DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion Under Heterogeneous Soil Conditions

Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 8; pp. 6313 - 6328
Main Authors Dai, Qiqi, Lee, Yee Hui, Sun, Hai-Han, Ow, Genevieve, Yusof, Mohamed Lokman Mohd, Yucel, Abdulkadir C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the interference due to clutters and noise in real-world heterogeneous environments. To address these issues, a two-stage deep neural network (DNN), called DMRF-UNet, is proposed to reconstruct the permittivity distributions of subsurface objects from GPR B-scans under heterogeneous soil conditions. In the first stage, a U-shape DNN with first multi-receptive-field convolution (MRF-UNet1) is built to remove the clutters due to inhomogeneity of the heterogeneous soil. Then, the denoised B-scan from MRF-UNet1 is combined with the noisy B-scan to be inputted to the DNN in the second multi-receptive-field convolution (MRF-UNet2). MRF-UNet2 learns the inverse mapping relationship and reconstructs the permittivity distribution of subsurface objects. To avoid information loss, an end-to-end training method combining the loss functions of two stages is introduced. A wide range of subsurface heterogeneous scenarios and B-scans are generated to evaluate the inversion performance. The test results in the numerical experiment and the real measurement show that the proposed network reconstructs the permittivities, shapes, sizes, and locations of subsurface objects with high accuracy. The comparison with existing methods demonstrates the superiority of the proposed methodology for the inversion under heterogeneous soil conditions.
AbstractList Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the interference due to clutters and noise in real-world heterogeneous environments. To address these issues, a two-stage deep neural network (DNN), called DMRF-UNet, is proposed to reconstruct the permittivity distributions of subsurface objects from GPR B-scans under heterogeneous soil conditions. In the first stage, a U-shape DNN with first multi-receptive-field convolution (MRF-UNet1) is built to remove the clutters due to inhomogeneity of the heterogeneous soil. Then, the denoised B-scan from MRF-UNet1 is combined with the noisy B-scan to be inputted to the DNN in the second multi-receptive-field convolution (MRF-UNet2). MRF-UNet2 learns the inverse mapping relationship and reconstructs the permittivity distribution of subsurface objects. To avoid information loss, an end-to-end training method combining the loss functions of two stages is introduced. A wide range of subsurface heterogeneous scenarios and B-scans are generated to evaluate the inversion performance. The test results in the numerical experiment and the real measurement show that the proposed network reconstructs the permittivities, shapes, sizes, and locations of subsurface objects with high accuracy. The comparison with existing methods demonstrates the superiority of the proposed methodology for the inversion under heterogeneous soil conditions.
Author Yusof, Mohamed Lokman Mohd
Ow, Genevieve
Sun, Hai-Han
Lee, Yee Hui
Dai, Qiqi
Yucel, Abdulkadir C.
Author_xml – sequence: 1
  givenname: Qiqi
  orcidid: 0000-0003-1579-6390
  surname: Dai
  fullname: Dai, Qiqi
  email: qiqi.dai@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Yee Hui
  orcidid: 0000-0001-6452-9606
  surname: Lee
  fullname: Lee, Yee Hui
  email: eyhlee@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Hai-Han
  orcidid: 0000-0003-2749-9916
  surname: Sun
  fullname: Sun, Hai-Han
  email: haihan.sun@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Genevieve
  orcidid: 0000-0003-4724-2747
  surname: Ow
  fullname: Ow, Genevieve
  email: genevieve_ow@nparks.gov.sg
  organization: National Parks Board, Singapore
– sequence: 5
  givenname: Mohamed Lokman Mohd
  orcidid: 0000-0002-2771-4877
  surname: Yusof
  fullname: Yusof, Mohamed Lokman Mohd
  email: mohamed_lokman_mohd_yusof@nparks.gov.sg
  organization: National Parks Board, Singapore
– sequence: 6
  givenname: Abdulkadir C.
  orcidid: 0000-0001-9920-4043
  surname: Yucel
  fullname: Yucel, Abdulkadir C.
  email: acyucel@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BookMark eNp9kEtLAzEURoMoWKt7wU3A9dQkk2Qm7kprH1C19AHuhji5U6fUpCap4r93SosLF64uF865j-8CnVpnAaFrSjqUEnW36E47jDDWSWkm01yeoBYVIk8YY_QUtQiheaKYfDlHFyGsm5bnnLdQ1X-cDZLlE8R73MWLL5fMo14B7gNs8QS0t7Vd4Xn5Bu-AK-fxcDrDfR01HttP8KF2Fi-tAY9HEMG7FVhwu4Dnrt7gnrOmjg0SLtFZpTcBro61jZaDh0VvlEyeh-Ned5KUTNGYZEzJKtMmyxklWilhSqlfZWm4zGWluGalyTgomaemSjOhGCs5FwSEUUwRnrbR7WHu1ruPHYRYrN3O22ZlwTLKiOBCpg0lD1TpXQgeqqKso94fGr2uNwUlxT7Tosm02GdaHDNtRPJH3Pr6Xfvv_5Sbg1IDwC-umg-JoukPe2WBeQ
CODEN IETPAK
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105185
crossref_primary_10_1109_TGRS_2023_3268477
crossref_primary_10_1109_TGRS_2023_3275306
crossref_primary_10_1109_TIM_2024_3378267
crossref_primary_10_1109_JSTARS_2024_3355213
crossref_primary_10_1109_JSTARS_2024_3524424
crossref_primary_10_1109_TGRS_2024_3359351
crossref_primary_10_1109_TGRS_2025_3546212
crossref_primary_10_1190_geo2024_0283_1
crossref_primary_10_3390_rs17020322
crossref_primary_10_1093_gji_ggae243
crossref_primary_10_1109_JSTARS_2024_3486535
crossref_primary_10_3390_s25030947
crossref_primary_10_3390_s22239366
crossref_primary_10_1117_1_JRS_19_014519
crossref_primary_10_1109_TGRS_2024_3480122
crossref_primary_10_1109_LGRS_2024_3351194
crossref_primary_10_1109_JSEN_2024_3522888
crossref_primary_10_1109_TGRS_2024_3524326
crossref_primary_10_1016_j_sigpro_2023_108977
crossref_primary_10_1038_s41467_023_43473_y
crossref_primary_10_1109_TGRS_2024_3360101
crossref_primary_10_1109_JMMCT_2025_3528484
crossref_primary_10_1016_j_sigpro_2023_109002
crossref_primary_10_1109_TGRS_2024_3412286
crossref_primary_10_1109_TGRS_2024_3472450
crossref_primary_10_1109_TGRS_2024_3509497
crossref_primary_10_1016_j_measurement_2025_116760
crossref_primary_10_1016_j_ndteint_2025_103366
crossref_primary_10_1109_TGRS_2023_3316153
Cites_doi 10.1109/TGRS.2020.3046454
10.1007/978-3-030-01424-7_27
10.1109/JSEN.2021.3050618
10.1126/science.220.4598.671
10.1109/TGRS.2019.2891206
10.1016/j.conbuildmat.2019.117102
10.1109/CVPR.2015.7298594
10.1016/j.cpc.2016.08.020
10.1016/j.sigpro.2016.05.016
10.1155/2014/280738
10.1016/j.aei.2019.100931
10.1109/LGRS.2021.3072923
10.1190/geo2018-0597.1
10.1109/ICIEA.2018.8397788
10.1109/TGRS.2016.2622061
10.1016/j.autcon.2019.102839
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2016.2644615
10.1109/5.726791
10.1016/j.autcon.2016.03.011
10.1117/12.2176250
10.1016/j.conbuildmat.2020.120371
10.1109/CVPR.2017.632
10.1109/CVPR.2016.308
10.1109/TAP.2006.882161
10.1109/36.387598
10.1007/978-3-642-55016-4
10.1109/TGRS.2019.2926626
10.1109/36.921410
10.1016/j.cpc.2018.11.007
10.23915/distill.00021
10.2113/JEEG19-074
10.4018/978-1-5225-5513-1.ch016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2022.3176386
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 6328
ExternalDocumentID 10_1109_TAP_2022_3176386
9782091
Genre orig-research
GrantInformation_xml – fundername: Ministry of National Development Research Fund, National Parks Board, Singapore
  funderid: 10.13039/501100001461
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-7296f7ad78210a995dc6ab6cd4686f94a2cd74e9683df375922c4450e5d929043
IEDL.DBID RIE
ISSN 0018-926X
IngestDate Mon Jun 30 10:10:35 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Tue Jul 01 03:23:03 EDT 2025
Wed Aug 27 02:14:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7296f7ad78210a995dc6ab6cd4686f94a2cd74e9683df375922c4450e5d929043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2771-4877
0000-0001-6452-9606
0000-0003-1579-6390
0000-0003-4724-2747
0000-0001-9920-4043
0000-0003-2749-9916
PQID 2712054563
PQPubID 85476
PageCount 16
ParticipantIDs proquest_journals_2712054563
crossref_primary_10_1109_TAP_2022_3176386
crossref_citationtrail_10_1109_TAP_2022_3176386
ieee_primary_9782091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Abadi (ref30)
ref23
ref26
ref25
ref20
Luo (ref24)
ref22
ref21
ref28
Kingma (ref31) 2014
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TGRS.2020.3046454
– ident: ref35
  doi: 10.1007/978-3-030-01424-7_27
– ident: ref16
  doi: 10.1109/JSEN.2021.3050618
– ident: ref34
  doi: 10.1126/science.220.4598.671
– ident: ref33
  doi: 10.1109/TGRS.2019.2891206
– ident: ref32
  doi: 10.1016/j.conbuildmat.2019.117102
– ident: ref23
  doi: 10.1109/CVPR.2015.7298594
– ident: ref27
  doi: 10.1016/j.cpc.2016.08.020
– ident: ref22
  doi: 10.1016/j.sigpro.2016.05.016
– ident: ref4
  doi: 10.1155/2014/280738
– ident: ref2
  doi: 10.1016/j.aei.2019.100931
– ident: ref12
  doi: 10.1109/LGRS.2021.3072923
– ident: ref7
  doi: 10.1190/geo2018-0597.1
– ident: ref13
  doi: 10.1109/ICIEA.2018.8397788
– year: 2014
  ident: ref31
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref5
  doi: 10.1109/TGRS.2016.2622061
– ident: ref11
  doi: 10.1016/j.autcon.2019.102839
– ident: ref18
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 265
  volume-title: Proc. USENIX Symp. Operating Syst. Design Implement.
  ident: ref30
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref17
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref36
  doi: 10.1109/5.726791
– ident: ref1
  doi: 10.1016/j.autcon.2016.03.011
– ident: ref10
  doi: 10.1117/12.2176250
– ident: ref9
  doi: 10.1016/j.conbuildmat.2020.120371
– ident: ref19
  doi: 10.1109/CVPR.2017.632
– ident: ref26
  doi: 10.1109/CVPR.2016.308
– ident: ref6
  doi: 10.1109/TAP.2006.882161
– ident: ref29
  doi: 10.1109/36.387598
– ident: ref20
  doi: 10.1007/978-3-642-55016-4
– ident: ref8
  doi: 10.1109/TGRS.2019.2926626
– ident: ref3
  doi: 10.1109/36.921410
– ident: ref28
  doi: 10.1016/j.cpc.2018.11.007
– ident: ref25
  doi: 10.23915/distill.00021
– ident: ref14
  doi: 10.2113/JEEG19-074
– ident: ref21
  doi: 10.4018/978-1-5225-5513-1.ch016
– start-page: 4898
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Understanding the effective receptive field in deep convolutional neural networks
SSID ssj0014844
Score 2.5803697
Snippet Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6313
SubjectTerms Artificial neural networks
Clutter
Convolution
Deep learning
Deep neural network (DNN)
Ground penetrating radar
ground-penetrating radar (GPR) data inversion
heterogeneous soil conditions
Image reconstruction
Inhomogeneity
Iterative algorithms
Iterative methods
Machine learning
Noise measurement
Permittivity
Reflection
Soil
Soil conditions
Soils
Training
Title DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion Under Heterogeneous Soil Conditions
URI https://ieeexplore.ieee.org/document/9782091
https://www.proquest.com/docview/2712054563
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7qkz74W5y_yIMvgp1tlqaJb8M5hzAR3WBvJU2uIs5VtEPwr_eSdkNUxLc-pCXw3TXf5e6-I-Q4zhXS4CxH_85FwLOQB1KCDhIldWyRMWs_7q1_I3pDfj2KRwvkdN4LAwC--Aya7tHn8m1hpu6qzKnBstC1qi9i4Fb1as0zBlzySnE5QgdmYjRLSYbqbNC-xUCQMYxP0Ztc1_SXI8jPVPnxI_anS3eN9Gf7qopKnprTMmuaj2-Sjf_d-DpZrWkmbVd2sUEWYLJJVr6ID26RvNO_6wbDGyjPaZsO3osAiecD0A7AC61lVx_oPYL6DBSpLb26vaMdXWrqtDn8LRv1U5Noz5XUFGiJUEzf6H3xOKYXhUuFO5PeJsPu5eCiF9RTFwLDVFS62bYiT7TFLUehViq2RuhMGMuFFIisZsYmHJSQLZu3klgxZjiPQ4gtUq2Qt3bI0qSYwC6h3CBfi0BZazVHXiAzmWeRUAAql0gMGuRsBkRqaklyNxljnPrQJFQpQpc66NIaugY5mb_xUslx_LF2yyExX1eD0CAHM6zT2l_fUpZELHRksrX3-1v7ZNl9uyr9OyBL5esUDpGOlNmRt8NPQczZIg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4heNj2AGxsWjdgftjLpKUkruPYvFWUrttohaCV-hY59gVNsAaNVEj8es5OWqFtmvaWB1ux9N3Zn3133wF8TEtNNLgoyb9LGYkiFpFSaKJMK5M6YswmtHsbT-RoJr7N0_kGfF7XwiBiSD7Drv8MsXxX2aV_KvNqsDz2pepbdO6nSVOttY4ZCCUazeWEXJjL-SooGeujaf-croKc0w2V_MnXTT85hEJXlT-24nC-DHdgvFpZk1Zy3V3WRdc-_Cba-L9L34XtlmiyfmMZL2EDF6_gxRP5wT0oB-OLYTSbYH3M-mx6X0VEPa-QDRBvWSu8esUuCdafyIjcsi_nF2xgasO8Okd4Z2OhbxIb-aSaimwRq-Udu6x-3LCTygfDvVG_htnwdHoyitq-C5HlOql9d1tZZsbRkpPYaJ06K00hrRNSScLWcOsygVqqnit7Wao5t0KkMaaOyFYsem9gc1Et8C0wYYmxJaidc0YQM1CFKotEakRdKqIGHThaAZHbVpTc98a4ycPlJNY5QZd76PIWug58Ws-4bQQ5_jF2zyOxHteC0IH9FdZ567F3Oc8SHns62Xv391kf4NloOj7Lz75Ovr-H5_4_TSLgPmzWv5Z4QOSkLg6DTT4CwTvcaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMRF-UNet%3A+A+Two-Stage+Deep+Learning+Scheme+for+GPR+Data+Inversion+Under+Heterogeneous+Soil+Conditions&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Dai%2C+Qiqi&rft.au=Lee%2C+Yee+Hui&rft.au=Sun%2C+Hai-Han&rft.au=Ow%2C+Genevieve&rft.date=2022-08-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=8&rft.spage=6313&rft.epage=6328&rft_id=info:doi/10.1109%2FTAP.2022.3176386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2022_3176386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon