Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping

Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hype...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 8; p. 970
Main Authors Sławik, Łukasz, Niedzielko, Jan, Kania, Adam, Piórkowski, Hubert, Kopeć, Dominik
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger.
AbstractList Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger.
Author Kania, Adam
Sławik, Łukasz
Niedzielko, Jan
Kopeć, Dominik
Piórkowski, Hubert
Author_xml – sequence: 1
  givenname: Łukasz
  surname: Sławik
  fullname: Sławik, Łukasz
– sequence: 2
  givenname: Jan
  orcidid: 0000-0002-6531-0267
  surname: Niedzielko
  fullname: Niedzielko, Jan
– sequence: 3
  givenname: Adam
  surname: Kania
  fullname: Kania, Adam
– sequence: 4
  givenname: Hubert
  surname: Piórkowski
  fullname: Piórkowski, Hubert
– sequence: 5
  givenname: Dominik
  orcidid: 0000-0003-0831-2992
  surname: Kopeć
  fullname: Kopeć, Dominik
BookMark eNptkc1uEzEQxy1UJErphSewxA0pxV_prk8oCoRGSkWlFq7WrHecOtrYi-099Bl46bosKggxlxmNfvOfr9fkJMSAhLzl7EJKzT6kzDlrmW7YC3IqWCMWSmhx8lf8ipznfGDVpOSaqVPy83oaih8HpJvB7-9LpjHRWx_2zxm6Dbmk6Yih0M2UfQw0Onr1MGLKI9qSYKAQerra3dJPUOAjXdF1PI6QfJ7Zco8-0RtMLqYjBIu0BvQ77rFAedK7hnGsLd-Qlw6GjOe__Rn5tvl8t75a7L5-2a5Xu4UVmpdFw1vUoF3b1VUb4Jy3grtLwVG5rtduKTptXa_0koNeWmi0lAKwdZ1yDriWZ2Q76_YRDmZM_gjpwUTw5lcipr2BVLwd0CindcN5f4nYKYGys1Yr1steI5cSZNV6N2uNKf6YMBdziFMKdXwjJFNMtEqySr2fKZtizgndc1fOzNPvzJ_fVZj9A1s_H6re2g__K3kEJVieWw
CitedBy_id crossref_primary_10_3390_rs15123055
crossref_primary_10_3390_rs11192238
crossref_primary_10_3390_rs13081504
crossref_primary_10_3390_rs13142803
crossref_primary_10_3390_rs14215531
crossref_primary_10_3390_rs11192264
crossref_primary_10_1007_s11273_020_09719_y
crossref_primary_10_1016_j_rsase_2021_100637
crossref_primary_10_3390_rs12010039
crossref_primary_10_1117_1_JRS_13_034502
crossref_primary_10_1016_j_isprsjprs_2021_12_010
crossref_primary_10_1038_s41598_023_31705_6
crossref_primary_10_3390_rs12111842
crossref_primary_10_3390_rs11222629
crossref_primary_10_1016_j_isprsjprs_2022_03_010
crossref_primary_10_3390_rs12172696
crossref_primary_10_3390_rs15051388
crossref_primary_10_1080_15481603_2023_2204682
crossref_primary_10_3390_rs13010107
crossref_primary_10_3390_rs13030443
crossref_primary_10_1016_j_apgeog_2020_102345
crossref_primary_10_1016_j_jag_2024_103719
crossref_primary_10_1038_s41598_024_79209_1
Cites_doi 10.1016/S0924-2716(99)00014-3
10.3390/s111110586
10.1016/j.rse.2013.08.003
10.5589/m12-007
10.1016/j.ecolind.2012.09.013
10.1016/j.rse.2014.03.018
10.1016/j.rse.2015.04.015
10.1890/07-0539.1
10.1016/j.isprsjprs.2014.08.001
10.1007/s11273-009-9169-z
10.1111/avsc.12115
10.1016/j.rse.2011.01.017
10.3390/rs70302871
10.1524/teme.2007.74.3.93
10.3390/rs10122019
10.1016/0967-0661(94)90349-2
10.1111/tgis.12164
10.3390/rs5084045
10.1016/j.rse.2012.06.012
10.1016/j.ecolind.2016.06.001
10.3390/rs6098056
10.1117/1.3361375
10.1016/j.rse.2007.09.009
10.1080/01431161.2013.776721
10.1016/j.rse.2007.11.016
10.1016/S1566-2535(01)00056-2
10.1109/36.763269
10.1016/j.rse.2010.07.002
10.1016/j.rse.2011.04.004
10.1080/10408398.2010.543495
10.1177/001316448104100307
10.1016/j.isprsjprs.2011.11.002
10.1016/j.jnc.2010.07.003
10.3390/rs70302971
10.3390/rs8050398
10.3390/rs9020173
10.3390/rs9030266
10.3390/rs4113462
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11080970
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4f99711d6eeb42e3bcc940d3d9e133a3
10_3390_rs11080970
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c291t-718e9a9f8b0977a111821f621e4fbd9f52b9cfd4951a95ca79332ae8fb4ffa193
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:00 EDT 2025
Fri Jul 25 12:08:34 EDT 2025
Tue Jul 01 04:14:44 EDT 2025
Thu Apr 24 22:55:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-718e9a9f8b0977a111821f621e4fbd9f52b9cfd4951a95ca79332ae8fb4ffa193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0831-2992
0000-0002-6531-0267
OpenAccessLink https://www.proquest.com/docview/2304028430?pq-origsite=%requestingapplication%
PQID 2304028430
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4f99711d6eeb42e3bcc940d3d9e133a3
proquest_journals_2304028430
crossref_primary_10_3390_rs11080970
crossref_citationtrail_10_3390_rs11080970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-23
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-23
  day: 23
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hladik (ref_8) 2013; 139
Ruser (ref_2) 2007; 74
ref_16
Kaasalainen (ref_54) 2011; 11
Anderson (ref_57) 2008; 112
Wald (ref_1) 1999; 37
Jones (ref_19) 2010; 114
Asner (ref_21) 2012; 124
Piiroinen (ref_12) 2015; 40
Baltsavias (ref_46) 1999; 54
ref_25
Kampe (ref_59) 2010; 4
ref_29
ref_28
ref_27
ref_26
Neumann (ref_44) 2015; 7
Asner (ref_14) 2008; 112
Kooistra (ref_5) 2013; 33
Mitchell (ref_58) 2015; 167
Elmasry (ref_45) 2012; 52
Matese (ref_56) 2015; 7
Berezowski (ref_10) 2016; 70
Sarrazin (ref_49) 2011; 37
Grime (ref_52) 1994; 2
Torabzadeh (ref_22) 2014; 97
Buddenbaum (ref_53) 2013; 34
ref_33
ref_32
ref_31
Chuvieco (ref_17) 2011; 115
ref_30
Borre (ref_24) 2011; 19
Zhang (ref_48) 2012; 2012
Chutia (ref_35) 2016; 20
Cook (ref_15) 2013; 5
ref_39
ref_38
Onojeghuo (ref_9) 2017; 59
Brennan (ref_23) 1981; 41
Zlinszky (ref_41) 2016; 41
Colgan (ref_20) 2012; 4
Adam (ref_51) 2010; 18
Schmidt (ref_6) 2017; 60
ref_43
ref_40
ref_3
Shaw (ref_47) 2003; 14
Alonzo (ref_13) 2014; 148
Cutler (ref_36) 2007; 88
Watkins (ref_55) 1978; 44
Feilhauer (ref_7) 2014; 17
Zlinszky (ref_42) 2014; 6
Onojeghuo (ref_18) 2011; 115
Simone (ref_11) 2002; 3
Ghimire (ref_37) 2012; 67
Stenzel (ref_4) 2014; 33
Breiman (ref_34) 2001; 45
References_xml – ident: ref_32
– volume: 54
  start-page: 83
  year: 1999
  ident: ref_46
  article-title: A comparison between photogrammetry and laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(99)00014-3
– ident: ref_26
– volume: 11
  start-page: 10586
  year: 2011
  ident: ref_54
  article-title: Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification
  publication-title: Sensors
  doi: 10.3390/s111110586
– volume: 14
  start-page: 3
  year: 2003
  ident: ref_47
  article-title: Spectral Imaging for Remote Sensing
  publication-title: Lincoln Lab. J.
– volume: 139
  start-page: 318
  year: 2013
  ident: ref_8
  article-title: Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.003
– volume: 37
  start-page: 653
  year: 2011
  ident: ref_49
  article-title: Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m12-007
– volume: 41
  start-page: 1293
  year: 2016
  ident: ref_41
  article-title: Biodiversity mapping via natura 2000 conservation status and ebv assessment using airborne laser scanning in alkali grasslands
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 33
  start-page: 71
  year: 2013
  ident: ref_5
  article-title: Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2012.09.013
– ident: ref_39
– volume: 148
  start-page: 70
  year: 2014
  ident: ref_13
  article-title: Urban tree species mapping using hyperspectral and lidar data fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.018
– volume: 167
  start-page: 98
  year: 2015
  ident: ref_58
  article-title: Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: Lessons for HyspIRI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.015
– volume: 45
  start-page: 1
  year: 2001
  ident: ref_34
  article-title: Random forest
  publication-title: Mach. Learn.
– volume: 59
  start-page: 79
  year: 2017
  ident: ref_9
  article-title: Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 88
  start-page: 2783
  year: 2007
  ident: ref_36
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– ident: ref_31
– volume: 97
  start-page: 25
  year: 2014
  ident: ref_22
  article-title: Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems—A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.001
– volume: 18
  start-page: 281
  year: 2010
  ident: ref_51
  article-title: Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
  publication-title: Wetl. Ecol. Manag.
  doi: 10.1007/s11273-009-9169-z
– ident: ref_27
– volume: 17
  start-page: 765
  year: 2014
  ident: ref_7
  article-title: Mapping the local variability of Natura 2000 habitats with remote sensing
  publication-title: Appl. Veg. Sci.
  doi: 10.1111/avsc.12115
– volume: 115
  start-page: 1369
  year: 2011
  ident: ref_17
  article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.017
– volume: 7
  start-page: 2871
  year: 2015
  ident: ref_44
  article-title: Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs70302871
– volume: 74
  start-page: 93
  year: 2007
  ident: ref_2
  article-title: Informationsfusion—Eine Übersicht (Information Fusion—An Overview)
  publication-title: Tech. Mess.
  doi: 10.1524/teme.2007.74.3.93
– volume: 33
  start-page: 211
  year: 2014
  ident: ref_4
  article-title: Remote sensing of scattered Natura 2000 habitats using a one-class classifier
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_50
  doi: 10.3390/rs10122019
– volume: 2
  start-page: 849
  year: 1994
  ident: ref_52
  article-title: Data fusion in decentralized sensor networks
  publication-title: Control Eng. Pract.
  doi: 10.1016/0967-0661(94)90349-2
– volume: 20
  start-page: 463
  year: 2016
  ident: ref_35
  article-title: Hyperspectral Remote Sensing Classifications: A Perspective Survey
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12164
– volume: 5
  start-page: 4045
  year: 2013
  ident: ref_15
  article-title: NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager
  publication-title: Remote Sens.
  doi: 10.3390/rs5084045
– volume: 124
  start-page: 454
  year: 2012
  ident: ref_21
  article-title: Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.012
– volume: 70
  start-page: 196
  year: 2016
  ident: ref_10
  article-title: Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2016.06.001
– ident: ref_28
– volume: 6
  start-page: 8056
  year: 2014
  ident: ref_42
  article-title: Categorizing grassland vegetation with full-waveform airborne laser scanning: A feasibility study for detecting natura 2000 habitat types
  publication-title: Remote Sens.
  doi: 10.3390/rs6098056
– ident: ref_30
– volume: 44
  start-page: 1167
  year: 1978
  ident: ref_55
  article-title: The Economics of Remote Sensing
  publication-title: J. Am. Soc. Photogramm.
– volume: 4
  start-page: 043510
  year: 2010
  ident: ref_59
  article-title: NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.3361375
– volume: 112
  start-page: 1856
  year: 2008
  ident: ref_57
  article-title: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.09.009
– ident: ref_3
– volume: 34
  start-page: 4511
  year: 2013
  ident: ref_53
  article-title: Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.776721
– volume: 112
  start-page: 1942
  year: 2008
  ident: ref_14
  article-title: Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.11.016
– ident: ref_40
– volume: 3
  start-page: 3
  year: 2002
  ident: ref_11
  article-title: Image fusion techniques for remote sensing applications
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(01)00056-2
– volume: 37
  start-page: 1190
  year: 1999
  ident: ref_1
  article-title: Some terms of reference in data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.763269
– volume: 114
  start-page: 2841
  year: 2010
  ident: ref_19
  article-title: Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.002
– volume: 115
  start-page: 2025
  year: 2011
  ident: ref_18
  article-title: Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.04.004
– volume: 52
  start-page: 999
  year: 2012
  ident: ref_45
  article-title: Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review
  publication-title: Crit. Rev. Sci. Nutr.
  doi: 10.1080/10408398.2010.543495
– ident: ref_25
– ident: ref_29
– ident: ref_33
– volume: 41
  start-page: 687
  year: 1981
  ident: ref_23
  article-title: Coefficient Kappa: Some Uses, Misuses, and Alternatives
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316448104100307
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_37
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 40
  start-page: 1277
  year: 2015
  ident: ref_12
  article-title: Mapping Land Cover in the Taita Hills, Se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 19
  start-page: 116
  year: 2011
  ident: ref_24
  article-title: Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward
  publication-title: J. Nat. Conserv.
  doi: 10.1016/j.jnc.2010.07.003
– volume: 60
  start-page: 61
  year: 2017
  ident: ref_6
  article-title: Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_56
  article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– ident: ref_16
  doi: 10.3390/rs8050398
– ident: ref_38
  doi: 10.3390/rs9020173
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_48
  article-title: Randomized SVD Methods in Hyperspectral Imaging
  publication-title: J. Electr. Comput. Eng.
– ident: ref_43
  doi: 10.3390/rs9030266
– volume: 4
  start-page: 3462
  year: 2012
  ident: ref_20
  article-title: Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data
  publication-title: Remote Sens.
  doi: 10.3390/rs4113462
SSID ssj0000331904
Score 2.321514
Snippet Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 970
SubjectTerms Accuracy
Airborne lasers
Classification
Data acquisition
Data collection
data fusion
Data integration
Ecosystems
effectiveness of data fusion
Flight
Global positioning systems
GPS
Grasslands
imaging spectroscopy
Influence
Lasers
lidar
Mapping
Meadows
Multisensor fusion
Natura 2000 habitats
Observatories
Quality
Random Forests
Remote sensing
River valleys
Rivers
Scanners
Sensors
Unmanned aerial vehicles
Vegetation
Vegetation mapping
Vegetation surveys
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCCrRiW0AjwaWHiNhxsvEJLY_VgtiqEqXiFvkxpge0i3a3B34Df5oZJywrFakXbpE1chLP2DOfPf5GiEOHlSdH5TMfZMg0VnlW15xFWOpolbUWkYHi-Ec1utGXt-XtSqkvzglr6YHbgTvS0Zi-lKFCdFph4bw3Og9FMEjwyiaeT_J5K2AqrcEFmVauWz7SgnD90WzOCe-54arEKx4oEfX_sw4n5zL8JDa6qBAG7ddsig842RLrXYHyP4_b4mncJf7B8J7h9BymM7gmt7NsgYvEBcubfTD8y3tgMI0wIpjZ3qacUf92EmBwdQ1ndmGPYQCnyyKELJvODODn600CoAf4jXddRiKMLZM53H0WN8PzX6ejrKujkHll5CIj94PGmlg7-v2-lYwpZKyURB1dMLFUzvgYCCpJa0pvacoWymIdnY7RUoT3RaxNphPcESCDypEp9fPC6FiXri9VrG2ssKwoEnE98f1lbBvfkYxzrYv7hsAG66F51UNPHCxlH1pqjTelTlhFSwmmw04NZCRNZyTN_4ykJ3ZfFNx0c3Te8HY4RVe6yL--xzu-iY8UTKWTJlXsijVSOe5RwLJw-8k2nwFmR-qE
  priority: 102
  providerName: Directory of Open Access Journals
Title Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping
URI https://www.proquest.com/docview/2304028430
https://doaj.org/article/4f99711d6eeb42e3bcc940d3d9e133a3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF4VcmgvCPpQwyNaiV56sPA-7HhPKDxMqAhCBCpu1j7DAcWQpIf-hv7pzjgbpxIVN2s9Wsme3Zn5Zme_IeSb8bkFR2UT65hLpM_TpCiwijCTQXOttfcIFEfX-fBe_njIHmLCbR7LKlc2sTHUrraYIz_C5CX4QinS4-eXBLtG4elqbKGxQTpgggsAX52T8-ub2zbLkgpYYqlc8pIKwPdHszkWvqcKuxP_44kawv5X9rhxMuU22YrRIR0s1blD3vnpR_I-Nip__P2J_BnFAkBaPiGsntN6RsfgftoRetlwwmLSj5a_MBdG60CHADeXtypnML-eOjq4GtMzvdDHdEBP22aEKNucHdCb9Y0CCg_0p5_EykQ60kjqMPlM7svzu9NhEvspJJYrtkjADXmlVSgMfH5fM8QWLOSceRmMUyHjRtngADIxrTKrYesKrn0RjAxBQ6T3hWxO66n_SihzPPVIrZ8KJUORmT7jodAh91kOEYnpku-rf1vZSDaOPS-eKgAdqIdqrYcuOWxln5cUG_-VOkEVtRJIi90M1LNJFXdZJYNSfcZc7r2R3AtjrZKpE055wOJadMn-SsFV3Kvzar2ydt9-vUc-QLjUnCVxsU82QZn-AEKShemRjaK86JHO4Gx0Ne7FVdhrAP5f4wnmQA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9lAuiPIQgQKWgAOHVf3a7fqAqtCyJDSpkNqi3hY_w6HKliSo6m_of-E3MrOvCIG49bayR17JM56Xx98Q8saGzIGhconz3CcqZCzJc6wiTFU0whgTAgaK05NsdK4-X6QXG-RX9xYGyyo7nVgral85zJHvYfISbKGS7ODqR4Jdo_B2tWuh0YjFcbi5hpBt-X58BPx9K0Tx8exwlLRdBRInNF8loIyDNjrmloHvYzh62DxmggcVrdcxFVa76CFw4EanzoAAS2FCHq2K0XAEXwKVv6Wk1Hii8uJTn9NhEgSaqQYFFebZ3mKJZfbwI_aH3avbA_yl_WuTVjwg91tflA4b4dkhG2H-kGy3bdG_3zwit9O23JAWlxjEL2m1oKdg7PoROq4RaDHFSIufmHmjVaQjCG6bN5wLWN_MPR1OTumRWZkDOqSHfetDpK1vKuiX9fsFCh_0a5i1dZB0ahBCYvaYnN_JPj8hm_NqHp4Syr1gAYH8mdQq5qnd5yLmJmYhzcD_sQPyrtvb0rXQ5thh47KEEAf5UK75MCCve9qrBtDjn1QfkEU9BYJw1wPVYla2Z7pUUet9zn0WglUiSOucVsxLrwNE_kYOyG7H4LLVDMtyLcfP_j_9imyPzqaTcjI-OX5O7oGjVt9iCblLNoGx4QU4Qyv7spZASr7dtcj_BlrMHro
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcUHmJQIGVgAMHK_uy4z2gKm0aJbSJIkpRb2af6aGKS5IK9Tfwj_h1zNprRwjErTdrPbIlz-d57ew3CL3TLjPgqExiLLWJcBlJ8jx0EabCK6aUci4kitNZNj4Xny7Six30qzkLE9oqG5tYGWpbmlAj74XiJfhCwUnPx7aI-XB0cP09CROkwk5rM06jhsiJu_0B6dv642QIun7P2Oj4y9E4iRMGEsMk3SRgmJ1U0ueaQBykaIi2qc8YdcJrK33KtDTeQhJBlUyNAjBzplzutfBe0UDEBOZ_tw9ZEemg3cPj2fxzW-EhHOBNRM2JyrkkvdU6NN3Dq8gfXrAaFvCXL6gc3GgPPYyRKR7UUHqEdtzyMbofh6Rf3j5BP6ex-RCPrkJKv8blCp-B62tX8KTiow0FRzy6CXU4XHo8hlS3PtG5guerpcWD0zM8VBt1gAf4qB2EGGSrfQs8355mwHCBv7pF7IrEUxUIJRZP0fmdfOlnqLMsl-45wtQy4gKtP-FS-DzVfcp8rnzm0gyiId1FH5pvW5hIdB7mbVwVkPAEPRRbPXTR21b2uqb3-KfUYVBRKxEouauFcrUo4h9eCC9ln1KbOacFc1wbIwWx3EpHOVe8i_YbBRfRTqyLLapf_P_2G3QP4F6cTmYnL9EDiNqqLS3G91EH9OpeQWS00a8jBDH6dteo_w0_tSRM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Flights+or+Single+Flight+Instrument+Fusion+of+Hyperspectral+and+ALS+Data%3F+A+Comparison+of+their+Performance+for+Vegetation+Mapping&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=S%C5%82awik%2C+%C5%81ukasz&rft.au=Niedzielko%2C+Jan&rft.au=Kania%2C+Adam&rft.au=Pi%C3%B3rkowski%2C+Hubert&rft.date=2019-04-23&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=8&rft.spage=970&rft_id=info:doi/10.3390%2Frs11080970&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11080970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon