Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping
Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hype...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 8; p. 970 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
23.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger. |
---|---|
AbstractList | Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject to many factors, including the type of data, collection method, and purpose of the analysis. In this study, we compare the usefulness of hyperspectral (HS) and Airborne Laser System (ALS) data fusion acquired in separate flights, Multiple Flights Data Fusion (MFDF), and during a single flight through Instrument Fusion (IF) for the classification of non-forest vegetation. An area of 6.75 km2 was selected, where hyperspectral and ALS data was collected during two flights in 2015 and one flight in 2017. This data was used to classify three non-forest Natura 2000 habitats i.e., Xeric sand calcareous grasslands (code 6120), alluvial meadows of river valleys of the Cnidion dubii (code 6440), species-rich Nardus grasslands (code 6230) using a Random Forest classifier. Our findings show that it is not possible to determine which sensor, HS, or ALS used independently leads to a higher classification accuracy for investigated Natura 2000 habitats. Concurrently, increased stability and consistency of classification results was confirmed, regardless of the type of fusion used; IF, MFDF and varied information relevance of single sensor data. The research shows that the manner of data collection, using MFDF or IF, does not determine the level of relevance of ALS or HS data. The analysis of fusion effectiveness, gauged as the accuracy of the classification result and time consumed for data collection, has shown a superiority of IF over MFDF. IF delivered classification results that are more accurate compared to MFDF. IF is always cheaper than MFDF and the difference in effectiveness of both methods becomes more pronounced when the area of aerial data collection becomes larger. |
Author | Kania, Adam Sławik, Łukasz Niedzielko, Jan Kopeć, Dominik Piórkowski, Hubert |
Author_xml | – sequence: 1 givenname: Łukasz surname: Sławik fullname: Sławik, Łukasz – sequence: 2 givenname: Jan orcidid: 0000-0002-6531-0267 surname: Niedzielko fullname: Niedzielko, Jan – sequence: 3 givenname: Adam surname: Kania fullname: Kania, Adam – sequence: 4 givenname: Hubert surname: Piórkowski fullname: Piórkowski, Hubert – sequence: 5 givenname: Dominik orcidid: 0000-0003-0831-2992 surname: Kopeć fullname: Kopeć, Dominik |
BookMark | eNptkc1uEzEQxy1UJErphSewxA0pxV_prk8oCoRGSkWlFq7WrHecOtrYi-099Bl46bosKggxlxmNfvOfr9fkJMSAhLzl7EJKzT6kzDlrmW7YC3IqWCMWSmhx8lf8ipznfGDVpOSaqVPy83oaih8HpJvB7-9LpjHRWx_2zxm6Dbmk6Yih0M2UfQw0Onr1MGLKI9qSYKAQerra3dJPUOAjXdF1PI6QfJ7Zco8-0RtMLqYjBIu0BvQ77rFAedK7hnGsLd-Qlw6GjOe__Rn5tvl8t75a7L5-2a5Xu4UVmpdFw1vUoF3b1VUb4Jy3grtLwVG5rtduKTptXa_0koNeWmi0lAKwdZ1yDriWZ2Q76_YRDmZM_gjpwUTw5lcipr2BVLwd0CindcN5f4nYKYGys1Yr1steI5cSZNV6N2uNKf6YMBdziFMKdXwjJFNMtEqySr2fKZtizgndc1fOzNPvzJ_fVZj9A1s_H6re2g__K3kEJVieWw |
CitedBy_id | crossref_primary_10_3390_rs15123055 crossref_primary_10_3390_rs11192238 crossref_primary_10_3390_rs13081504 crossref_primary_10_3390_rs13142803 crossref_primary_10_3390_rs14215531 crossref_primary_10_3390_rs11192264 crossref_primary_10_1007_s11273_020_09719_y crossref_primary_10_1016_j_rsase_2021_100637 crossref_primary_10_3390_rs12010039 crossref_primary_10_1117_1_JRS_13_034502 crossref_primary_10_1016_j_isprsjprs_2021_12_010 crossref_primary_10_1038_s41598_023_31705_6 crossref_primary_10_3390_rs12111842 crossref_primary_10_3390_rs11222629 crossref_primary_10_1016_j_isprsjprs_2022_03_010 crossref_primary_10_3390_rs12172696 crossref_primary_10_3390_rs15051388 crossref_primary_10_1080_15481603_2023_2204682 crossref_primary_10_3390_rs13010107 crossref_primary_10_3390_rs13030443 crossref_primary_10_1016_j_apgeog_2020_102345 crossref_primary_10_1016_j_jag_2024_103719 crossref_primary_10_1038_s41598_024_79209_1 |
Cites_doi | 10.1016/S0924-2716(99)00014-3 10.3390/s111110586 10.1016/j.rse.2013.08.003 10.5589/m12-007 10.1016/j.ecolind.2012.09.013 10.1016/j.rse.2014.03.018 10.1016/j.rse.2015.04.015 10.1890/07-0539.1 10.1016/j.isprsjprs.2014.08.001 10.1007/s11273-009-9169-z 10.1111/avsc.12115 10.1016/j.rse.2011.01.017 10.3390/rs70302871 10.1524/teme.2007.74.3.93 10.3390/rs10122019 10.1016/0967-0661(94)90349-2 10.1111/tgis.12164 10.3390/rs5084045 10.1016/j.rse.2012.06.012 10.1016/j.ecolind.2016.06.001 10.3390/rs6098056 10.1117/1.3361375 10.1016/j.rse.2007.09.009 10.1080/01431161.2013.776721 10.1016/j.rse.2007.11.016 10.1016/S1566-2535(01)00056-2 10.1109/36.763269 10.1016/j.rse.2010.07.002 10.1016/j.rse.2011.04.004 10.1080/10408398.2010.543495 10.1177/001316448104100307 10.1016/j.isprsjprs.2011.11.002 10.1016/j.jnc.2010.07.003 10.3390/rs70302971 10.3390/rs8050398 10.3390/rs9020173 10.3390/rs9030266 10.3390/rs4113462 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs11080970 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4f99711d6eeb42e3bcc940d3d9e133a3 10_3390_rs11080970 |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c291t-718e9a9f8b0977a111821f621e4fbd9f52b9cfd4951a95ca79332ae8fb4ffa193 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:00 EDT 2025 Fri Jul 25 12:08:34 EDT 2025 Tue Jul 01 04:14:44 EDT 2025 Thu Apr 24 22:55:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-718e9a9f8b0977a111821f621e4fbd9f52b9cfd4951a95ca79332ae8fb4ffa193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0831-2992 0000-0002-6531-0267 |
OpenAccessLink | https://www.proquest.com/docview/2304028430?pq-origsite=%requestingapplication% |
PQID | 2304028430 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4f99711d6eeb42e3bcc940d3d9e133a3 proquest_journals_2304028430 crossref_primary_10_3390_rs11080970 crossref_citationtrail_10_3390_rs11080970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-23 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Hladik (ref_8) 2013; 139 Ruser (ref_2) 2007; 74 ref_16 Kaasalainen (ref_54) 2011; 11 Anderson (ref_57) 2008; 112 Wald (ref_1) 1999; 37 Jones (ref_19) 2010; 114 Asner (ref_21) 2012; 124 Piiroinen (ref_12) 2015; 40 Baltsavias (ref_46) 1999; 54 ref_25 Kampe (ref_59) 2010; 4 ref_29 ref_28 ref_27 ref_26 Neumann (ref_44) 2015; 7 Asner (ref_14) 2008; 112 Kooistra (ref_5) 2013; 33 Mitchell (ref_58) 2015; 167 Elmasry (ref_45) 2012; 52 Matese (ref_56) 2015; 7 Berezowski (ref_10) 2016; 70 Sarrazin (ref_49) 2011; 37 Grime (ref_52) 1994; 2 Torabzadeh (ref_22) 2014; 97 Buddenbaum (ref_53) 2013; 34 ref_33 ref_32 ref_31 Chuvieco (ref_17) 2011; 115 ref_30 Borre (ref_24) 2011; 19 Zhang (ref_48) 2012; 2012 Chutia (ref_35) 2016; 20 Cook (ref_15) 2013; 5 ref_39 ref_38 Onojeghuo (ref_9) 2017; 59 Brennan (ref_23) 1981; 41 Zlinszky (ref_41) 2016; 41 Colgan (ref_20) 2012; 4 Adam (ref_51) 2010; 18 Schmidt (ref_6) 2017; 60 ref_43 ref_40 ref_3 Shaw (ref_47) 2003; 14 Alonzo (ref_13) 2014; 148 Cutler (ref_36) 2007; 88 Watkins (ref_55) 1978; 44 Feilhauer (ref_7) 2014; 17 Zlinszky (ref_42) 2014; 6 Onojeghuo (ref_18) 2011; 115 Simone (ref_11) 2002; 3 Ghimire (ref_37) 2012; 67 Stenzel (ref_4) 2014; 33 Breiman (ref_34) 2001; 45 |
References_xml | – ident: ref_32 – volume: 54 start-page: 83 year: 1999 ident: ref_46 article-title: A comparison between photogrammetry and laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(99)00014-3 – ident: ref_26 – volume: 11 start-page: 10586 year: 2011 ident: ref_54 article-title: Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification publication-title: Sensors doi: 10.3390/s111110586 – volume: 14 start-page: 3 year: 2003 ident: ref_47 article-title: Spectral Imaging for Remote Sensing publication-title: Lincoln Lab. J. – volume: 139 start-page: 318 year: 2013 ident: ref_8 article-title: Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.003 – volume: 37 start-page: 653 year: 2011 ident: ref_49 article-title: Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems publication-title: Can. J. Remote Sens. doi: 10.5589/m12-007 – volume: 41 start-page: 1293 year: 2016 ident: ref_41 article-title: Biodiversity mapping via natura 2000 conservation status and ebv assessment using airborne laser scanning in alkali grasslands publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 33 start-page: 71 year: 2013 ident: ref_5 article-title: Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2012.09.013 – ident: ref_39 – volume: 148 start-page: 70 year: 2014 ident: ref_13 article-title: Urban tree species mapping using hyperspectral and lidar data fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.018 – volume: 167 start-page: 98 year: 2015 ident: ref_58 article-title: Combining airborne hyperspectral and LiDAR data across local sites for upscaling shrubland structural information: Lessons for HyspIRI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.015 – volume: 45 start-page: 1 year: 2001 ident: ref_34 article-title: Random forest publication-title: Mach. Learn. – volume: 59 start-page: 79 year: 2017 ident: ref_9 article-title: Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 88 start-page: 2783 year: 2007 ident: ref_36 article-title: Random forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – ident: ref_31 – volume: 97 start-page: 25 year: 2014 ident: ref_22 article-title: Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems—A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.001 – volume: 18 start-page: 281 year: 2010 ident: ref_51 article-title: Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review publication-title: Wetl. Ecol. Manag. doi: 10.1007/s11273-009-9169-z – ident: ref_27 – volume: 17 start-page: 765 year: 2014 ident: ref_7 article-title: Mapping the local variability of Natura 2000 habitats with remote sensing publication-title: Appl. Veg. Sci. doi: 10.1111/avsc.12115 – volume: 115 start-page: 1369 year: 2011 ident: ref_17 article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.017 – volume: 7 start-page: 2871 year: 2015 ident: ref_44 article-title: Gradient-Based Assessment of Habitat Quality for Spectral Ecosystem Monitoring publication-title: Remote Sens. doi: 10.3390/rs70302871 – volume: 74 start-page: 93 year: 2007 ident: ref_2 article-title: Informationsfusion—Eine Übersicht (Information Fusion—An Overview) publication-title: Tech. Mess. doi: 10.1524/teme.2007.74.3.93 – volume: 33 start-page: 211 year: 2014 ident: ref_4 article-title: Remote sensing of scattered Natura 2000 habitats using a one-class classifier publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_50 doi: 10.3390/rs10122019 – volume: 2 start-page: 849 year: 1994 ident: ref_52 article-title: Data fusion in decentralized sensor networks publication-title: Control Eng. Pract. doi: 10.1016/0967-0661(94)90349-2 – volume: 20 start-page: 463 year: 2016 ident: ref_35 article-title: Hyperspectral Remote Sensing Classifications: A Perspective Survey publication-title: Trans. GIS doi: 10.1111/tgis.12164 – volume: 5 start-page: 4045 year: 2013 ident: ref_15 article-title: NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager publication-title: Remote Sens. doi: 10.3390/rs5084045 – volume: 124 start-page: 454 year: 2012 ident: ref_21 article-title: Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.012 – volume: 70 start-page: 196 year: 2016 ident: ref_10 article-title: Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2016.06.001 – ident: ref_28 – volume: 6 start-page: 8056 year: 2014 ident: ref_42 article-title: Categorizing grassland vegetation with full-waveform airborne laser scanning: A feasibility study for detecting natura 2000 habitat types publication-title: Remote Sens. doi: 10.3390/rs6098056 – ident: ref_30 – volume: 44 start-page: 1167 year: 1978 ident: ref_55 article-title: The Economics of Remote Sensing publication-title: J. Am. Soc. Photogramm. – volume: 4 start-page: 043510 year: 2010 ident: ref_59 article-title: NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure publication-title: J. Appl. Remote Sens. doi: 10.1117/1.3361375 – volume: 112 start-page: 1856 year: 2008 ident: ref_57 article-title: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.09.009 – ident: ref_3 – volume: 34 start-page: 4511 year: 2013 ident: ref_53 article-title: Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.776721 – volume: 112 start-page: 1942 year: 2008 ident: ref_14 article-title: Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.11.016 – ident: ref_40 – volume: 3 start-page: 3 year: 2002 ident: ref_11 article-title: Image fusion techniques for remote sensing applications publication-title: Inf. Fusion doi: 10.1016/S1566-2535(01)00056-2 – volume: 37 start-page: 1190 year: 1999 ident: ref_1 article-title: Some terms of reference in data fusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.763269 – volume: 114 start-page: 2841 year: 2010 ident: ref_19 article-title: Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.002 – volume: 115 start-page: 2025 year: 2011 ident: ref_18 article-title: Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.004 – volume: 52 start-page: 999 year: 2012 ident: ref_45 article-title: Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review publication-title: Crit. Rev. Sci. Nutr. doi: 10.1080/10408398.2010.543495 – ident: ref_25 – ident: ref_29 – ident: ref_33 – volume: 41 start-page: 687 year: 1981 ident: ref_23 article-title: Coefficient Kappa: Some Uses, Misuses, and Alternatives publication-title: Educ. Psychol. Meas. doi: 10.1177/001316448104100307 – volume: 67 start-page: 93 year: 2012 ident: ref_37 article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – volume: 40 start-page: 1277 year: 2015 ident: ref_12 article-title: Mapping Land Cover in the Taita Hills, Se Kenya, Using Airborne Laser Scanning and Imaging Spectroscopy Data Fusion publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 19 start-page: 116 year: 2011 ident: ref_24 article-title: Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward publication-title: J. Nat. Conserv. doi: 10.1016/j.jnc.2010.07.003 – volume: 60 start-page: 61 year: 2017 ident: ref_6 article-title: Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 2971 year: 2015 ident: ref_56 article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – ident: ref_16 doi: 10.3390/rs8050398 – ident: ref_38 doi: 10.3390/rs9020173 – volume: 2012 start-page: 1 year: 2012 ident: ref_48 article-title: Randomized SVD Methods in Hyperspectral Imaging publication-title: J. Electr. Comput. Eng. – ident: ref_43 doi: 10.3390/rs9030266 – volume: 4 start-page: 3462 year: 2012 ident: ref_20 article-title: Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data publication-title: Remote Sens. doi: 10.3390/rs4113462 |
SSID | ssj0000331904 |
Score | 2.321514 |
Snippet | Fusion of remote sensing data often improves vegetation mapping, compared to using data from only a single source. The effectiveness of this fusion is subject... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 970 |
SubjectTerms | Accuracy Airborne lasers Classification Data acquisition Data collection data fusion Data integration Ecosystems effectiveness of data fusion Flight Global positioning systems GPS Grasslands imaging spectroscopy Influence Lasers lidar Mapping Meadows Multisensor fusion Natura 2000 habitats Observatories Quality Random Forests Remote sensing River valleys Rivers Scanners Sensors Unmanned aerial vehicles Vegetation Vegetation mapping Vegetation surveys |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCCrRiW0AjwaWHiNhxsvEJLY_VgtiqEqXiFvkxpge0i3a3B34Df5oZJywrFakXbpE1chLP2DOfPf5GiEOHlSdH5TMfZMg0VnlW15xFWOpolbUWkYHi-Ec1utGXt-XtSqkvzglr6YHbgTvS0Zi-lKFCdFph4bw3Og9FMEjwyiaeT_J5K2AqrcEFmVauWz7SgnD90WzOCe-54arEKx4oEfX_sw4n5zL8JDa6qBAG7ddsig842RLrXYHyP4_b4mncJf7B8J7h9BymM7gmt7NsgYvEBcubfTD8y3tgMI0wIpjZ3qacUf92EmBwdQ1ndmGPYQCnyyKELJvODODn600CoAf4jXddRiKMLZM53H0WN8PzX6ejrKujkHll5CIj94PGmlg7-v2-lYwpZKyURB1dMLFUzvgYCCpJa0pvacoWymIdnY7RUoT3RaxNphPcESCDypEp9fPC6FiXri9VrG2ssKwoEnE98f1lbBvfkYxzrYv7hsAG66F51UNPHCxlH1pqjTelTlhFSwmmw04NZCRNZyTN_4ykJ3ZfFNx0c3Te8HY4RVe6yL--xzu-iY8UTKWTJlXsijVSOe5RwLJw-8k2nwFmR-qE priority: 102 providerName: Directory of Open Access Journals |
Title | Multiple Flights or Single Flight Instrument Fusion of Hyperspectral and ALS Data? A Comparison of their Performance for Vegetation Mapping |
URI | https://www.proquest.com/docview/2304028430 https://doaj.org/article/4f99711d6eeb42e3bcc940d3d9e133a3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF4VcmgvCPpQwyNaiV56sPA-7HhPKDxMqAhCBCpu1j7DAcWQpIf-hv7pzjgbpxIVN2s9Wsme3Zn5Zme_IeSb8bkFR2UT65hLpM_TpCiwijCTQXOttfcIFEfX-fBe_njIHmLCbR7LKlc2sTHUrraYIz_C5CX4QinS4-eXBLtG4elqbKGxQTpgggsAX52T8-ub2zbLkgpYYqlc8pIKwPdHszkWvqcKuxP_44kawv5X9rhxMuU22YrRIR0s1blD3vnpR_I-Nip__P2J_BnFAkBaPiGsntN6RsfgftoRetlwwmLSj5a_MBdG60CHADeXtypnML-eOjq4GtMzvdDHdEBP22aEKNucHdCb9Y0CCg_0p5_EykQ60kjqMPlM7svzu9NhEvspJJYrtkjADXmlVSgMfH5fM8QWLOSceRmMUyHjRtngADIxrTKrYesKrn0RjAxBQ6T3hWxO66n_SihzPPVIrZ8KJUORmT7jodAh91kOEYnpku-rf1vZSDaOPS-eKgAdqIdqrYcuOWxln5cUG_-VOkEVtRJIi90M1LNJFXdZJYNSfcZc7r2R3AtjrZKpE055wOJadMn-SsFV3Kvzar2ydt9-vUc-QLjUnCVxsU82QZn-AEKShemRjaK86JHO4Gx0Ne7FVdhrAP5f4wnmQA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9lAuiPIQgQKWgAOHVf3a7fqAqtCyJDSpkNqi3hY_w6HKliSo6m_of-E3MrOvCIG49bayR17JM56Xx98Q8saGzIGhconz3CcqZCzJc6wiTFU0whgTAgaK05NsdK4-X6QXG-RX9xYGyyo7nVgral85zJHvYfISbKGS7ODqR4Jdo_B2tWuh0YjFcbi5hpBt-X58BPx9K0Tx8exwlLRdBRInNF8loIyDNjrmloHvYzh62DxmggcVrdcxFVa76CFw4EanzoAAS2FCHq2K0XAEXwKVv6Wk1Hii8uJTn9NhEgSaqQYFFebZ3mKJZfbwI_aH3avbA_yl_WuTVjwg91tflA4b4dkhG2H-kGy3bdG_3zwit9O23JAWlxjEL2m1oKdg7PoROq4RaDHFSIufmHmjVaQjCG6bN5wLWN_MPR1OTumRWZkDOqSHfetDpK1vKuiX9fsFCh_0a5i1dZB0ahBCYvaYnN_JPj8hm_NqHp4Syr1gAYH8mdQq5qnd5yLmJmYhzcD_sQPyrtvb0rXQ5thh47KEEAf5UK75MCCve9qrBtDjn1QfkEU9BYJw1wPVYla2Z7pUUet9zn0WglUiSOucVsxLrwNE_kYOyG7H4LLVDMtyLcfP_j_9imyPzqaTcjI-OX5O7oGjVt9iCblLNoGx4QU4Qyv7spZASr7dtcj_BlrMHro |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcUHmJQIGVgAMHK_uy4z2gKm0aJbSJIkpRb2af6aGKS5IK9Tfwj_h1zNprRwjErTdrPbIlz-d57ew3CL3TLjPgqExiLLWJcBlJ8jx0EabCK6aUci4kitNZNj4Xny7Six30qzkLE9oqG5tYGWpbmlAj74XiJfhCwUnPx7aI-XB0cP09CROkwk5rM06jhsiJu_0B6dv642QIun7P2Oj4y9E4iRMGEsMk3SRgmJ1U0ueaQBykaIi2qc8YdcJrK33KtDTeQhJBlUyNAjBzplzutfBe0UDEBOZ_tw9ZEemg3cPj2fxzW-EhHOBNRM2JyrkkvdU6NN3Dq8gfXrAaFvCXL6gc3GgPPYyRKR7UUHqEdtzyMbofh6Rf3j5BP6ex-RCPrkJKv8blCp-B62tX8KTiow0FRzy6CXU4XHo8hlS3PtG5guerpcWD0zM8VBt1gAf4qB2EGGSrfQs8355mwHCBv7pF7IrEUxUIJRZP0fmdfOlnqLMsl-45wtQy4gKtP-FS-DzVfcp8rnzm0gyiId1FH5pvW5hIdB7mbVwVkPAEPRRbPXTR21b2uqb3-KfUYVBRKxEouauFcrUo4h9eCC9ln1KbOacFc1wbIwWx3EpHOVe8i_YbBRfRTqyLLapf_P_2G3QP4F6cTmYnL9EDiNqqLS3G91EH9OpeQWS00a8jBDH6dteo_w0_tSRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Flights+or+Single+Flight+Instrument+Fusion+of+Hyperspectral+and+ALS+Data%3F+A+Comparison+of+their+Performance+for+Vegetation+Mapping&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=S%C5%82awik%2C+%C5%81ukasz&rft.au=Niedzielko%2C+Jan&rft.au=Kania%2C+Adam&rft.au=Pi%C3%B3rkowski%2C+Hubert&rft.date=2019-04-23&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=8&rft.spage=970&rft_id=info:doi/10.3390%2Frs11080970&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11080970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |