Adaptive Multi-Proxy for Remote Sensing Image Retrieval

With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 21; p. 5615
Main Authors Li, Xinyue, Wei, Song, Wang, Jian, Du, Yanling, Ge, Mengying
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the performance of remote sensing image retrieval is to make full use of the limited sample information to extract more comprehensive class features. In this paper, we propose a proxy-based deep metric learning method and an adaptive multi-proxy framework. First, we propose an intra-cluster sample synthesis strategy with a random factor, which uses the limited samples in batch to synthesize more samples to enhance the network’s learning of unobvious features in the class. Second, we propose an adaptive proxy assignment method to assign multiple proxies according to the cluster of samples within a class, and to determine weights for each proxy according to the cluster scale to accurately and comprehensively measure the sample-class similarity. Finally, we incorporate a rigorous evaluation metric mAP@R and a variety of dataset partitioning methods, and conduct extensive experiments on commonly used remote sensing image datasets.
AbstractList With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets not only contain rich location, semantic and scale information but also have large intra-class differences. Therefore, the key to improving the performance of remote sensing image retrieval is to make full use of the limited sample information to extract more comprehensive class features. In this paper, we propose a proxy-based deep metric learning method and an adaptive multi-proxy framework. First, we propose an intra-cluster sample synthesis strategy with a random factor, which uses the limited samples in batch to synthesize more samples to enhance the network’s learning of unobvious features in the class. Second, we propose an adaptive proxy assignment method to assign multiple proxies according to the cluster of samples within a class, and to determine weights for each proxy according to the cluster scale to accurately and comprehensively measure the sample-class similarity. Finally, we incorporate a rigorous evaluation metric mAP@R and a variety of dataset partitioning methods, and conduct extensive experiments on commonly used remote sensing image datasets.
Author Wang, Jian
Ge, Mengying
Wei, Song
Li, Xinyue
Du, Yanling
Author_xml – sequence: 1
  givenname: Xinyue
  surname: Li
  fullname: Li, Xinyue
– sequence: 2
  givenname: Song
  orcidid: 0000-0002-0604-5563
  surname: Wei
  fullname: Wei, Song
– sequence: 3
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
– sequence: 4
  givenname: Yanling
  surname: Du
  fullname: Du, Yanling
– sequence: 5
  givenname: Mengying
  surname: Ge
  fullname: Ge, Mengying
BookMark eNpNkFtLw0AQhRepYK198RcEfBOi2ZlkL4-leClUFC_Py2Z3U1LSbN1Ni_33RiPqvMxwOHxzOKdk1PrWEXJOsytEmV2HSHOgBaPFERlDxiHNQcLo331CpjGus34QqczyMeEzq7ddvXfJw67p6vQp-I9DUvmQPLuN71zy4tpYt6tksdEr14tdqN1eN2fkuNJNdNOfPSFvtzev8_t0-Xi3mM-WqQFJu5RDjpIyY7VB0BYAKRemFNIxQ1lpodRQOC2cLKjVwCRFi1rmaDPHpCxwQhYD13q9VttQb3Q4KK9r9S34sFI6dLVpnBIcjeUgKo0iLyGXFQAUErGCEktR9ayLgbUN_n3nYqfWfhfaPr4CzikrpJCsd10OLhN8jMFVv19ppr56Vn894yf4wG7C
CitedBy_id crossref_primary_10_3390_rs15194729
crossref_primary_10_3390_rs16101653
crossref_primary_10_3390_s23031086
Cites_doi 10.1109/JPROC.2019.2948454
10.1109/TPAMI.2018.2848925
10.1109/CVPR.2019.00516
10.3390/rs14010215
10.3390/rs14153571
10.3390/rs14153590
10.3390/rs14010206
10.3390/rs14010103
10.1080/01431161.2016.1264027
10.1007/978-3-030-01246-5_45
10.3390/rs13152924
10.1109/TGRS.2021.3136159
10.1007/978-3-030-58595-2
10.3390/rs13173445
10.1109/TGRS.2020.3007533
10.1109/TIP.2022.3184813
10.1109/ICCV.2017.47
10.3390/rs13224706
10.1109/CVPR.2016.434
10.1109/TMM.2021.3050089
10.1109/ICASSP39728.2021.9414668
10.3390/rs14133184
10.1109/TMM.2019.2929957
10.1109/TGRS.2017.2685945
10.1109/TII.2021.3090036
10.1109/LGRS.2015.2475299
10.1016/j.isprsjprs.2018.01.004
10.1109/CVPR.2009.5206848
10.1109/ICASSP43922.2022.9747268
10.1109/CVPR42600.2020.00642
10.3390/rs14010150
10.1109/WACV51458.2022.00052
10.1109/ICCV.2019.00655
10.1109/TMM.2020.2974326
10.1109/TMM.2016.2646180
10.3390/rs14061478
10.1109/CVPR42600.2020.00330
10.1016/j.patcog.2021.107889
10.3390/rs14153606
10.1109/TIP.2019.2948472
10.1109/CVPR.2019.00747
10.3390/rs12152488
10.3390/rs12233978
10.3390/s20010291
10.1109/CVPR42600.2020.00643
10.1109/CVPR.2019.00056
10.3390/rs12010175
10.3390/land11070977
10.1145/1869790.1869829
10.1109/TPAMI.2020.2980231
10.3390/rs14010207
10.3390/rs14153625
10.1007/978-3-319-24261-3_7
10.3390/rs14122794
10.3390/rs13234786
10.1609/aaai.v35i2.16236
10.1109/TIP.2020.2973812
10.1007/978-3-319-54184-6
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs14215615
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_873cd728fa384b249f2225933f2b3b8f
10_3390_rs14215615
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c291t-7243916cdac32ad223178cb89e6c16bd2ba25ea8e951da26913d3a943d0e69953
IEDL.DBID 8FG
ISSN 2072-4292
IngestDate Tue Oct 22 15:08:01 EDT 2024
Mon Nov 04 14:22:34 EST 2024
Thu Sep 26 20:42:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7243916cdac32ad223178cb89e6c16bd2ba25ea8e951da26913d3a943d0e69953
ORCID 0000-0002-0604-5563
OpenAccessLink https://www.proquest.com/docview/2771659896?pq-origsite=%requestingapplication%
PQID 2771659896
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_873cd728fa384b249f2225933f2b3b8f
proquest_journals_2771659896
crossref_primary_10_3390_rs14215615
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_35) 2014; 15
ref_50
Duan (ref_58) 2020; 29
Xia (ref_42) 2017; 55
ref_14
ref_13
Ioffe (ref_60) 2015; Volume 37
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
ref_53
Zheng (ref_27) 2021; 24
Zhou (ref_41) 2018; 145
ref_52
ref_51
Min (ref_24) 2020; 22
ref_19
Dong (ref_26) 2022; 18
ref_18
ref_17
ref_16
ref_15
Tang (ref_46) 2022; 60
ref_61
Liong (ref_28) 2016; 19
Opitz (ref_63) 2020; 42
ref_65
ref_20
ref_64
Guo (ref_25) 2022; 31
ref_62
ref_29
Gu (ref_59) 2020; Volume 34
Zhang (ref_23) 2020; 22
Zheng (ref_57) 2021; 43
Chang (ref_22) 2020; 29
ref_34
ref_33
ref_32
Pla (ref_38) 2017; 38
He (ref_21) 2021; 115
ref_30
Liu (ref_45) 2021; 59
Zhang (ref_37) 2019; 107
ref_39
Zou (ref_36) 2015; 12
ref_47
ref_44
ref_43
Hoffer (ref_48) 2015; Volume 9370
ref_40
ref_1
ref_3
ref_2
ref_49
ref_9
ref_8
ref_5
ref_4
ref_7
Lee (ref_31) 2016; Volume 29
ref_6
References_xml – volume: 107
  start-page: 2294
  year: 2019
  ident: ref_37
  article-title: Remotely sensed big data: Evolution in model development for information extraction point of view
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2948454
  contributor:
    fullname: Zhang
– volume: 42
  start-page: 276
  year: 2020
  ident: ref_63
  article-title: Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2848925
  contributor:
    fullname: Opitz
– ident: ref_29
  doi: 10.1109/CVPR.2019.00516
– ident: ref_15
  doi: 10.3390/rs14010215
– ident: ref_5
  doi: 10.3390/rs14153571
– ident: ref_2
  doi: 10.3390/rs14153590
– ident: ref_13
  doi: 10.3390/rs14010206
– ident: ref_18
  doi: 10.3390/rs14010103
– volume: 38
  start-page: 314
  year: 2017
  ident: ref_38
  article-title: Single-Frame Super-Resolution in Remote Sensing: A Practical Overview
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1264027
  contributor:
    fullname: Pla
– ident: ref_65
  doi: 10.1007/978-3-030-01246-5_45
– ident: ref_12
  doi: 10.3390/rs13152924
– volume: Volume 34
  start-page: 10853
  year: 2020
  ident: ref_59
  article-title: Symmetrical Synthesis for Deep Metric Learning
  publication-title: Proceedings of the The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), The Thirty-Second Conference on Innovative Applications of Artificial Intelligence (IAAI 2020), The Tenth Symposium on Educational Advances in Artificial Intelligence (EAAI 2020)
  contributor:
    fullname: Gu
– volume: 60
  start-page: 5615419
  year: 2022
  ident: ref_46
  article-title: Meta-Hashing for Remote Sensing Image Retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3136159
  contributor:
    fullname: Tang
– ident: ref_43
  doi: 10.1007/978-3-030-58595-2
– ident: ref_10
  doi: 10.3390/rs13173445
– volume: 59
  start-page: 3420
  year: 2021
  ident: ref_45
  article-title: Deep Hash Learning for Remote Sensing Image Retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3007533
  contributor:
    fullname: Liu
– ident: ref_56
– volume: 31
  start-page: 4543
  year: 2022
  ident: ref_25
  article-title: Learning Calibrated Class Centers for Few-Shot Classification by Pair-Wise Similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3184813
  contributor:
    fullname: Guo
– ident: ref_33
  doi: 10.1109/ICCV.2017.47
– ident: ref_17
  doi: 10.3390/rs13224706
– volume: Volume 37
  start-page: 448
  year: 2015
  ident: ref_60
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
  contributor:
    fullname: Ioffe
– ident: ref_49
  doi: 10.1109/CVPR.2016.434
– volume: 24
  start-page: 338
  year: 2021
  ident: ref_27
  article-title: Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3050089
  contributor:
    fullname: Zheng
– ident: ref_30
  doi: 10.1109/ICASSP39728.2021.9414668
– ident: ref_7
  doi: 10.3390/rs14133184
– volume: 22
  start-page: 540
  year: 2020
  ident: ref_23
  article-title: Improved Deep Hashing With Soft Pairwise Similarity for Multi-Label Image Retrieval
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2929957
  contributor:
    fullname: Zhang
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_42
  article-title: AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
  contributor:
    fullname: Xia
– volume: 18
  start-page: 1801
  year: 2022
  ident: ref_26
  article-title: Deep Metric Learning-Based for Multi-Target Few-Shot Pavement Distress Classification
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3090036
  contributor:
    fullname: Dong
– volume: 12
  start-page: 2321
  year: 2015
  ident: ref_36
  article-title: Deep Learning Based Feature Selection for Remote Sensing Scene Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2475299
  contributor:
    fullname: Zou
– volume: 145
  start-page: 197
  year: 2018
  ident: ref_41
  article-title: PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.004
  contributor:
    fullname: Zhou
– ident: ref_61
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_53
– ident: ref_34
  doi: 10.1109/ICASSP43922.2022.9747268
– ident: ref_50
  doi: 10.1109/CVPR42600.2020.00642
– ident: ref_16
  doi: 10.3390/rs14010150
– ident: ref_47
– ident: ref_54
  doi: 10.1109/WACV51458.2022.00052
– ident: ref_39
  doi: 10.1109/ICCV.2019.00655
– volume: 22
  start-page: 3128
  year: 2020
  ident: ref_24
  article-title: A Two-Stage Triplet Network Training Framework for Image Retrieval
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2974326
  contributor:
    fullname: Min
– volume: 19
  start-page: 1234
  year: 2016
  ident: ref_28
  article-title: Deep Coupled Metric Learning for Cross-Modal Matching
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2646180
  contributor:
    fullname: Liong
– volume: 15
  start-page: 3221
  year: 2014
  ident: ref_35
  article-title: Accelerating T-SNE Using Tree-Based Algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref_8
  doi: 10.3390/rs14061478
– ident: ref_32
  doi: 10.1109/CVPR42600.2020.00330
– volume: 115
  start-page: 107889
  year: 2021
  ident: ref_21
  article-title: A hierarchical sampling based triplet network for fine-grained image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107889
  contributor:
    fullname: He
– ident: ref_6
  doi: 10.3390/rs14153606
– volume: 29
  start-page: 2037
  year: 2020
  ident: ref_58
  article-title: Deep Adversarial Metric Learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2948472
  contributor:
    fullname: Duan
– ident: ref_52
  doi: 10.1109/CVPR.2019.00747
– ident: ref_1
  doi: 10.3390/rs12152488
– ident: ref_44
  doi: 10.3390/rs12233978
– ident: ref_20
  doi: 10.3390/s20010291
– ident: ref_51
  doi: 10.1109/CVPR42600.2020.00643
– ident: ref_64
  doi: 10.1109/CVPR.2019.00056
– ident: ref_19
  doi: 10.3390/rs12010175
– ident: ref_3
  doi: 10.3390/land11070977
– ident: ref_40
  doi: 10.1145/1869790.1869829
– volume: 43
  start-page: 3214
  year: 2021
  ident: ref_57
  article-title: Hardness-Aware Deep Metric Learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2980231
  contributor:
    fullname: Zheng
– volume: Volume 29
  start-page: 1857
  year: 2016
  ident: ref_31
  article-title: Improved Deep Metric Learning with Multi-class N-pair Loss Objective
  publication-title: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016 (Nips 2016), Barcelona, Spain, 5–10 December 2016
  contributor:
    fullname: Lee
– ident: ref_14
  doi: 10.3390/rs14010207
– ident: ref_4
  doi: 10.3390/rs14153625
– volume: Volume 9370
  start-page: 84
  year: 2015
  ident: ref_48
  article-title: Deep metric learning using triplet network
  publication-title: Proceedings of the Similarity-Based Pattern Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015
  doi: 10.1007/978-3-319-24261-3_7
  contributor:
    fullname: Hoffer
– ident: ref_9
  doi: 10.3390/rs14122794
– ident: ref_11
  doi: 10.3390/rs13234786
– ident: ref_55
  doi: 10.1609/aaai.v35i2.16236
– volume: 29
  start-page: 4683
  year: 2020
  ident: ref_22
  article-title: The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2973812
  contributor:
    fullname: Chang
– ident: ref_62
  doi: 10.1007/978-3-319-54184-6
SSID ssj0000331904
Score 2.3789067
Snippet With the development of remote sensing technology, content-based remote sensing image retrieval has become a research hotspot. Remote sensing image datasets...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 5615
SubjectTerms Clusters
Data collection
Datasets
Feature extraction
Image retrieval
Information processing
Learning
metric learning
Neural networks
Performance evaluation
Proxies
proxy-based loss
Remote sensing
Semantics
Teaching methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Si17ET6xWWdBr6G6STTLHKpYqKKIWelvytXqxlrYe_PdOslstePDiNSzs8mZ2Zh5k3iPkwkdvNGFK6kBzKqx2VItC0CgdU3srwYe4jXx3L0djcTspJ2tWX_FOWCMP3ADX14o7r5iuDdfCIlmoI0NBGl4zy62uU_XNYY1MpRrMMbVy0eiRcuT1_fmiENjeZPS_XetASaj_Vx1OzWW4Q7bbqTAbNF-zSzbCdI9stgblr5_7RA28mcXKlKWNWfoQb59kOHBmjwHBDtlTvIg-fclu3rBA4GH0ycIkOiDj4fXz1Yi2ngfUMSiWVLG0Cuu8cZwZj827UNpZDUG6QlrPrGFlMDrgZOQNk1Bwzw0I7vMgAUp-SDrT92k4Ipm3kAeVO2NxTMgtgKkL4wVTEqyTNeuS8xUO1ayRtqiQEkS0qh-0uuQyQvT9RJSjTgcYpKoNUvVXkLqktwK4av-RRcUUcrUSNMjj_3jHCdlicTUh7Qn2SGc5_winODAs7VnKjS_Wvrvc
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Multi-Proxy for Remote Sensing Image Retrieval
URI https://www.proquest.com/docview/2771659896
https://doaj.org/article/873cd728fa384b249f2225933f2b3b8f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UDnoxPiOKZBO9Nuy23W57MmBANJEQlITbpq_Fi4CAB_-9nbKAiYnXtqdvZue1M_MhdGeBG42pFBspKGZaGCxYwjCsjims5tI6mEZ-6fPeiD2P03FZcFuWbZUbmxgMtZ0ZqJE3SeYj-1QKye_nnxhYo-DvakmhsY-qiX8AyZfoPm5rLDH1Chaz9VZS6rP75mKZMO_kOLDg_vJDYV3_H2scXEz3GB2VsWHUWgvzBO256Sk6KGnK37_PUNayag72KQpzs3gAPSiRDzujofOQu-gV2tGnk-jpw5sJfwhsWV6VztGo23l76OGS-QAbIpMVzkgYiDVWGUqU9S48yYTRQjpuEq4t0YqkTgnn4yOrCJcJtVRJRm3suJQpvUCV6WzqLlFktYxdFhulfbAQaylVkSjLSMalNrwgNXS7wSGfrxdc5D4xALTyHVo11AaIti9gKXU4mC0meanjuciosRkRhaKCaZ_XFZBMSkoLoqkWRQ3VNwDn5ZeyzHdyvfr_-hodEhg9CHOAdVRZLb7cjQ8IVroRpN5A1XanPxg2Qlr9A9HStqA
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEN0oHvBi_IwoahO9bmh3t9vdk0EjggIxCgm3Zr-KFwsCHvz37pQCJiZetz3NTmfeTOfNQ-jGgjYaUzE2UlDMtDBYsIhhWB2TWc2ldcBG7vV5e8ieRvGobLjNy7HKVUwsArWdGOiRN0jikX0sheS3008MqlHwd7WU0NhGO4z6XA1M8dbjuscSUu9gIVtuJaW-um_M5hHzSY6DCu6vPFSs6_8TjYsU09pHeyU2DJrLyzxAWy4_RNVSpvz9-wglTaumEJ-CgjeLX2AGJfCwM3h13uQueINx9HwcdD58mPCHoJblXekYDVsPg_s2LpUPsCEyWuCEFIRYY5WhRFmfwqNEGC2k4ybi2hKtSOyUcB4fWUW4jKilSjJqQ8eljOkJquST3J2iwGoZuiQ0SnuwEGopVRYpy0jCpTY8IzV0vbJDOl0uuEh9YQDWSjfWqqE7MNH6DVhKXRxMZuO09PFUJNTYhIhMUcG0r-syKCYlpRnRVIushuorA6fllzJPN_d69v_jK1RtD3rdtNvpP5-jXQI0hIITWEeVxezLXXhwsNCXhQf8AGpLtvM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYJOCCWEVZI8HVamI7jn1CbGVHCKjELfKWcqEtbTnw98ykLkVC4urk9GYy88aZmUfIkUdtNGFy6rTiVFjlqBKZoLg6pvJWah9wGvn-QV61xc1r_hr7n4axrXISE-tA7XsO78ibrABmn2ulZbOKbRGP563j_gdFBSn80xrlNGbJPGRFiR6uWpc_9y0pB2dLxXhDKYdKvzkYZgISnkRF3F85qV7d_ycy1-mmtUKWI09MTsaGXSUzobtGFqNk-dvXOilOvOljrErqGVr6iP0oCVDQ5CkA_CF5xtb0bie5foeQAYeonAVutUHarYuXsysaVRCoYzob0YLVw7HOG8eZ8ZDOs0I5q3SQLpPWM2tYHowKwJW8YVJn3HOjBfdpkFrnfJPMdXvdsEUSb3UaitQZC8QhtVqbKjNesEJq62TFGuRwgkPZHy-7KKFIQLTKKVoNcooQ_byBC6rrg96gU0Z_L1XBnS-YqgxXwkKNV2FhqTmvmOVWVQ2yOwG4jF_NsJzaePv_xwdkAYxf3l0_3O6QJYYTCfV44C6ZGw0-wx7whJHdrx3gG-UluzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Multi-Proxy+for+Remote+Sensing+Image+Retrieval&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xinyue&rft.au=Song%2C+Wei&rft.au=Wang%2C+Jian&rft.au=Du%2C+Yanling&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=21&rft.spage=5615&rft_id=info:doi/10.3390%2Frs14215615&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon