance of the BP monitor developed by this study. |
Author | Lin, Tse-Yu Pandey, Rajeev Kumar Chao, Paul C.-P. |
Author_xml | – sequence: 1 givenname: Rajeev Kumar surname: Pandey fullname: Pandey, Rajeev Kumar organization: EECS International Graduate Program, National Chiao Tung University – sequence: 2 givenname: Tse-Yu surname: Lin fullname: Lin, Tse-Yu organization: Department of Electrical Engineering, National Chiao Tung University – sequence: 3 givenname: Paul C.-P. surname: Chao fullname: Chao, Paul C.-P. email: pchao@mail.nctu.edu.tw organization: Department of Electrical Engineering, National Chiao Tung University |
BookMark | eNp9kE1u2zAQhYnABeqkvUBXvIDaISWb4jJIfxIgQDbJWhhTQ5uJRCokjUA9Sk9b2s4qC6_e4IHfm-G7ZAsfPDH2TcB3AaB-JIBVIyuQUMFKgK70BVuKppaVaFftgi1BN-tKgVp_ZpcpPUOBdFsv2b-flNzWc_Q9d-M00Eg-Y3bB82A58mkXcih23s1pDNuI027maF73LrnjqzSnTCN_c3lXQniYshvdX-o5xuysMw4H7mkfj5LfQnzhNsQSYYqXiW-GEHo-RUppH4mPhAc9XPGFfbI4JPr6rlfs6fevx5vb6v7hz93N9X1lpBa5UrWgBoUAAm1VbXs0uDF9GVuUdkVKKVkLDb3cFH-NjVU9SLRGKEANor5i8pRrYkgpku2m6EaMcyegO7TbndrtSrvdsd1OF6j9ABl36i1HdMN5tD6hqezxW4rdc9hHX754jvoP7uOXWg |
CitedBy_id | crossref_primary_10_1002_cjoc_202200686 crossref_primary_10_1002_aisy_202200345 crossref_primary_10_3390_s23198342 crossref_primary_10_3390_s21186022 crossref_primary_10_1007_s00542_022_05295_8 crossref_primary_10_1016_j_bspc_2024_106838 crossref_primary_10_3390_s22051873 crossref_primary_10_1016_j_heliyon_2022_e11698 crossref_primary_10_1016_j_measurement_2023_113150 crossref_primary_10_1007_s00542_022_05288_7 crossref_primary_10_1007_s00542_024_05846_1 crossref_primary_10_1038_s41598_022_22653_8 crossref_primary_10_1155_2022_3686643 |
Cites_doi | 10.1007/s00421-011-1983-3 10.1007/s00542-020-04946-y 10.1007/s00542-018-3877-3 10.1109/TBME.2013.2243148 10.1109/LSSC.2019.2957261 10.1109/TNN.2006.875973 10.1007/s11517-015-1410-8 10.1109/TBME.2011.2180019 10.1038/s41598-017-11507-3 10.1109/JBHI.2016.2614962 10.1109/JSSC.2016.2642205 10.1109/JSEN.2017.2704098 10.1038/sdata.2018.76 10.1186/s12938-016-0302-y 10.1109/ACCESS.2019.2939798 10.1007/s00542-020-04895-6 10.1109/ACCESS.2020.2981903 10.1097/ALN.0b013e31824f94ed 10.1109/JSEN.2014.2329676 10.1109/JSTQE.2018.2871604 10.1109/TIM.2019.2947103 10.1109/TBME.2014.2318779 10.1109/IEMBS.2009.5332505 10.1109/EMBC.2019.8857108 10.1109/SENSORS43011.2019.8956825 10.1109/I2MTC.2013.6555424 10.23919/VLSIC.2019.8778004 10.1109/ICSEM.2010.14 10.1109/EMBC.2016.7592189 10.22489/CinC.2016.081-339 10.1145/3055635.3056634 10.1109/ICSENS.2018.8589796 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00542-020-05109-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1432-1858 |
EndPage | 2367 |
ExternalDocumentID | 10_1007_s00542_020_05109_9 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PDBOC PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-731e4a110e09f73fdacabcdf738a2f5e77723190d2babc6a4f7d02afc170a9013 |
IEDL.DBID | U2A |
ISSN | 0946-7076 |
IngestDate | Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 01:33:19 EDT 2025 Fri Feb 21 02:49:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-731e4a110e09f73fdacabcdf738a2f5e77723190d2babc6a4f7d02afc170a9013 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1007_s00542_020_05109_9 crossref_citationtrail_10_1007_s00542_020_05109_9 springer_journals_10_1007_s00542_020_05109_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | Micro- and Nanosystems Information Storage and Processing Systems |
PublicationTitle | Microsystem technologies : sensors, actuators, systems integration |
PublicationTitleAbbrev | Microsyst Technol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Bramwell, Hill (CR3) 1992; 93 Pribadi, Pandey, Chao (CR20) 2020 CR19 CR16 CR14 Song, Chung, Chang (CR26) 2020; 69 Tang, Tamura, Sekine, Huang, Chen, Yoshida, Sakatani, Kobayashi, Kanaya (CR28) 2017; 21 CR32 Shin, Min (CR24) 2017; 16 Wang, Yeh, Chao (CR31) 2020 CR1001 CR1000 Gesche, Grosskurth, Küchler, Patzak (CR8) 2012; 112 CR2 Khan, Han, Ting, Ahmed, Nagisetty, Arias (CR13) 2019; 7 Forouzanfar, Ahmad, Batkin, Dajani, Groza, Bolic (CR7) 2013; 60 Huang, Hung, Hong, Wang (CR9) 2014; 14 Ahmad, Chen, Soueidan, Batkin, BolicDajani, Groza (CR1) 2012; 59 Chen, Fan, Lin (CR4) 2006; 174 Cohen, Haxha (CR5) 2017; 17 CR29 Khalid, Liu, Zia, Zhang, Chen, Zheng (CR12) 2020; 8 Zheng, Yan, Zhang, Poon (CR33) 2014; 61 CR27 Liang, Elgendi, Chen (CR15) 2018; 5 Kao, Chao, Wey (CR11) 2018; 24 Martina, Westerhof, Goudoever, Beaumont, Truijen, Kim, Immink, Jöbsis, Hollmann, Lahpor, Mol, van Lieshout (CR18) 2012; 116 CR21 Kao, Chao, Wey (CR10) 2019; 25 Sharma, Polley, Seung, Sriram, Wen, Srinath (CR23) 2017 Ding, Yan, Zhang, Liu, Zhao, Tsang (CR6) 2017; 7 Marefat (CR17) 2020; 3 Sharma, Barbosa, Ho, Griggs, Ghirmai, Krishnan, Hsiai, Chiao, Cao (CR22) 2017; 5 Sommermeyer, Zou, Ficker, Randerath, Fischer, Penzel, Sanner, Hedner, Grote (CR25) 2016; 54 Wang, Zhou, Xing, Zhou (CR30) 2018; 2018 K Song (5109_CR26) 2020; 69 5109_CR27 YH Kao (5109_CR11) 2018; 24 Y Liang (5109_CR15) 2018; 5 5109_CR21 JC Bramwell (5109_CR3) 1992; 93 Z Cohen (5109_CR5) 2017; 17 A Sharma (5109_CR23) 2017 Y Khan (5109_CR13) 2019; 7 L Wang (5109_CR30) 2018; 2018 JR Martina (5109_CR18) 2012; 116 S Ahmad (5109_CR1) 2012; 59 5109_CR1000 5109_CR1001 JH Wang (5109_CR31) 2020 YH Kao (5109_CR10) 2019; 25 X Ding (5109_CR6) 2017; 7 5109_CR29 Y Zheng (5109_CR33) 2014; 61 5109_CR16 5109_CR14 D Sommermeyer (5109_CR25) 2016; 54 5109_CR32 H Gesche (5109_CR8) 2012; 112 SG Khalid (5109_CR12) 2020; 8 5109_CR2 S-C Huang (5109_CR9) 2014; 14 PH Chen (5109_CR4) 2006; 174 M Forouzanfar (5109_CR7) 2013; 60 M Sharma (5109_CR22) 2017; 5 EF Pribadi (5109_CR20) 2020 H Shin (5109_CR24) 2017; 16 F Marefat (5109_CR17) 2020; 3 Z Tang (5109_CR28) 2017; 21 5109_CR19 |
References_xml | – volume: 112 start-page: 309 issue: 1 year: 2012 end-page: 315 ident: CR8 article-title: Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method publication-title: Eur J Appl Physiol doi: 10.1007/s00421-011-1983-3 – year: 2020 ident: CR31 article-title: A fast digital chip implementing a real-time noise-resistant algorithm for estimating blood pressure using a non-invasive, cuffless PPG sensor publication-title: Microsyst Technol doi: 10.1007/s00542-020-04946-y – volume: 24 start-page: 4621 year: 2018 ident: CR11 article-title: Towards maximizing the sensing accuracy of an cuffless, optical blood pressure sensor using a high-order front-end filter publication-title: Microsyst Technol doi: 10.1007/s00542-018-3877-3 – volume: 60 start-page: 1814 issue: 7 year: 2013 end-page: 1824 ident: CR7 article-title: Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2243148 – ident: CR14 – ident: CR1001 – ident: CR2 – ident: CR16 – volume: 3 start-page: 17 year: 2020 end-page: 20 ident: CR17 article-title: A 1-V 8.1 µW PPG-recording front-end with > 92-dB DR using light-to-digital conversion with signal-aware DC subtraction and ambient light removal publication-title: IEEE Solid State Circuits Lett doi: 10.1109/LSSC.2019.2957261 – volume: 5 start-page: 1 issue: 21 year: 2017 end-page: 22 ident: CR22 article-title: Cuff-less and continuous blood pressure monitoring: a methodological review publication-title: Technologies – volume: 174 start-page: 893 year: 2006 end-page: 908 ident: CR4 article-title: A study on SMO-type decomposition methods for support vector machines publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875973 – volume: 2018 start-page: 7804243 year: 2018 ident: CR30 article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram publication-title: J Healthc Eng – ident: CR29 – volume: 54 start-page: 1111 issue: 7 year: 2016 end-page: 1121 ident: CR25 article-title: Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1410-8 – volume: 59 start-page: 608 issue: 3 year: 2012 end-page: 618 ident: CR1 article-title: Electrocardiogram-assisted blood pressure estimation publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2180019 – ident: CR27 – volume: 7 start-page: 11554 issue: 1 year: 2017 ident: CR6 article-title: Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation publication-title: Sci Rep doi: 10.1038/s41598-017-11507-3 – ident: CR21 – volume: 21 start-page: 1194 issue: 5 year: 2017 end-page: 1205 ident: CR28 article-title: A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2614962 – ident: CR19 – year: 2017 ident: CR23 article-title: A sub-60-μA multimodal smart biosensing SoC with > 80-dB SNR, 35-μA photoplethysmography signal chain publication-title: IEEE J Solid State Circuits doi: 10.1109/JSSC.2016.2642205 – volume: 17 start-page: 4258 issue: 13 year: 2017 end-page: 4268 ident: CR5 article-title: Optical-based sensor prototype for continuous monitoring of the blood pressure publication-title: IEEE Sens J doi: 10.1109/JSEN.2017.2704098 – ident: CR1000 – volume: 5 start-page: 180076 year: 2018 ident: CR15 article-title: An optimal filter for short photoplethysmogram signals publication-title: Sci Data doi: 10.1038/sdata.2018.76 – volume: 16 start-page: 10 year: 2017 ident: CR24 article-title: Feasibility study for the non-invasive blood pressure estimation based on PPG morphology: normotensive subject study publication-title: Biomed Eng Online doi: 10.1186/s12938-016-0302-y – volume: 7 start-page: 128114 year: 2019 end-page: 128124 ident: CR13 article-title: Organic multi-channel optoelectronic sensors for wearable health monitoring publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939798 – year: 2020 ident: CR20 article-title: Optimizing a novel PPG sensor patch via optical simulations towards accurate heart rates publication-title: Microsyst Technol doi: 10.1007/s00542-020-04895-6 – ident: CR32 – volume: 8 start-page: 58146 year: 2020 end-page: 58154 ident: CR12 article-title: Cuffless blood pressure estimation using single channel photoplethysmography: a two-step method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981903 – volume: 116 start-page: 1092 issue: 5 year: 2012 end-page: 1103 ident: CR18 article-title: Noninvasive continuous arterial blood pressure monitoring with Nexfin® publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31824f94ed – volume: 93 start-page: 298 issue: 652 year: 1992 end-page: 306 ident: CR3 article-title: The velocity of the pulse wave in man publication-title: Proc R Soc Lond Biol Charact – volume: 14 start-page: 3685 issue: 10 year: 2014 end-page: 3692 ident: CR9 article-title: A new image blood pressure sensor based on PPG, RRT, BPTT, and harmonic balancing publication-title: IEEE Sens J doi: 10.1109/JSEN.2014.2329676 – volume: 25 start-page: 1 issue: 1 year: 2019 end-page: 10 ident: CR10 article-title: Design and Validation of a New PPG Module to Acquire High-Quality Physiological Signals for High-Accuracy Biomedical Sensing publication-title: IEEE J Sel Topics Quantum Electron doi: 10.1109/JSTQE.2018.2871604 – volume: 69 start-page: 4292 issue: 7 year: 2020 end-page: 4302 ident: CR26 article-title: Cuffless deep learning-based blood pressure estimation for smart wristwatches publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2947103 – volume: 61 start-page: 2179 year: 2014 end-page: 2186 ident: CR33 article-title: An armband wearable device for overnight and cuff-less blood pressure measurement publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2318779 – ident: 5109_CR1001 doi: 10.1109/IEMBS.2009.5332505 – volume: 5 start-page: 180076 year: 2018 ident: 5109_CR15 publication-title: Sci Data doi: 10.1038/sdata.2018.76 – volume: 14 start-page: 3685 issue: 10 year: 2014 ident: 5109_CR9 publication-title: IEEE Sens J doi: 10.1109/JSEN.2014.2329676 – year: 2017 ident: 5109_CR23 publication-title: IEEE J Solid State Circuits doi: 10.1109/JSSC.2016.2642205 – ident: 5109_CR29 doi: 10.1109/EMBC.2019.8857108 – volume: 54 start-page: 1111 issue: 7 year: 2016 ident: 5109_CR25 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-015-1410-8 – volume: 16 start-page: 10 year: 2017 ident: 5109_CR24 publication-title: Biomed Eng Online doi: 10.1186/s12938-016-0302-y – volume: 2018 start-page: 7804243 year: 2018 ident: 5109_CR30 publication-title: J Healthc Eng – volume: 174 start-page: 893 year: 2006 ident: 5109_CR4 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875973 – volume: 7 start-page: 128114 year: 2019 ident: 5109_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939798 – ident: 5109_CR19 doi: 10.1109/SENSORS43011.2019.8956825 – volume: 93 start-page: 298 issue: 652 year: 1992 ident: 5109_CR3 publication-title: Proc R Soc Lond Biol Charact – volume: 25 start-page: 1 issue: 1 year: 2019 ident: 5109_CR10 publication-title: IEEE J Sel Topics Quantum Electron doi: 10.1109/JSTQE.2018.2871604 – volume: 7 start-page: 11554 issue: 1 year: 2017 ident: 5109_CR6 publication-title: Sci Rep doi: 10.1038/s41598-017-11507-3 – volume: 116 start-page: 1092 issue: 5 year: 2012 ident: 5109_CR18 publication-title: Anesthesiology doi: 10.1097/ALN.0b013e31824f94ed – volume: 17 start-page: 4258 issue: 13 year: 2017 ident: 5109_CR5 publication-title: IEEE Sens J doi: 10.1109/JSEN.2017.2704098 – volume: 112 start-page: 309 issue: 1 year: 2012 ident: 5109_CR8 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-011-1983-3 – ident: 5109_CR14 doi: 10.1109/I2MTC.2013.6555424 – volume: 8 start-page: 58146 year: 2020 ident: 5109_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981903 – year: 2020 ident: 5109_CR20 publication-title: Microsyst Technol doi: 10.1007/s00542-020-04895-6 – ident: 5109_CR16 doi: 10.23919/VLSIC.2019.8778004 – volume: 60 start-page: 1814 issue: 7 year: 2013 ident: 5109_CR7 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2243148 – ident: 5109_CR27 doi: 10.1109/ICSEM.2010.14 – ident: 5109_CR1000 doi: 10.1109/EMBC.2016.7592189 – volume: 69 start-page: 4292 issue: 7 year: 2020 ident: 5109_CR26 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2947103 – volume: 59 start-page: 608 issue: 3 year: 2012 ident: 5109_CR1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2180019 – ident: 5109_CR2 doi: 10.22489/CinC.2016.081-339 – ident: 5109_CR32 doi: 10.1145/3055635.3056634 – volume: 5 start-page: 1 issue: 21 year: 2017 ident: 5109_CR22 publication-title: Technologies – volume: 3 start-page: 17 year: 2020 ident: 5109_CR17 publication-title: IEEE Solid State Circuits Lett doi: 10.1109/LSSC.2019.2957261 – volume: 24 start-page: 4621 year: 2018 ident: 5109_CR11 publication-title: Microsyst Technol doi: 10.1007/s00542-018-3877-3 – volume: 21 start-page: 1194 issue: 5 year: 2017 ident: 5109_CR28 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2614962 – year: 2020 ident: 5109_CR31 publication-title: Microsyst Technol doi: 10.1007/s00542-020-04946-y – volume: 61 start-page: 2179 year: 2014 ident: 5109_CR33 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2318779 – ident: 5109_CR21 doi: 10.1109/ICSENS.2018.8589796 |
SSID | ssj0007983 |
Score | 2.3513484 |
Snippet | A new neural network (NN) is orchestrated by this study to achieve high-accuracy in blood pressure (BP) estimation by a real-time photoplethysmography (PPG).... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2345 |
SubjectTerms | Electronics and Microelectronics Engineering Instrumentation Mechanical Engineering Nanotechnology Technical Paper |
Title | Design and implementation of a photoplethysmography acquisition system with an optimized artificial neural network for accurate blood pressure measurement |
URI | https://link.springer.com/article/10.1007/s00542-020-05109-9 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrE-yhy8aWCbTTfNsWprUSwiFuppyWYTLNiHfVz8Kf5aJ9ndakEKnrIskxwyyeSb5MsXQi5YGlrJTUJZpBnlmCjTJJSapohlhRQsCT2b8LEbdXr8vl_v55fCZgXbvTiS9JF6ednNoQtGXbrjBpKkcpOU65i7OyJfjzWX8VfITHxT8ogKTNPzqzJ_t7G6HK2ehfolpr1LdnJsCM3MmXtkw4z2yfYvxcAD8nXrGReA-T8MhgX323UujC0omLyN544S7rp_mKtRg9Ifi0HGzYJMuRnc9is2AmOMGMPBp0nBDaFMTQKcxqUvPEMcENZiE3rhRCXAE93Bs2cXUwPDny3GQ9Jrt15uOjR_XoFqJmtzKsKa4QqXfxNIK0KbKq0SneJnQzFbNwKBN07QIGUJ_o8UtyINmLK6JgKFMCI8IqXReGSOCTCHMnhDmiDBBM1aiXGER41AJjpkJuQVUit6Oda59rh7AuM9Xqome8_E6JnYeyaWFXK5rDPJlDfWWl8VzovzWThbY37yP_NTssUcl8XvvpyR0ny6MOcIRuZJlZSbd68PLSyvW92n56ofi9-gW9u1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5VA4QClUXQplDr0Vo6xj4vURFeiW14mV4BTZji1W7e7ySC78FH4tYydZHqqQOCWKHMvyjMff2J8_A_zgReqVcIbxzHImKFFmJlWWFYRlpZLcpJFNeHqWDYbi6GL3ojkUdtey3dstyRipZ4fdArrgLKQ7wZEUU3MwLygHFx2Y3_t9eXwwi8BS1fKbSmRMUqLeHJb5fy0vJ6SXu6FxkjlchmHbvJpb8nenKs2OvX-l3Pje9n-CpQZ14l7tJivwwU0-w-IzLcJVeNiPXA7UkwJH45ZVHsyGU48ar6-mZSCbB8OOG51r1PamGtWsL6w1oTEs7FIlOKVYNB7duwKDc9Y6FRjUM-Mjcs-RADNVYasgV4GRQo-Rl1vdOhw_LV6uwfDw4PzXgDUXNzDLVa9kMu05oQlYuER5mfpCW21sQa99zf2ukwTpaegnBTf0PdPCyyLh2tueTDQBlPQLdCbTifsKyAN-EX3lEkOpn_eKIpTI-okyNuUuFV3otdbLbaNqHi7X-JfP9Jhjv-fU73ns91x14efsn-ta0-PN0tutPfNmfN-9UXz9fcW34OPg_PQkP_lzdvwNFnhgzMQ1ng3olLeV2yTIU5rvjYc_AiA5-Gc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJwoJSHKH0wB27gNuu48fpYtd0WWioOVCqnyE-xgs0uJbn0p_BrGTvJ9qGqEuKUKHKsxDOZfGN_8xngHXd5UMIbxgvLmaBEmZlcWeYIy0oluckTm_DzaXF0Jj6d75xfq-JPbPd-SbKtaYgqTVW9PXdhe1H4FpEGZzH1iU6lmHoISyKKsw9gaffw2_HBIhpL1UpxKlEwSUl7Vzhzdy83f043V0bTD2e8DLp_1JZn8mOrqc2Wvbyl4vg_7_IMnnZoFHdb91mBB756Dk-uaRS-gD_7ieOBunI4mfZs82hOnAXUOP8-qyMJPRp82ulfo7a_mknLBsNWKxrjhC91gjOKUdPJpXcYnbbVr8CoqpkOiZOOBKSpC9tEGQtM1HpMfN3mwuP0alLzJZyND77uHbFuQwdmuRrWTOZDLzQBDp-pIPPgtNXGOjodaR52vCSoTyEhc9zQ9UKLIF3GdbBDmWkCLvkrGFSzyr8G5BHXiJHymaGUMARFkUsUo0wZm3Ofi1UY9pYsbad2Hjfd-FkudJrTuJc07mUa91KtwvvFPfNW6-Pe1h9625bdd__7nuZv_q35W3j0ZX9cnnw8PV6DxzwSadLUzzoM6ovGbxASqs1m5-x_AZkEAVo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+a+photoplethysmography+acquisition+system+with+an+optimized+artificial+neural+network+for+accurate+blood+pressure+measurement&rft.jtitle=Microsystem+technologies+%3A+sensors%2C+actuators%2C+systems+integration&rft.au=Pandey%2C+Rajeev+Kumar&rft.au=Lin%2C+Tse-Yu&rft.au=Chao%2C+Paul+C.-P.&rft.date=2021-06-01&rft.issn=0946-7076&rft.eissn=1432-1858&rft.volume=27&rft.issue=6&rft.spage=2345&rft.epage=2367&rft_id=info:doi/10.1007%2Fs00542-020-05109-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00542_020_05109_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-7076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-7076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-7076&client=summon |