Scalable Soft Sensor for Nonlinear Industrial Big Data via Bagging Stochastic Variational Gaussian Processes
Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian proce...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 68; no. 8; pp. 7594 - 7602 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian process within the sparse and variational approximation framework. Then, the stochastic variational inference (SVI) mechanism is induced, which can significantly break the formidable obstacle to nonlinear big data modeling. In addition, the imposed automatic relevance determination strategy will also leverage model interpretability with relevant feature weighting. Based on that, the bagging mechanism is encompassed by combining a set of distributed predictors to form a powerful ensemble model. As the results, prediction generalization is enhanced, whereas the stability is also well guaranteed. Both SVI and bagging allow for the parallel deployment. Therefore, a distributed diagram is developed for modeling and inference so that the bagging SVGPR can explore big data effectively and efficiently. For case study demonstrations, the proposed method is first evaluated on the numerical example, and then is applied in the real-time oxygen prediction of hydrogen manufacturing unit. |
---|---|
AbstractList | Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian process within the sparse and variational approximation framework. Then, the stochastic variational inference (SVI) mechanism is induced, which can significantly break the formidable obstacle to nonlinear big data modeling. In addition, the imposed automatic relevance determination strategy will also leverage model interpretability with relevant feature weighting. Based on that, the bagging mechanism is encompassed by combining a set of distributed predictors to form a powerful ensemble model. As the results, prediction generalization is enhanced, whereas the stability is also well guaranteed. Both SVI and bagging allow for the parallel deployment. Therefore, a distributed diagram is developed for modeling and inference so that the bagging SVGPR can explore big data effectively and efficiently. For case study demonstrations, the proposed method is first evaluated on the numerical example, and then is applied in the real-time oxygen prediction of hydrogen manufacturing unit. |
Author | Peng, Guohao Yao, Le Zhu, Jinlin Ge, Zhiqiang Jiang, Muyun |
Author_xml | – sequence: 1 givenname: Jinlin orcidid: 0000-0002-4296-5914 surname: Zhu fullname: Zhu, Jinlin email: wx_zjl@126.com organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 2 givenname: Muyun orcidid: 0000-0001-5478-9770 surname: Jiang fullname: Jiang, Muyun email: james.jiang@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 3 givenname: Guohao orcidid: 0000-0001-9967-4934 surname: Peng fullname: Peng, Guohao email: peng0086@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore – sequence: 4 givenname: Le orcidid: 0000-0002-0881-213X surname: Yao fullname: Yao, Le email: yaole_frank@zju.edu.cn organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Zhiqiang orcidid: 0000-0002-2071-4380 surname: Ge fullname: Ge, Zhiqiang email: gezhiqiang@zju.edu.cn organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China |
BookMark | eNp9kEtLAzEQgIMoWKt3wUvA89Y893H0WQuiQtXrMptOamRNNEkF_71bKx48eBjm8n3D8O2RbR88EnLI2YRz1pw8zC4nggk2kYxJXcstMuJaV0XTqHqbjJio6oIxVe6SvZReGONKcz0i_dxAD12PdB5spnP0KURqh7kNvnceIdKZX6xSjg56euaW9AIy0A8H9AyWS-eXdJ6DeYaUnaFPMGDZBT-wU1il5MDT-xgMpoRpn-xY6BMe_Owxeby6fDi_Lm7uprPz05vCiIbnooROmRJZ06lFJ0pQ1nbSVF236KQ0UiiJWCFoZdHWrLJ1U6kF2gGpjaiFlmNyvLn7FsP7ClNuX8IqDj-lVmghBFdNvabKDWViSCmibY3L38_nCK5vOWvXZduhbLsu2_6UHUT2R3yL7hXi53_K0UZxiPiLN1yUQjP5BQd0hww |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_08_316 crossref_primary_10_1016_j_jprocont_2022_04_006 crossref_primary_10_1109_TIM_2024_3373098 crossref_primary_10_1109_TIM_2022_3181930 crossref_primary_10_1016_j_chemolab_2024_105201 crossref_primary_10_1109_TASE_2023_3316224 crossref_primary_10_1109_TIM_2024_3472794 crossref_primary_10_1109_TII_2021_3120509 |
Cites_doi | 10.1016/j.conengprac.2019.104198 10.1016/j.jprocont.2013.05.007 10.1109/JSYST.2019.2931879 10.1109/TIE.2018.2856200 10.1016/j.chemolab.2017.11.001 10.1016/j.jprocont.2018.01.008 10.1016/j.chemolab.2015.12.011 10.1109/TII.2017.2658732 10.1109/TIE.2019.2927197 10.1016/j.chemolab.2016.04.009 10.1109/TII.2013.2283147 10.1109/TIE.2017.2733443 10.1016/j.arcontrol.2018.09.003 10.3390/s19235255 10.1109/TII.2018.2869899 10.1016/j.jprocont.2019.03.017 10.1109/TCSI.2017.2746091 10.1021/acs.iecr.8b02913 10.1109/ACCESS.2017.2756872 10.1016/j.compchemeng.2019.106575 10.1109/TII.2016.2610839 10.1016/j.jprocont.2019.10.007 10.1109/TIE.2018.2874589 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2020.3003583 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 7602 |
ExternalDocumentID | 10_1109_TIE_2020_3003583 9126250 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LR18F030001 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 61833014 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-6ab4c6e09b4db26a4ffb3c7bbdb33c3243ee7ea54fef807f8974def3c78c28253 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:18:55 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Tue Jul 01 00:16:37 EDT 2025 Wed Aug 27 02:30:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-6ab4c6e09b4db26a4ffb3c7bbdb33c3243ee7ea54fef807f8974def3c78c28253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5478-9770 0000-0002-2071-4380 0000-0002-4296-5914 0000-0001-9967-4934 0000-0002-0881-213X |
PQID | 2522214985 |
PQPubID | 85464 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2522214985 crossref_citationtrail_10_1109_TIE_2020_3003583 crossref_primary_10_1109_TIE_2020_3003583 ieee_primary_9126250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 titsias (ref27) 0 hensman (ref26) 0 ref23 ref20 ref22 ref21 ref29 ref8 hoffman (ref28) 2013; 14 ref7 williams (ref19) 2006 ref9 ref4 ref3 ref6 ref5 quiñonero-candela (ref25) 2005; 6 damianou (ref24) 2016; 17 |
References_xml | – ident: ref11 doi: 10.1016/j.conengprac.2019.104198 – ident: ref1 doi: 10.1016/j.jprocont.2013.05.007 – start-page: 567 year: 0 ident: ref27 article-title: Variational learning of inducing variables in sparse gaussian processes publication-title: Proc Artif Intell Statist – ident: ref21 doi: 10.1109/JSYST.2019.2931879 – ident: ref23 doi: 10.1109/TIE.2018.2856200 – ident: ref20 doi: 10.1016/j.chemolab.2017.11.001 – ident: ref14 doi: 10.1016/j.jprocont.2018.01.008 – ident: ref2 doi: 10.1016/j.chemolab.2015.12.011 – ident: ref22 doi: 10.1109/TII.2017.2658732 – ident: ref10 doi: 10.1109/TIE.2019.2927197 – ident: ref18 doi: 10.1016/j.chemolab.2016.04.009 – start-page: 282 year: 0 ident: ref26 article-title: Gaussian processes for big data publication-title: Proc Conf Uncertainty of Artificial Intelligence – ident: ref12 doi: 10.1109/TII.2013.2283147 – ident: ref8 doi: 10.1109/TIE.2017.2733443 – ident: ref9 doi: 10.1016/j.arcontrol.2018.09.003 – ident: ref16 doi: 10.3390/s19235255 – ident: ref5 doi: 10.1109/TII.2018.2869899 – ident: ref3 doi: 10.1016/j.jprocont.2019.03.017 – ident: ref17 doi: 10.1109/TCSI.2017.2746091 – ident: ref7 doi: 10.1021/acs.iecr.8b02913 – volume: 14 start-page: 1303 year: 2013 ident: ref28 article-title: Stochastic variational inference publication-title: J Mach Learn Res – ident: ref29 doi: 10.1109/ACCESS.2017.2756872 – volume: 6 start-page: 1939 year: 2005 ident: ref25 article-title: A unifying view of sparse approximate gaussian process regression publication-title: J Mach Learn Res – ident: ref4 doi: 10.1016/j.compchemeng.2019.106575 – year: 2006 ident: ref19 publication-title: Gaussian Processes for Machine Learning – volume: 17 start-page: 1425 year: 2016 ident: ref24 article-title: Variational inference for latent variables and uncertain inputs in gaussian processes publication-title: J Mach Learn Res – ident: ref13 doi: 10.1109/TII.2016.2610839 – ident: ref15 doi: 10.1016/j.jprocont.2019.10.007 – ident: ref6 doi: 10.1109/TIE.2018.2874589 |
SSID | ssj0014515 |
Score | 2.4228334 |
Snippet | Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7594 |
SubjectTerms | Bagging Big Data Complexity theory Data models ensemble learning feature selection Gaussian process Gaussian process (GP) Gaussian processes Ground penetrating radar Inference Mathematical analysis scalable soft sensor |
Title | Scalable Soft Sensor for Nonlinear Industrial Big Data via Bagging Stochastic Variational Gaussian Processes |
URI | https://ieeexplore.ieee.org/document/9126250 https://www.proquest.com/docview/2522214985 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFF04MXExeWbndpj6IimsAFMNw2fSKRgIHFg7_e6e6Czxhve5gmTb5uZ77OzDcInWsdhBGvWy9UXHuU-cJjioYeC4QRRGlfppJCnW7UHtCHYTgsoMt1L4wxJi0-M1X3meby9Uwt3VNZjdcJhOtA0DeAuGW9WuuMAQ2zaQXEKcYC6VulJH1e69_fAhEkwE9d3owFX1xQOlPlx0WcepfWDuqs9pUVlTxXl4msqrdvko3_3fgu2s7DTHyVnYs9VDDTfbT1SXywhCY9gMc1TuEeXMW4B3x2NscQw-JuJp8h5vhjsAdujkf4RiQCv44Fbgr3UD3CvWSmnoSTesaPQLrzh0V8J5YL15yJ8zYEszhAg9Zt_7rt5bMXPEV4PfEiIamKjM8l1ZJEglorA9WQUssgUBCFBcY0jAipNZb5DcuAl2hjwYQp1w4bHKLidDY1RwgLVeeaU8PBDdJIMekT65Kd3AnTSGnLqLaCI1a5MLmbjzGJU4Li8xgAjB2AcQ5gGV2sV7xkohx_2JYcHmu7HIoyqqwQj_O_dhETCEYJUEYWHv--6gRtElfTkhYAVlAxmS_NKQQliTxLT-M7feTeqQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9owEB6h7aG7h-2DrpaWtj7spVIDieME-1haKHSBC1Bxi_ykqAhWEHror-84CfS1qnrLYSxZ-hzPfJ6ZbwBujImTVEQuSLQwAeOhDLhmScBjaSXVJlSFpNB4kg7m7NMiWdTg7akXxlpbFJ_Zlv8scvlmqw_-qawtIorhOhL0B-j3k6js1jrlDFhSziugXjMWad8xKRmK9mzYQypIkaH6zBmPf3NCxVSVv67iwr_0H8H4uLOyrORr65Crlv7-h2jj_279MVxWgSZ5V56MJ1Czm6dw8Yv8YB3WUwTIt06RKV7GZIqMdrsjGMWSSSmgIXfk52gP0l0tyQeZS_JtJUlX-qfqJZnmW_1FerFn8hlpd_W0SD7Kw963Z5KqEcHun8G835u9HwTV9IVAUxHlQSoV06kNhWJG0VQy51SsO0oZFcca47DY2o6VCXPW8bDjODITYx2acO0bYuMrONtsN_YaiNSRMIJZgY6QpZqrkDqf7hRemkYp14D2EY5MV9LkfkLGOisoSigyBDDzAGYVgA14c1pxV8py_MO27vE42VVQNKB5RDyr_tt9RjEcpUgaefL8_lWv4eFgNh5lo-Hk9gWcU1_hUpQDNuEs3x3sSwxRcvWqOJk_AELy4fI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Soft+Sensor+for+Nonlinear+Industrial+Big+Data+via+Bagging+Stochastic+Variational+Gaussian+Processes&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Zhu%2C+Jinlin&rft.au=Jiang%2C+Muyun&rft.au=Peng%2C+Guohao&rft.au=Yao%2C+Le&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=68&rft.issue=8&rft.spage=7594&rft.epage=7602&rft_id=info:doi/10.1109%2FTIE.2020.3003583&rft.externalDocID=9126250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |