An Adaptive Demodulation Band Segmentation Method to Optimize Spectral Boundary and Its Application for Wheelset-Bearing Fault Detection

Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive aut...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; p. 1
Main Authors Zhang, Qingsong, Ding, Jianming, Zhao, Wentao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2022.3178484

Cover

Abstract Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated components interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection.
AbstractList Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset bearing is of great importance. In this article, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated component’s interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection.
Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the fault detection of wheelset-bearing is of great importance. In this paper, a novel wheelset-bearing fault detection method, named adaptive autocorrelated kurtogram (AAK), is proposed based on the developed autocorrelated kurtosis and the presented spectral segmentation method. Autocorrelated kurtosis is designed to reduce the unrelated components interference and increase the signal-to-noise ratio (SNR). The spectral segmentation method is proposed to obtain the fault zone as completely as possible. Based on the feature that rotation frequency is related to bearing fault frequency, the rotation frequency-based window size selection and extension strategy is proposed. With different frequency levels, the AAK is formed. The proposed method is validated by simulated and experimental data. The results show that this method can automatically and adaptively search for a reasonable demodulation bandwidth according to the fault information feature and resonance region position. The method can estimate the center frequency and bandwidth and avoid unrelated component interference. The AAK can provide accurate detection results and possesses excellent performance. Thus, it is suitable for wheelset-bearing fault detection.
Author Ding, Jianming
Zhao, Wentao
Zhang, Qingsong
Author_xml – sequence: 1
  givenname: Qingsong
  surname: Zhang
  fullname: Zhang, Qingsong
– sequence: 2
  givenname: Jianming
  surname: Ding
  fullname: Ding, Jianming
– sequence: 3
  givenname: Wentao
  surname: Zhao
  fullname: Zhao, Wentao
BookMark eNp9kc1q3DAUhUVJoZO0-0I3gq491b-t5Ux-BxKySEqXRpKvEwWP5MhyoH2CPHY0OHTRRVcXxPnu4X46RkchBkDoKyVrSon-cb-7WTPC2JrTuhGN-IBWVMq60kqxI7QihDaVFlJ9QsfT9EQIqZWoV-h1E_CmM2P2L4DPYB-7eTDZx4C3JnT4Dh72EPLycgP5MXY4R3xb8nv_B_DdCC4nM-BtnENn0m98oHZ5wptxHLxbwD4m_OsRYJggV1swyYcHfGHmIZfKXDaU0Gf0sTcl8OV9nqCfF-f3p1fV9e3l7nRzXTmmaa6UqwlvpNWus4ZbIaiRPRPUOmqVdb2UqoPGac4ps0JLZQg03MrOUkscY_wEfV_2jik-zzDl9inOKZTKlqlaEtFoLUuKLCmX4jQl6Nsx-X25r6WkPfhui-_24Lt9910Q9Q_i_CKuCPLD_8BvC-gB4G-PrpvyXZy_AUeSkPM
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2022_3224537
crossref_primary_10_1109_TIM_2025_3541794
crossref_primary_10_1109_TITS_2023_3288179
crossref_primary_10_1109_TITS_2023_3253087
crossref_primary_10_1109_TIM_2024_3509550
Cites_doi 10.1155/2018/2749689
10.1016/j.ymssp.2017.02.003
10.1016/j.ymssp.2012.10.003
10.1016/j.ymssp.2010.05.018
10.1016/j.measurement.2019.05.006
10.1016/j.measurement.2017.12.010
10.1016/j.ymssp.2010.12.008
10.1016/j.ymssp.2005.12.002
10.1016/j.ymssp.2008.08.002
10.1016/j.ymssp.2017.12.009
10.1016/j.sigpro.2013.05.013
10.1016/j.ymssp.2015.02.020
10.1016/j.measurement.2017.12.029
10.1109/TSP.2013.2288675
10.1016/j.ymssp.2019.05.003
10.1016/j.measurement.2018.10.064
10.1016/j.measurement.2020.108746
10.1785/0220200115
10.1016/j.ymssp.2004.09.002
10.1016/j.ymssp.2018.01.027
10.1016/j.infrared.2020.103385
10.1016/j.ymssp.2004.09.001
10.1016/j.ymssp.2018.04.012
10.1142/S1793536909000047
10.1016/j.measurement.2012.01.001
10.1186/s41476-019-0123-2
10.1109/TSP.2013.2265222
10.1016/j.ymssp.2010.12.011
10.1016/j.ymssp.2004.01.006
10.1109/TIE.2009.2025288
10.1109/ACCESS.2019.2902645
10.1016/j.ymssp.2009.12.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3178484
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 1
ExternalDocumentID 10_1109_TIM_2022_3178484
9789453
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
5VS
8WZ
A6W
AAYOK
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-6c70385b9cdba3b441a5f241bc1b6bcf556de8c93312b4956a0e83b5db1b0c223
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:16:48 EDT 2025
Tue Jul 01 03:07:14 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Aug 27 02:24:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-6c70385b9cdba3b441a5f241bc1b6bcf556de8c93312b4956a0e83b5db1b0c223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1306-3580
0000-0001-9586-0158
0000-0003-4565-0042
PQID 2675048995
PQPubID 85462
PageCount 1
ParticipantIDs proquest_journals_2675048995
ieee_primary_9789453
crossref_citationtrail_10_1109_TIM_2022_3178484
crossref_primary_10_1109_TIM_2022_3178484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1155/2018/2749689
– ident: ref12
  doi: 10.1016/j.ymssp.2017.02.003
– ident: ref28
  doi: 10.1016/j.ymssp.2012.10.003
– ident: ref27
  doi: 10.1016/j.ymssp.2010.05.018
– ident: ref25
  doi: 10.1016/j.measurement.2019.05.006
– ident: ref2
  doi: 10.1016/j.measurement.2017.12.010
– ident: ref30
  doi: 10.1016/j.ymssp.2010.12.008
– ident: ref23
  doi: 10.1016/j.ymssp.2005.12.002
– ident: ref26
  doi: 10.1016/j.ymssp.2008.08.002
– ident: ref29
  doi: 10.1016/j.ymssp.2017.12.009
– ident: ref31
  doi: 10.1016/j.sigpro.2013.05.013
– ident: ref14
  doi: 10.1016/j.ymssp.2015.02.020
– ident: ref15
  doi: 10.1016/j.measurement.2017.12.029
– ident: ref13
  doi: 10.1109/TSP.2013.2288675
– ident: ref32
  doi: 10.1016/j.ymssp.2019.05.003
– ident: ref20
  doi: 10.1016/j.measurement.2018.10.064
– ident: ref3
  doi: 10.1016/j.measurement.2020.108746
– ident: ref18
  doi: 10.1785/0220200115
– ident: ref24
  doi: 10.1016/j.ymssp.2004.09.002
– ident: ref10
  doi: 10.1016/j.ymssp.2018.01.027
– ident: ref19
  doi: 10.1016/j.infrared.2020.103385
– ident: ref17
  doi: 10.1016/j.ymssp.2004.09.001
– ident: ref1
  doi: 10.1016/j.ymssp.2018.04.012
– ident: ref11
  doi: 10.1142/S1793536909000047
– ident: ref22
  doi: 10.1016/j.measurement.2012.01.001
– ident: ref9
  doi: 10.1186/s41476-019-0123-2
– ident: ref16
  doi: 10.1109/TSP.2013.2265222
– ident: ref4
  doi: 10.1016/j.ymssp.2010.12.011
– ident: ref5
  doi: 10.1016/j.ymssp.2004.01.006
– ident: ref21
  doi: 10.1109/TIE.2009.2025288
– ident: ref7
  doi: 10.1109/ACCESS.2019.2902645
– ident: ref8
  doi: 10.1016/j.ymssp.2009.12.007
SSID ssj0007647
Score 2.3817155
Snippet Wheelset-bearing working states directly affect the stability of bogies, and existing defects may threaten the running safety of high-speed trains. Thus, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Autocorrelated kurtogram
Autocorrelation
Bandwidth
Bandwidths
Demodulation
Fault detection
Faults
Filter banks
Frequency conversion
Frequency estimation
High speed rail
Information filters
Interference
Kurtosis
Low-pass filters
non-stationary signals
Resonant frequency
Rotation
Segmentation
Signal to noise ratio
spectral segmentation
Undercarriages
wheelset-bearing defects
Wheelsets
Title An Adaptive Demodulation Band Segmentation Method to Optimize Spectral Boundary and Its Application for Wheelset-Bearing Fault Detection
URI https://ieeexplore.ieee.org/document/9789453
https://www.proquest.com/docview/2675048995
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61lSrBAfoAEWiRD1yQ2DTeXXvXxwSI2kqBQ1upt9XaniBEs6ka50B_QX92Z7yb8ChCve3B47U04_G8P4B3aTFVmc9N4tHlHK1SiZXaJqX2XpE8IZbc4Dz5oo8v8tNLdbkBH9a9MIgYi8-wz58xl-_nbsmhMp4Ga3KVbcImiVnbq7XWuoXO2_mYki4wWQWrlOTAHJ2fTMgRTFPyT4syL_M_nqCIqfJAEcfXZfwcJqtztUUlP_rLYPvu9q-RjY89-A4868xMMWzlYhc2sNmDp78NH9yD7Vj86Rb7cDdsxNDX16z5xCeczX2H6SVGdePFGX6bdR1KjZhExGkR5uIrrZ99v0XBEPYcLxGjCNF081Mw1UlYiOGv7Lgg41iQ5uenOCQjul90CDGul1eBfhliQVjzAi7Gn88_HicdQkPiUiNDol3BmUVrnLd1Zsm0qtWUbALrpNXWTZXSHktnskymll2xeoBlZpW30g4cWSYvYauZN_gKhJM6nWaIBp3MMbVGYVY4RcSlQy9lD45WTKtcN76cUTSuqujGDExFbK6YzVXH5h68X1Nct6M7_rN2n7m2XtcxrAcHK7mouru9qFLNI_HJT1Wv_031Bp7w3m2g5gC2ws0SD8l0CfZtlNl7qHvsTQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIkQ58GipCBTwgQsSm8a7tnd9TIAogW45kEq9rdb2BCGaTdU4B_oL-NmMvZvwFOK2B4_W0oznPfMBvEjzucyc0IlDK0K2SiaGK5MUyjlJ8oRYhAHn8lRNzsS7c3m-A6-2szCIGJvPsB8-Yy3fLe06pMrCNlgtZHYDbpLdF7Kd1trq3VyJdkMmpydMfsGmKDnQx7NpSaFgmlKEmheiEL8YoYiq8ocqjvZlfA_Kzc3atpIv_bU3fXv929LG_736fbjbOZps2ErGA9jBZh_u_LR-cB9uxfZPuzqAb8OGDV19GXQfe4OLpetQvdiobhz7iJ8W3YxSw8qIOc38kn2g84vP18gCiH3ImLBRBGm6-soC1dSv2PBHfZyRe8xI9wdj7JMRvTC6BBvX6wtPv_SxJax5CGfjt7PXk6TDaEhsqrlPlM1DbdFo60ydGXKuajknr8BYbpSxcymVw8LqLOOpCcFYPcAiM9IZbgaWfJND2G2WDT4CZrlK5xmiRssFpkZLzHIribiw6DjvwfGGaZXtFpgHHI2LKgYyA10Rm6vA5qpjcw9ebiku2-Ud_zh7ELi2PdcxrAdHG7moute9qlIVluJTpCof_53qOdyezMqT6mR6-v4J7IX_tGmbI9j1V2t8So6MN8-i_H4HKpPvmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Demodulation+Band+Segmentation+Method+to+Optimize+Spectral+Boundary+and+Its+Application+for+Wheelset-Bearing+Fault+Detection&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Qingsong&rft.au=Ding%2C+Jianming&rft.au=Zhao%2C+Wentao&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft_id=info:doi/10.1109%2FTIM.2022.3178484&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon