DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion Under Heterogeneous Soil Conditions
Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the i...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 70; no. 8; pp. 6313 - 6328 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the interference due to clutters and noise in real-world heterogeneous environments. To address these issues, a two-stage deep neural network (DNN), called DMRF-UNet, is proposed to reconstruct the permittivity distributions of subsurface objects from GPR B-scans under heterogeneous soil conditions. In the first stage, a U-shape DNN with first multi-receptive-field convolution (MRF-UNet1) is built to remove the clutters due to inhomogeneity of the heterogeneous soil. Then, the denoised B-scan from MRF-UNet1 is combined with the noisy B-scan to be inputted to the DNN in the second multi-receptive-field convolution (MRF-UNet2). MRF-UNet2 learns the inverse mapping relationship and reconstructs the permittivity distribution of subsurface objects. To avoid information loss, an end-to-end training method combining the loss functions of two stages is introduced. A wide range of subsurface heterogeneous scenarios and B-scans are generated to evaluate the inversion performance. The test results in the numerical experiment and the real measurement show that the proposed network reconstructs the permittivities, shapes, sizes, and locations of subsurface objects with high accuracy. The comparison with existing methods demonstrates the superiority of the proposed methodology for the inversion under heterogeneous soil conditions. |
---|---|
AbstractList | Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied to complex subsurface scenarios. Existing deep learning-based methods focus on the ideal homogeneous subsurface environments and ignore the interference due to clutters and noise in real-world heterogeneous environments. To address these issues, a two-stage deep neural network (DNN), called DMRF-UNet, is proposed to reconstruct the permittivity distributions of subsurface objects from GPR B-scans under heterogeneous soil conditions. In the first stage, a U-shape DNN with first multi-receptive-field convolution (MRF-UNet1) is built to remove the clutters due to inhomogeneity of the heterogeneous soil. Then, the denoised B-scan from MRF-UNet1 is combined with the noisy B-scan to be inputted to the DNN in the second multi-receptive-field convolution (MRF-UNet2). MRF-UNet2 learns the inverse mapping relationship and reconstructs the permittivity distribution of subsurface objects. To avoid information loss, an end-to-end training method combining the loss functions of two stages is introduced. A wide range of subsurface heterogeneous scenarios and B-scans are generated to evaluate the inversion performance. The test results in the numerical experiment and the real measurement show that the proposed network reconstructs the permittivities, shapes, sizes, and locations of subsurface objects with high accuracy. The comparison with existing methods demonstrates the superiority of the proposed methodology for the inversion under heterogeneous soil conditions. |
Author | Yusof, Mohamed Lokman Mohd Ow, Genevieve Sun, Hai-Han Lee, Yee Hui Dai, Qiqi Yucel, Abdulkadir C. |
Author_xml | – sequence: 1 givenname: Qiqi orcidid: 0000-0003-1579-6390 surname: Dai fullname: Dai, Qiqi email: qiqi.dai@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Yee Hui orcidid: 0000-0001-6452-9606 surname: Lee fullname: Lee, Yee Hui email: eyhlee@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Hai-Han orcidid: 0000-0003-2749-9916 surname: Sun fullname: Sun, Hai-Han email: haihan.sun@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Genevieve orcidid: 0000-0003-4724-2747 surname: Ow fullname: Ow, Genevieve email: genevieve_ow@nparks.gov.sg organization: National Parks Board, Singapore – sequence: 5 givenname: Mohamed Lokman Mohd orcidid: 0000-0002-2771-4877 surname: Yusof fullname: Yusof, Mohamed Lokman Mohd email: mohamed_lokman_mohd_yusof@nparks.gov.sg organization: National Parks Board, Singapore – sequence: 6 givenname: Abdulkadir C. orcidid: 0000-0001-9920-4043 surname: Yucel fullname: Yucel, Abdulkadir C. email: acyucel@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kEtLAzEURoMoWKt7wU3A9dQkk2Qm7kprH1C19AHuhji5U6fUpCap4r93SosLF64uF865j-8CnVpnAaFrSjqUEnW36E47jDDWSWkm01yeoBYVIk8YY_QUtQiheaKYfDlHFyGsm5bnnLdQ1X-cDZLlE8R73MWLL5fMo14B7gNs8QS0t7Vd4Xn5Bu-AK-fxcDrDfR01HttP8KF2Fi-tAY9HEMG7FVhwu4Dnrt7gnrOmjg0SLtFZpTcBro61jZaDh0VvlEyeh-Ned5KUTNGYZEzJKtMmyxklWilhSqlfZWm4zGWluGalyTgomaemSjOhGCs5FwSEUUwRnrbR7WHu1ruPHYRYrN3O22ZlwTLKiOBCpg0lD1TpXQgeqqKso94fGr2uNwUlxT7Tosm02GdaHDNtRPJH3Pr6Xfvv_5Sbg1IDwC-umg-JoukPe2WBeQ |
CODEN | IETPAK |
CitedBy_id | crossref_primary_10_1016_j_autcon_2023_105185 crossref_primary_10_1109_TGRS_2023_3268477 crossref_primary_10_1109_TGRS_2023_3275306 crossref_primary_10_1109_TIM_2024_3378267 crossref_primary_10_1109_JSTARS_2024_3355213 crossref_primary_10_1109_JSTARS_2024_3524424 crossref_primary_10_1109_TGRS_2024_3359351 crossref_primary_10_1109_TGRS_2025_3546212 crossref_primary_10_1190_geo2024_0283_1 crossref_primary_10_3390_rs17020322 crossref_primary_10_1093_gji_ggae243 crossref_primary_10_1109_JSTARS_2024_3486535 crossref_primary_10_3390_s25030947 crossref_primary_10_3390_s22239366 crossref_primary_10_1117_1_JRS_19_014519 crossref_primary_10_1109_TGRS_2024_3480122 crossref_primary_10_1109_LGRS_2024_3351194 crossref_primary_10_1109_JSEN_2024_3522888 crossref_primary_10_1109_TGRS_2024_3524326 crossref_primary_10_1016_j_sigpro_2023_108977 crossref_primary_10_1038_s41467_023_43473_y crossref_primary_10_1109_TGRS_2024_3360101 crossref_primary_10_1109_JMMCT_2025_3528484 crossref_primary_10_1016_j_sigpro_2023_109002 crossref_primary_10_1109_TGRS_2024_3412286 crossref_primary_10_1109_TGRS_2024_3472450 crossref_primary_10_1109_TGRS_2024_3509497 crossref_primary_10_1016_j_measurement_2025_116760 crossref_primary_10_1016_j_ndteint_2025_103366 crossref_primary_10_1109_TGRS_2023_3316153 |
Cites_doi | 10.1109/TGRS.2020.3046454 10.1007/978-3-030-01424-7_27 10.1109/JSEN.2021.3050618 10.1126/science.220.4598.671 10.1109/TGRS.2019.2891206 10.1016/j.conbuildmat.2019.117102 10.1109/CVPR.2015.7298594 10.1016/j.cpc.2016.08.020 10.1016/j.sigpro.2016.05.016 10.1155/2014/280738 10.1016/j.aei.2019.100931 10.1109/LGRS.2021.3072923 10.1190/geo2018-0597.1 10.1109/ICIEA.2018.8397788 10.1109/TGRS.2016.2622061 10.1016/j.autcon.2019.102839 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2016.2644615 10.1109/5.726791 10.1016/j.autcon.2016.03.011 10.1117/12.2176250 10.1016/j.conbuildmat.2020.120371 10.1109/CVPR.2017.632 10.1109/CVPR.2016.308 10.1109/TAP.2006.882161 10.1109/36.387598 10.1007/978-3-642-55016-4 10.1109/TGRS.2019.2926626 10.1109/36.921410 10.1016/j.cpc.2018.11.007 10.23915/distill.00021 10.2113/JEEG19-074 10.4018/978-1-5225-5513-1.ch016 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TAP.2022.3176386 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2221 |
EndPage | 6328 |
ExternalDocumentID | 10_1109_TAP_2022_3176386 9782091 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of National Development Research Fund, National Parks Board, Singapore funderid: 10.13039/501100001461 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-7296f7ad78210a995dc6ab6cd4686f94a2cd74e9683df375922c4450e5d929043 |
IEDL.DBID | RIE |
ISSN | 0018-926X |
IngestDate | Mon Jun 30 10:10:35 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Tue Jul 01 03:23:03 EDT 2025 Wed Aug 27 02:14:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-7296f7ad78210a995dc6ab6cd4686f94a2cd74e9683df375922c4450e5d929043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2771-4877 0000-0001-6452-9606 0000-0003-1579-6390 0000-0003-4724-2747 0000-0001-9920-4043 0000-0003-2749-9916 |
PQID | 2712054563 |
PQPubID | 85476 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2712054563 crossref_primary_10_1109_TAP_2022_3176386 crossref_citationtrail_10_1109_TAP_2022_3176386 ieee_primary_9782091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on antennas and propagation |
PublicationTitleAbbrev | TAP |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Abadi (ref30) ref23 ref26 ref25 ref20 Luo (ref24) ref22 ref21 ref28 Kingma (ref31) 2014 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1109/TGRS.2020.3046454 – ident: ref35 doi: 10.1007/978-3-030-01424-7_27 – ident: ref16 doi: 10.1109/JSEN.2021.3050618 – ident: ref34 doi: 10.1126/science.220.4598.671 – ident: ref33 doi: 10.1109/TGRS.2019.2891206 – ident: ref32 doi: 10.1016/j.conbuildmat.2019.117102 – ident: ref23 doi: 10.1109/CVPR.2015.7298594 – ident: ref27 doi: 10.1016/j.cpc.2016.08.020 – ident: ref22 doi: 10.1016/j.sigpro.2016.05.016 – ident: ref4 doi: 10.1155/2014/280738 – ident: ref2 doi: 10.1016/j.aei.2019.100931 – ident: ref12 doi: 10.1109/LGRS.2021.3072923 – ident: ref7 doi: 10.1190/geo2018-0597.1 – ident: ref13 doi: 10.1109/ICIEA.2018.8397788 – year: 2014 ident: ref31 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref5 doi: 10.1109/TGRS.2016.2622061 – ident: ref11 doi: 10.1016/j.autcon.2019.102839 – ident: ref18 doi: 10.1007/978-3-319-24574-4_28 – start-page: 265 volume-title: Proc. USENIX Symp. Operating Syst. Design Implement. ident: ref30 article-title: TensorFlow: A system for large-scale machine learning – ident: ref17 doi: 10.1109/TPAMI.2016.2644615 – ident: ref36 doi: 10.1109/5.726791 – ident: ref1 doi: 10.1016/j.autcon.2016.03.011 – ident: ref10 doi: 10.1117/12.2176250 – ident: ref9 doi: 10.1016/j.conbuildmat.2020.120371 – ident: ref19 doi: 10.1109/CVPR.2017.632 – ident: ref26 doi: 10.1109/CVPR.2016.308 – ident: ref6 doi: 10.1109/TAP.2006.882161 – ident: ref29 doi: 10.1109/36.387598 – ident: ref20 doi: 10.1007/978-3-642-55016-4 – ident: ref8 doi: 10.1109/TGRS.2019.2926626 – ident: ref3 doi: 10.1109/36.921410 – ident: ref28 doi: 10.1016/j.cpc.2018.11.007 – ident: ref25 doi: 10.23915/distill.00021 – ident: ref14 doi: 10.2113/JEEG19-074 – ident: ref21 doi: 10.4018/978-1-5225-5513-1.ch016 – start-page: 4898 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Understanding the effective receptive field in deep convolutional neural networks |
SSID | ssj0014844 |
Score | 2.5803697 |
Snippet | Traditional ground-penetrating radar (GPR) data inversion leverages iterative algorithms that suffer from high computation costs and low accuracy when applied... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6313 |
SubjectTerms | Artificial neural networks Clutter Convolution Deep learning Deep neural network (DNN) Ground penetrating radar ground-penetrating radar (GPR) data inversion heterogeneous soil conditions Image reconstruction Inhomogeneity Iterative algorithms Iterative methods Machine learning Noise measurement Permittivity Reflection Soil Soil conditions Soils Training |
Title | DMRF-UNet: A Two-Stage Deep Learning Scheme for GPR Data Inversion Under Heterogeneous Soil Conditions |
URI | https://ieeexplore.ieee.org/document/9782091 https://www.proquest.com/docview/2712054563 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7qkz74W5y_yIMvgp1tlqaJb8M5hzAR3WBvJU2uIs5VtEPwr_eSdkNUxLc-pCXw3TXf5e6-I-Q4zhXS4CxH_85FwLOQB1KCDhIldWyRMWs_7q1_I3pDfj2KRwvkdN4LAwC--Aya7tHn8m1hpu6qzKnBstC1qi9i4Fb1as0zBlzySnE5QgdmYjRLSYbqbNC-xUCQMYxP0Ztc1_SXI8jPVPnxI_anS3eN9Gf7qopKnprTMmuaj2-Sjf_d-DpZrWkmbVd2sUEWYLJJVr6ID26RvNO_6wbDGyjPaZsO3osAiecD0A7AC61lVx_oPYL6DBSpLb26vaMdXWrqtDn8LRv1U5Noz5XUFGiJUEzf6H3xOKYXhUuFO5PeJsPu5eCiF9RTFwLDVFS62bYiT7TFLUehViq2RuhMGMuFFIisZsYmHJSQLZu3klgxZjiPQ4gtUq2Qt3bI0qSYwC6h3CBfi0BZazVHXiAzmWeRUAAql0gMGuRsBkRqaklyNxljnPrQJFQpQpc66NIaugY5mb_xUslx_LF2yyExX1eD0CAHM6zT2l_fUpZELHRksrX3-1v7ZNl9uyr9OyBL5esUDpGOlNmRt8NPQczZIg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4heNj2AGxsWjdgftjLpKUkruPYvFWUrttohaCV-hY59gVNsAaNVEj8es5OWqFtmvaWB1ux9N3Zn3133wF8TEtNNLgoyb9LGYkiFpFSaKJMK5M6YswmtHsbT-RoJr7N0_kGfF7XwiBiSD7Drv8MsXxX2aV_KvNqsDz2pepbdO6nSVOttY4ZCCUazeWEXJjL-SooGeujaf-croKc0w2V_MnXTT85hEJXlT-24nC-DHdgvFpZk1Zy3V3WRdc-_Cba-L9L34XtlmiyfmMZL2EDF6_gxRP5wT0oB-OLYTSbYH3M-mx6X0VEPa-QDRBvWSu8esUuCdafyIjcsi_nF2xgasO8Okd4Z2OhbxIb-aSaimwRq-Udu6x-3LCTygfDvVG_htnwdHoyitq-C5HlOql9d1tZZsbRkpPYaJ06K00hrRNSScLWcOsygVqqnit7Wao5t0KkMaaOyFYsem9gc1Et8C0wYYmxJaidc0YQM1CFKotEakRdKqIGHThaAZHbVpTc98a4ycPlJNY5QZd76PIWug58Ws-4bQQ5_jF2zyOxHteC0IH9FdZ567F3Oc8SHns62Xv391kf4NloOj7Lz75Ovr-H5_4_TSLgPmzWv5Z4QOSkLg6DTT4CwTvcaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMRF-UNet%3A+A+Two-Stage+Deep+Learning+Scheme+for+GPR+Data+Inversion+Under+Heterogeneous+Soil+Conditions&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Dai%2C+Qiqi&rft.au=Lee%2C+Yee+Hui&rft.au=Sun%2C+Hai-Han&rft.au=Ow%2C+Genevieve&rft.date=2022-08-01&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=8&rft.spage=6313&rft.epage=6328&rft_id=info:doi/10.1109%2FTAP.2022.3176386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAP_2022_3176386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon |