Adaptive Multi-Proxy for Remote Sensing Image Retrieval
With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 21; p. 5615 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the performance of remote sensing image retrieval is to make full use of the limited sample information to extract more comprehensive class features. In this paper, we propose a proxy-based deep metric learning method and an adaptive multi-proxy framework. First, we propose an intra-cluster sample synthesis strategy with a random factor, which uses the limited samples in batch to synthesize more samples to enhance the network’s learning of unobvious features in the class. Second, we propose an adaptive proxy assignment method to assign multiple proxies according to the cluster of samples within a class, and to determine weights for each proxy according to the cluster scale to accurately and comprehensively measure the sample-class similarity. Finally, we incorporate a rigorous evaluation metric mAP@R and a variety of dataset partitioning methods, and conduct extensive experiments on commonly used remote sensing image datasets. |
---|---|
AbstractList | With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the performance of remote sensing image retrieval is to make full use of the limited sample information to extract more comprehensive class features. In this paper, we propose a proxy-based deep metric learning method and an adaptive multi-proxy framework. First, we propose an intra-cluster sample synthesis strategy with a random factor, which uses the limited samples in batch to synthesize more samples to enhance the network’s learning of unobvious features in the class. Second, we propose an adaptive proxy assignment method to assign multiple proxies according to the cluster of samples within a class, and to determine weights for each proxy according to the cluster scale to accurately and comprehensively measure the sample-class similarity. Finally, we incorporate a rigorous evaluation metric mAP@R and a variety of dataset partitioning methods, and conduct extensive experiments on commonly used remote sensing image datasets. |
Author | Wang, Jian Ge, Mengying Wei, Song Li, Xinyue Du, Yanling |
Author_xml | – sequence: 1 givenname: Xinyue surname: Li fullname: Li, Xinyue – sequence: 2 givenname: Song orcidid: 0000-0002-0604-5563 surname: Wei fullname: Wei, Song – sequence: 3 givenname: Jian surname: Wang fullname: Wang, Jian – sequence: 4 givenname: Yanling surname: Du fullname: Du, Yanling – sequence: 5 givenname: Mengying surname: Ge fullname: Ge, Mengying |
BookMark | eNpNkFtLw0AQhRepYK198RcEfBOi2ZlkL4-leClUFC_Py2Z3U1LSbN1Ni_33RiPqvMxwOHxzOKdk1PrWEXJOsytEmV2HSHOgBaPFERlDxiHNQcLo331CpjGus34QqczyMeEzq7ddvXfJw67p6vQp-I9DUvmQPLuN71zy4tpYt6tksdEr14tdqN1eN2fkuNJNdNOfPSFvtzev8_t0-Xi3mM-WqQFJu5RDjpIyY7VB0BYAKRemFNIxQ1lpodRQOC2cLKjVwCRFi1rmaDPHpCxwQhYD13q9VttQb3Q4KK9r9S34sFI6dLVpnBIcjeUgKo0iLyGXFQAUErGCEktR9ayLgbUN_n3nYqfWfhfaPr4CzikrpJCsd10OLhN8jMFVv19ppr56Vn894yf4wG7C |
CitedBy_id | crossref_primary_10_3390_rs15194729 crossref_primary_10_3390_rs16101653 crossref_primary_10_3390_s23031086 |
Cites_doi | 10.1109/JPROC.2019.2948454 10.1109/TPAMI.2018.2848925 10.1109/CVPR.2019.00516 10.3390/rs14010215 10.3390/rs14153571 10.3390/rs14153590 10.3390/rs14010206 10.3390/rs14010103 10.1080/01431161.2016.1264027 10.1007/978-3-030-01246-5_45 10.3390/rs13152924 10.1109/TGRS.2021.3136159 10.1007/978-3-030-58595-2 10.3390/rs13173445 10.1109/TGRS.2020.3007533 10.1109/TIP.2022.3184813 10.1109/ICCV.2017.47 10.3390/rs13224706 10.1109/CVPR.2016.434 10.1109/TMM.2021.3050089 10.1109/ICASSP39728.2021.9414668 10.3390/rs14133184 10.1109/TMM.2019.2929957 10.1109/TGRS.2017.2685945 10.1109/TII.2021.3090036 10.1109/LGRS.2015.2475299 10.1016/j.isprsjprs.2018.01.004 10.1109/CVPR.2009.5206848 10.1109/ICASSP43922.2022.9747268 10.1109/CVPR42600.2020.00642 10.3390/rs14010150 10.1109/WACV51458.2022.00052 10.1109/ICCV.2019.00655 10.1109/TMM.2020.2974326 10.1109/TMM.2016.2646180 10.3390/rs14061478 10.1109/CVPR42600.2020.00330 10.1016/j.patcog.2021.107889 10.3390/rs14153606 10.1109/TIP.2019.2948472 10.1109/CVPR.2019.00747 10.3390/rs12152488 10.3390/rs12233978 10.3390/s20010291 10.1109/CVPR42600.2020.00643 10.1109/CVPR.2019.00056 10.3390/rs12010175 10.3390/land11070977 10.1145/1869790.1869829 10.1109/TPAMI.2020.2980231 10.3390/rs14010207 10.3390/rs14153625 10.1007/978-3-319-24261-3_7 10.3390/rs14122794 10.3390/rs13234786 10.1609/aaai.v35i2.16236 10.1109/TIP.2020.2973812 10.1007/978-3-319-54184-6 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs14215615 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_873cd728fa384b249f2225933f2b3b8f 10_3390_rs14215615 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c291t-7243916cdac32ad223178cb89e6c16bd2ba25ea8e951da26913d3a943d0e69953 |
IEDL.DBID | 8FG |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:08:01 EDT 2024 Mon Nov 04 14:22:34 EST 2024 Thu Sep 26 20:42:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-7243916cdac32ad223178cb89e6c16bd2ba25ea8e951da26913d3a943d0e69953 |
ORCID | 0000-0002-0604-5563 |
OpenAccessLink | https://www.proquest.com/docview/2771659896?pq-origsite=%requestingapplication% |
PQID | 2771659896 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_873cd728fa384b249f2225933f2b3b8f proquest_journals_2771659896 crossref_primary_10_3390_rs14215615 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | (ref_35) 2014; 15 ref_50 Duan (ref_58) 2020; 29 Xia (ref_42) 2017; 55 ref_14 ref_13 Ioffe (ref_60) 2015; Volume 37 ref_12 ref_56 ref_11 ref_55 ref_10 ref_54 ref_53 Zheng (ref_27) 2021; 24 Zhou (ref_41) 2018; 145 ref_52 ref_51 Min (ref_24) 2020; 22 ref_19 Dong (ref_26) 2022; 18 ref_18 ref_17 ref_16 ref_15 Tang (ref_46) 2022; 60 ref_61 Liong (ref_28) 2016; 19 Opitz (ref_63) 2020; 42 ref_65 ref_20 ref_64 Guo (ref_25) 2022; 31 ref_62 ref_29 Gu (ref_59) 2020; Volume 34 Zhang (ref_23) 2020; 22 Zheng (ref_57) 2021; 43 Chang (ref_22) 2020; 29 ref_34 ref_33 ref_32 Pla (ref_38) 2017; 38 He (ref_21) 2021; 115 ref_30 Liu (ref_45) 2021; 59 Zhang (ref_37) 2019; 107 ref_39 Zou (ref_36) 2015; 12 ref_47 ref_44 ref_43 Hoffer (ref_48) 2015; Volume 9370 ref_40 ref_1 ref_3 ref_2 ref_49 ref_9 ref_8 ref_5 ref_4 ref_7 Lee (ref_31) 2016; Volume 29 ref_6 |
References_xml | – volume: 107 start-page: 2294 year: 2019 ident: ref_37 article-title: Remotely sensed big data: Evolution in model development for information extraction point of view publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2948454 contributor: fullname: Zhang – volume: 42 start-page: 276 year: 2020 ident: ref_63 article-title: Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2848925 contributor: fullname: Opitz – ident: ref_29 doi: 10.1109/CVPR.2019.00516 – ident: ref_15 doi: 10.3390/rs14010215 – ident: ref_5 doi: 10.3390/rs14153571 – ident: ref_2 doi: 10.3390/rs14153590 – ident: ref_13 doi: 10.3390/rs14010206 – ident: ref_18 doi: 10.3390/rs14010103 – volume: 38 start-page: 314 year: 2017 ident: ref_38 article-title: Single-Frame Super-Resolution in Remote Sensing: A Practical Overview publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1264027 contributor: fullname: Pla – ident: ref_65 doi: 10.1007/978-3-030-01246-5_45 – ident: ref_12 doi: 10.3390/rs13152924 – volume: Volume 34 start-page: 10853 year: 2020 ident: ref_59 article-title: Symmetrical Synthesis for Deep Metric Learning publication-title: Proceedings of the The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), The Thirty-Second Conference on Innovative Applications of Artificial Intelligence (IAAI 2020), The Tenth Symposium on Educational Advances in Artificial Intelligence (EAAI 2020) contributor: fullname: Gu – volume: 60 start-page: 5615419 year: 2022 ident: ref_46 article-title: Meta-Hashing for Remote Sensing Image Retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3136159 contributor: fullname: Tang – ident: ref_43 doi: 10.1007/978-3-030-58595-2 – ident: ref_10 doi: 10.3390/rs13173445 – volume: 59 start-page: 3420 year: 2021 ident: ref_45 article-title: Deep Hash Learning for Remote Sensing Image Retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3007533 contributor: fullname: Liu – ident: ref_56 – volume: 31 start-page: 4543 year: 2022 ident: ref_25 article-title: Learning Calibrated Class Centers for Few-Shot Classification by Pair-Wise Similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3184813 contributor: fullname: Guo – ident: ref_33 doi: 10.1109/ICCV.2017.47 – ident: ref_17 doi: 10.3390/rs13224706 – volume: Volume 37 start-page: 448 year: 2015 ident: ref_60 article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift publication-title: Proceedings of the 32nd International Conference on Machine Learning contributor: fullname: Ioffe – ident: ref_49 doi: 10.1109/CVPR.2016.434 – volume: 24 start-page: 338 year: 2021 ident: ref_27 article-title: Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3050089 contributor: fullname: Zheng – ident: ref_30 doi: 10.1109/ICASSP39728.2021.9414668 – ident: ref_7 doi: 10.3390/rs14133184 – volume: 22 start-page: 540 year: 2020 ident: ref_23 article-title: Improved Deep Hashing With Soft Pairwise Similarity for Multi-Label Image Retrieval publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2929957 contributor: fullname: Zhang – volume: 55 start-page: 3965 year: 2017 ident: ref_42 article-title: AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 contributor: fullname: Xia – volume: 18 start-page: 1801 year: 2022 ident: ref_26 article-title: Deep Metric Learning-Based for Multi-Target Few-Shot Pavement Distress Classification publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3090036 contributor: fullname: Dong – volume: 12 start-page: 2321 year: 2015 ident: ref_36 article-title: Deep Learning Based Feature Selection for Remote Sensing Scene Classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2475299 contributor: fullname: Zou – volume: 145 start-page: 197 year: 2018 ident: ref_41 article-title: PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.004 contributor: fullname: Zhou – ident: ref_61 doi: 10.1109/CVPR.2009.5206848 – ident: ref_53 – ident: ref_34 doi: 10.1109/ICASSP43922.2022.9747268 – ident: ref_50 doi: 10.1109/CVPR42600.2020.00642 – ident: ref_16 doi: 10.3390/rs14010150 – ident: ref_47 – ident: ref_54 doi: 10.1109/WACV51458.2022.00052 – ident: ref_39 doi: 10.1109/ICCV.2019.00655 – volume: 22 start-page: 3128 year: 2020 ident: ref_24 article-title: A Two-Stage Triplet Network Training Framework for Image Retrieval publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2974326 contributor: fullname: Min – volume: 19 start-page: 1234 year: 2016 ident: ref_28 article-title: Deep Coupled Metric Learning for Cross-Modal Matching publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2646180 contributor: fullname: Liong – volume: 15 start-page: 3221 year: 2014 ident: ref_35 article-title: Accelerating T-SNE Using Tree-Based Algorithms publication-title: J. Mach. Learn. Res. – ident: ref_8 doi: 10.3390/rs14061478 – ident: ref_32 doi: 10.1109/CVPR42600.2020.00330 – volume: 115 start-page: 107889 year: 2021 ident: ref_21 article-title: A hierarchical sampling based triplet network for fine-grained image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107889 contributor: fullname: He – ident: ref_6 doi: 10.3390/rs14153606 – volume: 29 start-page: 2037 year: 2020 ident: ref_58 article-title: Deep Adversarial Metric Learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2948472 contributor: fullname: Duan – ident: ref_52 doi: 10.1109/CVPR.2019.00747 – ident: ref_1 doi: 10.3390/rs12152488 – ident: ref_44 doi: 10.3390/rs12233978 – ident: ref_20 doi: 10.3390/s20010291 – ident: ref_51 doi: 10.1109/CVPR42600.2020.00643 – ident: ref_64 doi: 10.1109/CVPR.2019.00056 – ident: ref_19 doi: 10.3390/rs12010175 – ident: ref_3 doi: 10.3390/land11070977 – ident: ref_40 doi: 10.1145/1869790.1869829 – volume: 43 start-page: 3214 year: 2021 ident: ref_57 article-title: Hardness-Aware Deep Metric Learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2980231 contributor: fullname: Zheng – volume: Volume 29 start-page: 1857 year: 2016 ident: ref_31 article-title: Improved Deep Metric Learning with Multi-class N-pair Loss Objective publication-title: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016 (Nips 2016), Barcelona, Spain, 5–10 December 2016 contributor: fullname: Lee – ident: ref_14 doi: 10.3390/rs14010207 – ident: ref_4 doi: 10.3390/rs14153625 – volume: Volume 9370 start-page: 84 year: 2015 ident: ref_48 article-title: Deep metric learning using triplet network publication-title: Proceedings of the Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015 doi: 10.1007/978-3-319-24261-3_7 contributor: fullname: Hoffer – ident: ref_9 doi: 10.3390/rs14122794 – ident: ref_11 doi: 10.3390/rs13234786 – ident: ref_55 doi: 10.1609/aaai.v35i2.16236 – volume: 29 start-page: 4683 year: 2020 ident: ref_22 article-title: The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2973812 contributor: fullname: Chang – ident: ref_62 doi: 10.1007/978-3-319-54184-6 |
SSID | ssj0000331904 |
Score | 2.3789067 |
Snippet | With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 5615 |
SubjectTerms | Clusters Data collection Datasets Feature extraction Image retrieval Information processing Learning metric learning Neural networks Performance evaluation Proxies proxy-based loss Remote sensing Semantics Teaching methods |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Si17ET6xWWdBr6G6STTLHKpYqKKIWelvytXqxlrYe_PdOslstePDiNSzs8mZ2Zh5k3iPkwkdvNGFK6kBzKqx2VItC0CgdU3srwYe4jXx3L0djcTspJ2tWX_FOWCMP3ADX14o7r5iuDdfCIlmoI0NBGl4zy62uU_XNYY1MpRrMMbVy0eiRcuT1_fmiENjeZPS_XetASaj_Vx1OzWW4Q7bbqTAbNF-zSzbCdI9stgblr5_7RA28mcXKlKWNWfoQb59kOHBmjwHBDtlTvIg-fclu3rBA4GH0ycIkOiDj4fXz1Yi2ngfUMSiWVLG0Cuu8cZwZj827UNpZDUG6QlrPrGFlMDrgZOQNk1Bwzw0I7vMgAUp-SDrT92k4Ipm3kAeVO2NxTMgtgKkL4wVTEqyTNeuS8xUO1ayRtqiQEkS0qh-0uuQyQvT9RJSjTgcYpKoNUvVXkLqktwK4av-RRcUUcrUSNMjj_3jHCdlicTUh7Qn2SGc5_winODAs7VnKjS_Wvrvc priority: 102 providerName: Directory of Open Access Journals |
Title | Adaptive Multi-Proxy for Remote Sensing Image Retrieval |
URI | https://www.proquest.com/docview/2771659896 https://doaj.org/article/873cd728fa384b249f2225933f2b3b8f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UDnoxPiOKZBO9Nuy23W57MmBANJEQlITbpq_Fi4CAB_-9nbKAiYnXtqdvZue1M_MhdGeBG42pFBspKGZaGCxYwjCsjims5tI6mEZ-6fPeiD2P03FZcFuWbZUbmxgMtZ0ZqJE3SeYj-1QKye_nnxhYo-DvakmhsY-qiX8AyZfoPm5rLDH1Chaz9VZS6rP75mKZMO_kOLDg_vJDYV3_H2scXEz3GB2VsWHUWgvzBO256Sk6KGnK37_PUNayag72KQpzs3gAPSiRDzujofOQu-gV2tGnk-jpw5sJfwhsWV6VztGo23l76OGS-QAbIpMVzkgYiDVWGUqU9S48yYTRQjpuEq4t0YqkTgnn4yOrCJcJtVRJRm3suJQpvUCV6WzqLlFktYxdFhulfbAQaylVkSjLSMalNrwgNXS7wSGfrxdc5D4xALTyHVo11AaIti9gKXU4mC0meanjuciosRkRhaKCaZ_XFZBMSkoLoqkWRQ3VNwDn5ZeyzHdyvfr_-hodEhg9CHOAdVRZLb7cjQ8IVroRpN5A1XanPxg2Qlr9A9HStqA |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oHvBi_IwoahO9bmh3t9vdk0EjggIxCgm3Zr-KFwsCHvz37pQCJiZetz3NTmfeTOfNQ-jGgjYaUzE2UlDMtDBYsIhhWB2TWc2ldcBG7vV5e8ieRvGobLjNy7HKVUwsArWdGOiRN0jikX0sheS3008MqlHwd7WU0NhGO4z6XA1M8dbjuscSUu9gIVtuJaW-um_M5hHzSY6DCu6vPFSs6_8TjYsU09pHeyU2DJrLyzxAWy4_RNVSpvz9-wglTaumEJ-CgjeLX2AGJfCwM3h13uQueINx9HwcdD58mPCHoJblXekYDVsPg_s2LpUPsCEyWuCEFIRYY5WhRFmfwqNEGC2k4ybi2hKtSOyUcB4fWUW4jKilSjJqQ8eljOkJquST3J2iwGoZuiQ0SnuwEGopVRYpy0jCpTY8IzV0vbJDOl0uuEh9YQDWSjfWqqE7MNH6DVhKXRxMZuO09PFUJNTYhIhMUcG0r-syKCYlpRnRVIushuorA6fllzJPN_d69v_jK1RtD3rdtNvpP5-jXQI0hIITWEeVxezLXXhwsNCXhQf8AGpLtvM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYJOCCWEVZI8HVamI7jn1CbGVHCKjELfKWcqEtbTnw98ykLkVC4urk9GYy88aZmUfIkUdtNGFy6rTiVFjlqBKZoLg6pvJWah9wGvn-QV61xc1r_hr7n4axrXISE-tA7XsO78ibrABmn2ulZbOKbRGP563j_gdFBSn80xrlNGbJPGRFiR6uWpc_9y0pB2dLxXhDKYdKvzkYZgISnkRF3F85qV7d_ycy1-mmtUKWI09MTsaGXSUzobtGFqNk-dvXOilOvOljrErqGVr6iP0oCVDQ5CkA_CF5xtb0bie5foeQAYeonAVutUHarYuXsysaVRCoYzob0YLVw7HOG8eZ8ZDOs0I5q3SQLpPWM2tYHowKwJW8YVJn3HOjBfdpkFrnfJPMdXvdsEUSb3UaitQZC8QhtVqbKjNesEJq62TFGuRwgkPZHy-7KKFIQLTKKVoNcooQ_byBC6rrg96gU0Z_L1XBnS-YqgxXwkKNV2FhqTmvmOVWVQ2yOwG4jF_NsJzaePv_xwdkAYxf3l0_3O6QJYYTCfV44C6ZGw0-wx7whJHdrx3gG-UluzE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Multi-Proxy+for+Remote+Sensing+Image+Retrieval&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xinyue&rft.au=Song%2C+Wei&rft.au=Wang%2C+Jian&rft.au=Du%2C+Yanling&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=21&rft.spage=5615&rft_id=info:doi/10.3390%2Frs14215615&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |