Scalable Soft Sensor for Nonlinear Industrial Big Data via Bagging Stochastic Variational Gaussian Processes

Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian proce...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 68; no. 8; pp. 7594 - 7602
Main Authors Zhu, Jinlin, Jiang, Muyun, Peng, Guohao, Yao, Le, Ge, Zhiqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian process within the sparse and variational approximation framework. Then, the stochastic variational inference (SVI) mechanism is induced, which can significantly break the formidable obstacle to nonlinear big data modeling. In addition, the imposed automatic relevance determination strategy will also leverage model interpretability with relevant feature weighting. Based on that, the bagging mechanism is encompassed by combining a set of distributed predictors to form a powerful ensemble model. As the results, prediction generalization is enhanced, whereas the stability is also well guaranteed. Both SVI and bagging allow for the parallel deployment. Therefore, a distributed diagram is developed for modeling and inference so that the bagging SVGPR can explore big data effectively and efficiently. For case study demonstrations, the proposed method is first evaluated on the numerical example, and then is applied in the real-time oxygen prediction of hydrogen manufacturing unit.
AbstractList Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect, this work proposes a scalable soft sensor called bagging stochastic variational GP regression (SVGPR). We first formulate the Gaussian process within the sparse and variational approximation framework. Then, the stochastic variational inference (SVI) mechanism is induced, which can significantly break the formidable obstacle to nonlinear big data modeling. In addition, the imposed automatic relevance determination strategy will also leverage model interpretability with relevant feature weighting. Based on that, the bagging mechanism is encompassed by combining a set of distributed predictors to form a powerful ensemble model. As the results, prediction generalization is enhanced, whereas the stability is also well guaranteed. Both SVI and bagging allow for the parallel deployment. Therefore, a distributed diagram is developed for modeling and inference so that the bagging SVGPR can explore big data effectively and efficiently. For case study demonstrations, the proposed method is first evaluated on the numerical example, and then is applied in the real-time oxygen prediction of hydrogen manufacturing unit.
Author Peng, Guohao
Yao, Le
Zhu, Jinlin
Ge, Zhiqiang
Jiang, Muyun
Author_xml – sequence: 1
  givenname: Jinlin
  orcidid: 0000-0002-4296-5914
  surname: Zhu
  fullname: Zhu, Jinlin
  email: wx_zjl@126.com
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 2
  givenname: Muyun
  orcidid: 0000-0001-5478-9770
  surname: Jiang
  fullname: Jiang, Muyun
  email: james.jiang@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 3
  givenname: Guohao
  orcidid: 0000-0001-9967-4934
  surname: Peng
  fullname: Peng, Guohao
  email: peng0086@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 4
  givenname: Le
  orcidid: 0000-0002-0881-213X
  surname: Yao
  fullname: Yao, Le
  email: yaole_frank@zju.edu.cn
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Zhiqiang
  orcidid: 0000-0002-2071-4380
  surname: Ge
  fullname: Ge, Zhiqiang
  email: gezhiqiang@zju.edu.cn
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kEtLAzEQgIMoWKt3wUvA89Y893H0WQuiQtXrMptOamRNNEkF_71bKx48eBjm8n3D8O2RbR88EnLI2YRz1pw8zC4nggk2kYxJXcstMuJaV0XTqHqbjJio6oIxVe6SvZReGONKcz0i_dxAD12PdB5spnP0KURqh7kNvnceIdKZX6xSjg56euaW9AIy0A8H9AyWS-eXdJ6DeYaUnaFPMGDZBT-wU1il5MDT-xgMpoRpn-xY6BMe_Owxeby6fDi_Lm7uprPz05vCiIbnooROmRJZ06lFJ0pQ1nbSVF236KQ0UiiJWCFoZdHWrLJ1U6kF2gGpjaiFlmNyvLn7FsP7ClNuX8IqDj-lVmghBFdNvabKDWViSCmibY3L38_nCK5vOWvXZduhbLsu2_6UHUT2R3yL7hXi53_K0UZxiPiLN1yUQjP5BQd0hww
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_08_316
crossref_primary_10_1016_j_jprocont_2022_04_006
crossref_primary_10_1109_TIM_2024_3373098
crossref_primary_10_1109_TIM_2022_3181930
crossref_primary_10_1016_j_chemolab_2024_105201
crossref_primary_10_1109_TASE_2023_3316224
crossref_primary_10_1109_TIM_2024_3472794
crossref_primary_10_1109_TII_2021_3120509
Cites_doi 10.1016/j.conengprac.2019.104198
10.1016/j.jprocont.2013.05.007
10.1109/JSYST.2019.2931879
10.1109/TIE.2018.2856200
10.1016/j.chemolab.2017.11.001
10.1016/j.jprocont.2018.01.008
10.1016/j.chemolab.2015.12.011
10.1109/TII.2017.2658732
10.1109/TIE.2019.2927197
10.1016/j.chemolab.2016.04.009
10.1109/TII.2013.2283147
10.1109/TIE.2017.2733443
10.1016/j.arcontrol.2018.09.003
10.3390/s19235255
10.1109/TII.2018.2869899
10.1016/j.jprocont.2019.03.017
10.1109/TCSI.2017.2746091
10.1021/acs.iecr.8b02913
10.1109/ACCESS.2017.2756872
10.1016/j.compchemeng.2019.106575
10.1109/TII.2016.2610839
10.1016/j.jprocont.2019.10.007
10.1109/TIE.2018.2874589
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2020.3003583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 7602
ExternalDocumentID 10_1109_TIE_2020_3003583
9126250
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR18F030001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 61833014
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-6ab4c6e09b4db26a4ffb3c7bbdb33c3243ee7ea54fef807f8974def3c78c28253
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:18:55 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Tue Jul 01 00:16:37 EDT 2025
Wed Aug 27 02:30:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-6ab4c6e09b4db26a4ffb3c7bbdb33c3243ee7ea54fef807f8974def3c78c28253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5478-9770
0000-0002-2071-4380
0000-0002-4296-5914
0000-0001-9967-4934
0000-0002-0881-213X
PQID 2522214985
PQPubID 85464
PageCount 9
ParticipantIDs proquest_journals_2522214985
crossref_citationtrail_10_1109_TIE_2020_3003583
crossref_primary_10_1109_TIE_2020_3003583
ieee_primary_9126250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
titsias (ref27) 0
hensman (ref26) 0
ref23
ref20
ref22
ref21
ref29
ref8
hoffman (ref28) 2013; 14
ref7
williams (ref19) 2006
ref9
ref4
ref3
ref6
ref5
quiñonero-candela (ref25) 2005; 6
damianou (ref24) 2016; 17
References_xml – ident: ref11
  doi: 10.1016/j.conengprac.2019.104198
– ident: ref1
  doi: 10.1016/j.jprocont.2013.05.007
– start-page: 567
  year: 0
  ident: ref27
  article-title: Variational learning of inducing variables in sparse gaussian processes
  publication-title: Proc Artif Intell Statist
– ident: ref21
  doi: 10.1109/JSYST.2019.2931879
– ident: ref23
  doi: 10.1109/TIE.2018.2856200
– ident: ref20
  doi: 10.1016/j.chemolab.2017.11.001
– ident: ref14
  doi: 10.1016/j.jprocont.2018.01.008
– ident: ref2
  doi: 10.1016/j.chemolab.2015.12.011
– ident: ref22
  doi: 10.1109/TII.2017.2658732
– ident: ref10
  doi: 10.1109/TIE.2019.2927197
– ident: ref18
  doi: 10.1016/j.chemolab.2016.04.009
– start-page: 282
  year: 0
  ident: ref26
  article-title: Gaussian processes for big data
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– ident: ref12
  doi: 10.1109/TII.2013.2283147
– ident: ref8
  doi: 10.1109/TIE.2017.2733443
– ident: ref9
  doi: 10.1016/j.arcontrol.2018.09.003
– ident: ref16
  doi: 10.3390/s19235255
– ident: ref5
  doi: 10.1109/TII.2018.2869899
– ident: ref3
  doi: 10.1016/j.jprocont.2019.03.017
– ident: ref17
  doi: 10.1109/TCSI.2017.2746091
– ident: ref7
  doi: 10.1021/acs.iecr.8b02913
– volume: 14
  start-page: 1303
  year: 2013
  ident: ref28
  article-title: Stochastic variational inference
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.1109/ACCESS.2017.2756872
– volume: 6
  start-page: 1939
  year: 2005
  ident: ref25
  article-title: A unifying view of sparse approximate gaussian process regression
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1016/j.compchemeng.2019.106575
– year: 2006
  ident: ref19
  publication-title: Gaussian Processes for Machine Learning
– volume: 17
  start-page: 1425
  year: 2016
  ident: ref24
  article-title: Variational inference for latent variables and uncertain inputs in gaussian processes
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1109/TII.2016.2610839
– ident: ref15
  doi: 10.1016/j.jprocont.2019.10.007
– ident: ref6
  doi: 10.1109/TIE.2018.2874589
SSID ssj0014515
Score 2.4228334
Snippet Traditional Gaussian process regression suffers from the cubic complexity and excessive computation burdens for industrial big data. To get rid of such defect,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7594
SubjectTerms Bagging
Big Data
Complexity theory
Data models
ensemble learning
feature selection
Gaussian process
Gaussian process (GP)
Gaussian processes
Ground penetrating radar
Inference
Mathematical analysis
scalable soft sensor
Title Scalable Soft Sensor for Nonlinear Industrial Big Data via Bagging Stochastic Variational Gaussian Processes
URI https://ieeexplore.ieee.org/document/9126250
https://www.proquest.com/docview/2522214985
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFF04MXExeWbndpj6IimsAFMNw2fSKRgIHFg7_e6e6Czxhve5gmTb5uZ77OzDcInWsdhBGvWy9UXHuU-cJjioYeC4QRRGlfppJCnW7UHtCHYTgsoMt1L4wxJi0-M1X3meby9Uwt3VNZjdcJhOtA0DeAuGW9WuuMAQ2zaQXEKcYC6VulJH1e69_fAhEkwE9d3owFX1xQOlPlx0WcepfWDuqs9pUVlTxXl4msqrdvko3_3fgu2s7DTHyVnYs9VDDTfbT1SXywhCY9gMc1TuEeXMW4B3x2NscQw-JuJp8h5vhjsAdujkf4RiQCv44Fbgr3UD3CvWSmnoSTesaPQLrzh0V8J5YL15yJ8zYEszhAg9Zt_7rt5bMXPEV4PfEiIamKjM8l1ZJEglorA9WQUssgUBCFBcY0jAipNZb5DcuAl2hjwYQp1w4bHKLidDY1RwgLVeeaU8PBDdJIMekT65Kd3AnTSGnLqLaCI1a5MLmbjzGJU4Li8xgAjB2AcQ5gGV2sV7xkohx_2JYcHmu7HIoyqqwQj_O_dhETCEYJUEYWHv--6gRtElfTkhYAVlAxmS_NKQQliTxLT-M7feTeqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9owEB6h7aG7h-2DrpaWtj7spVIDieME-1haKHSBC1Bxi_ykqAhWEHror-84CfS1qnrLYSxZ-hzPfJ6ZbwBujImTVEQuSLQwAeOhDLhmScBjaSXVJlSFpNB4kg7m7NMiWdTg7akXxlpbFJ_Zlv8scvlmqw_-qawtIorhOhL0B-j3k6js1jrlDFhSziugXjMWad8xKRmK9mzYQypIkaH6zBmPf3NCxVSVv67iwr_0H8H4uLOyrORr65Crlv7-h2jj_279MVxWgSZ5V56MJ1Czm6dw8Yv8YB3WUwTIt06RKV7GZIqMdrsjGMWSSSmgIXfk52gP0l0tyQeZS_JtJUlX-qfqJZnmW_1FerFn8hlpd_W0SD7Kw963Z5KqEcHun8G835u9HwTV9IVAUxHlQSoV06kNhWJG0VQy51SsO0oZFcca47DY2o6VCXPW8bDjODITYx2acO0bYuMrONtsN_YaiNSRMIJZgY6QpZqrkDqf7hRemkYp14D2EY5MV9LkfkLGOisoSigyBDDzAGYVgA14c1pxV8py_MO27vE42VVQNKB5RDyr_tt9RjEcpUgaefL8_lWv4eFgNh5lo-Hk9gWcU1_hUpQDNuEs3x3sSwxRcvWqOJk_AELy4fI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Soft+Sensor+for+Nonlinear+Industrial+Big+Data+via+Bagging+Stochastic+Variational+Gaussian+Processes&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Zhu%2C+Jinlin&rft.au=Jiang%2C+Muyun&rft.au=Peng%2C+Guohao&rft.au=Yao%2C+Le&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=68&rft.issue=8&rft.spage=7594&rft.epage=7602&rft_id=info:doi/10.1109%2FTIE.2020.3003583&rft.externalDocID=9126250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon