An Adaptive Demodulation Band Segmentation Method to Optimize Spectral Boundary and Its Application for Wheelset-Bearing Fault Detection
Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive aut...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2022.3178484 |
Cover
Abstract | Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated components interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection. |
---|---|
AbstractList | Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset bearing is of great importance. In this article, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated component’s interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection. Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated components interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection. |
Author | Ding, Jianming Zhao, Wentao Zhang, Qingsong |
Author_xml | – sequence: 1 givenname: Qingsong surname: Zhang fullname: Zhang, Qingsong – sequence: 2 givenname: Jianming surname: Ding fullname: Ding, Jianming – sequence: 3 givenname: Wentao surname: Zhao fullname: Zhao, Wentao |
BookMark | eNp9kc1q3DAUhUVJoZO0-0I3gq491b-t5Ux-BxKySEqXRpKvEwWP5MhyoH2CPHY0OHTRRVcXxPnu4X46RkchBkDoKyVrSon-cb-7WTPC2JrTuhGN-IBWVMq60kqxI7QihDaVFlJ9QsfT9EQIqZWoV-h1E_CmM2P2L4DPYB-7eTDZx4C3JnT4Dh72EPLycgP5MXY4R3xb8nv_B_DdCC4nM-BtnENn0m98oHZ5wptxHLxbwD4m_OsRYJggV1swyYcHfGHmIZfKXDaU0Gf0sTcl8OV9nqCfF-f3p1fV9e3l7nRzXTmmaa6UqwlvpNWus4ZbIaiRPRPUOmqVdb2UqoPGac4ps0JLZQg03MrOUkscY_wEfV_2jik-zzDl9inOKZTKlqlaEtFoLUuKLCmX4jQl6Nsx-X25r6WkPfhui-_24Lt9910Q9Q_i_CKuCPLD_8BvC-gB4G-PrpvyXZy_AUeSkPM |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3224537 crossref_primary_10_1109_TIM_2025_3541794 crossref_primary_10_1109_TITS_2023_3288179 crossref_primary_10_1109_TITS_2023_3253087 crossref_primary_10_1109_TIM_2024_3509550 |
Cites_doi | 10.1155/2018/2749689 10.1016/j.ymssp.2017.02.003 10.1016/j.ymssp.2012.10.003 10.1016/j.ymssp.2010.05.018 10.1016/j.measurement.2019.05.006 10.1016/j.measurement.2017.12.010 10.1016/j.ymssp.2010.12.008 10.1016/j.ymssp.2005.12.002 10.1016/j.ymssp.2008.08.002 10.1016/j.ymssp.2017.12.009 10.1016/j.sigpro.2013.05.013 10.1016/j.ymssp.2015.02.020 10.1016/j.measurement.2017.12.029 10.1109/TSP.2013.2288675 10.1016/j.ymssp.2019.05.003 10.1016/j.measurement.2018.10.064 10.1016/j.measurement.2020.108746 10.1785/0220200115 10.1016/j.ymssp.2004.09.002 10.1016/j.ymssp.2018.01.027 10.1016/j.infrared.2020.103385 10.1016/j.ymssp.2004.09.001 10.1016/j.ymssp.2018.04.012 10.1142/S1793536909000047 10.1016/j.measurement.2012.01.001 10.1186/s41476-019-0123-2 10.1109/TSP.2013.2265222 10.1016/j.ymssp.2010.12.011 10.1016/j.ymssp.2004.01.006 10.1109/TIE.2009.2025288 10.1109/ACCESS.2019.2902645 10.1016/j.ymssp.2009.12.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3178484 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIM_2022_3178484 9789453 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ 5VS 8WZ A6W AAYOK AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFJZH RIG VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-6c70385b9cdba3b441a5f241bc1b6bcf556de8c93312b4956a0e83b5db1b0c223 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:16:48 EDT 2025 Tue Jul 01 03:07:14 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Aug 27 02:24:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-6c70385b9cdba3b441a5f241bc1b6bcf556de8c93312b4956a0e83b5db1b0c223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1306-3580 0000-0001-9586-0158 0000-0003-4565-0042 |
PQID | 2675048995 |
PQPubID | 85462 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2675048995 ieee_primary_9789453 crossref_citationtrail_10_1109_TIM_2022_3178484 crossref_primary_10_1109_TIM_2022_3178484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref6 doi: 10.1155/2018/2749689 – ident: ref12 doi: 10.1016/j.ymssp.2017.02.003 – ident: ref28 doi: 10.1016/j.ymssp.2012.10.003 – ident: ref27 doi: 10.1016/j.ymssp.2010.05.018 – ident: ref25 doi: 10.1016/j.measurement.2019.05.006 – ident: ref2 doi: 10.1016/j.measurement.2017.12.010 – ident: ref30 doi: 10.1016/j.ymssp.2010.12.008 – ident: ref23 doi: 10.1016/j.ymssp.2005.12.002 – ident: ref26 doi: 10.1016/j.ymssp.2008.08.002 – ident: ref29 doi: 10.1016/j.ymssp.2017.12.009 – ident: ref31 doi: 10.1016/j.sigpro.2013.05.013 – ident: ref14 doi: 10.1016/j.ymssp.2015.02.020 – ident: ref15 doi: 10.1016/j.measurement.2017.12.029 – ident: ref13 doi: 10.1109/TSP.2013.2288675 – ident: ref32 doi: 10.1016/j.ymssp.2019.05.003 – ident: ref20 doi: 10.1016/j.measurement.2018.10.064 – ident: ref3 doi: 10.1016/j.measurement.2020.108746 – ident: ref18 doi: 10.1785/0220200115 – ident: ref24 doi: 10.1016/j.ymssp.2004.09.002 – ident: ref10 doi: 10.1016/j.ymssp.2018.01.027 – ident: ref19 doi: 10.1016/j.infrared.2020.103385 – ident: ref17 doi: 10.1016/j.ymssp.2004.09.001 – ident: ref1 doi: 10.1016/j.ymssp.2018.04.012 – ident: ref11 doi: 10.1142/S1793536909000047 – ident: ref22 doi: 10.1016/j.measurement.2012.01.001 – ident: ref9 doi: 10.1186/s41476-019-0123-2 – ident: ref16 doi: 10.1109/TSP.2013.2265222 – ident: ref4 doi: 10.1016/j.ymssp.2010.12.011 – ident: ref5 doi: 10.1016/j.ymssp.2004.01.006 – ident: ref21 doi: 10.1109/TIE.2009.2025288 – ident: ref7 doi: 10.1109/ACCESS.2019.2902645 – ident: ref8 doi: 10.1016/j.ymssp.2009.12.007 |
SSID | ssj0007647 |
Score | 2.3817155 |
Snippet | Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Autocorrelated kurtogram Autocorrelation Bandwidth Bandwidths Demodulation Fault detection Faults Filter banks Frequency conversion Frequency estimation High speed rail Information filters Interference Kurtosis Low-pass filters non-stationary signals Resonant frequency Rotation Segmentation Signal to noise ratio spectral segmentation Undercarriages wheelset-bearing defects Wheelsets |
Title | An Adaptive Demodulation Band Segmentation Method to Optimize Spectral Boundary and Its Application for Wheelset-Bearing Fault Detection |
URI | https://ieeexplore.ieee.org/document/9789453 https://www.proquest.com/docview/2675048995 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61lSrBAfoAEWiRD1yQ2DTeXXvXxwSI2kqBQ1upt9XaniBEs6ka50B_QX92Z7yb8ChCve3B47U04_G8P4B3aTFVmc9N4tHlHK1SiZXaJqX2XpE8IZbc4Dz5oo8v8tNLdbkBH9a9MIgYi8-wz58xl-_nbsmhMp4Ga3KVbcImiVnbq7XWuoXO2_mYki4wWQWrlOTAHJ2fTMgRTFPyT4syL_M_nqCIqfJAEcfXZfwcJqtztUUlP_rLYPvu9q-RjY89-A4868xMMWzlYhc2sNmDp78NH9yD7Vj86Rb7cDdsxNDX16z5xCeczX2H6SVGdePFGX6bdR1KjZhExGkR5uIrrZ99v0XBEPYcLxGjCNF081Mw1UlYiOGv7Lgg41iQ5uenOCQjul90CDGul1eBfhliQVjzAi7Gn88_HicdQkPiUiNDol3BmUVrnLd1Zsm0qtWUbALrpNXWTZXSHktnskymll2xeoBlZpW30g4cWSYvYauZN_gKhJM6nWaIBp3MMbVGYVY4RcSlQy9lD45WTKtcN76cUTSuqujGDExFbK6YzVXH5h68X1Nct6M7_rN2n7m2XtcxrAcHK7mouru9qFLNI_HJT1Wv_031Bp7w3m2g5gC2ws0SD8l0CfZtlNl7qHvsTQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GipCBTwgQsSm8a7tnd9TIAogW45kEq9rdb2BCGaTdU4B_oL-NmMvZvwFOK2B4_W0oznPfMBvEjzucyc0IlDK0K2SiaGK5MUyjlJ8oRYhAHn8lRNzsS7c3m-A6-2szCIGJvPsB8-Yy3fLe06pMrCNlgtZHYDbpLdF7Kd1trq3VyJdkMmpydMfsGmKDnQx7NpSaFgmlKEmheiEL8YoYiq8ocqjvZlfA_Kzc3atpIv_bU3fXv929LG_736fbjbOZps2ErGA9jBZh_u_LR-cB9uxfZPuzqAb8OGDV19GXQfe4OLpetQvdiobhz7iJ8W3YxSw8qIOc38kn2g84vP18gCiH3ImLBRBGm6-soC1dSv2PBHfZyRe8xI9wdj7JMRvTC6BBvX6wtPv_SxJax5CGfjt7PXk6TDaEhsqrlPlM1DbdFo60ydGXKuajknr8BYbpSxcymVw8LqLOOpCcFYPcAiM9IZbgaWfJND2G2WDT4CZrlK5xmiRssFpkZLzHIribiw6DjvwfGGaZXtFpgHHI2LKgYyA10Rm6vA5qpjcw9ebiku2-Ud_zh7ELi2PdcxrAdHG7moute9qlIVluJTpCof_53qOdyezMqT6mR6-v4J7IX_tGmbI9j1V2t8So6MN8-i_H4HKpPvmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Demodulation+Band+Segmentation+Method+to+Optimize+Spectral+Boundary+and+Its+Application+for+Wheelset-Bearing+Fault+Detection&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Qingsong&rft.au=Ding%2C+Jianming&rft.au=Zhao%2C+Wentao&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2022.3178484&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |