Data-Efficient Reinforcement Learning for Energy Optimization of Power-Assisted Wheelchairs

The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 12; pp. 9734 - 9744
Main Authors Feng, Guoxi, Busoniu, Lucian, Guerra, Thierry-Marie, Mohammad, Sami
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is formulated as an optimal control problem and solved by Feng et al. using the model-free approach gradient of partially observable Markov decision processes. To increase the data efficiency of the model-free framework, we here propose to use policy learning by weighting exploration with the returns (PoWER) with 25 control parameters. Moreover, we provide a new near-optimality analysis of the finite-horizon fuzzy Q -iteration, which derives a model-based baseline solution to verify numerically the near-optimality of the presented model-free approaches. Simulation results show that the PoWER algorithm with the new parameterization converges to a near-optimal solution within 200 trials and possesses the adaptability to cope with changes of the human fatigue dynamics. Finally, 24 experimental trials are carried out on the PAW system, with fatigue feedback provided by the user via a joystick. The performance tends to increase gradually after learning. The results obtained demonstrate the effectiveness and the feasibility of PoWER in our application.
AbstractList The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is formulated as an optimal control problem and solved by Feng et al. using the model-free approach gradient of partially observable Markov decision processes. To increase the data efficiency of the model-free framework, we here propose to use policy learning by weighting exploration with the returns (PoWER) with 25 control parameters. Moreover, we provide a new near-optimality analysis of the finite-horizon fuzzy Q -iteration, which derives a model-based baseline solution to verify numerically the near-optimality of the presented model-free approaches. Simulation results show that the PoWER algorithm with the new parameterization converges to a near-optimal solution within 200 trials and possesses the adaptability to cope with changes of the human fatigue dynamics. Finally, 24 experimental trials are carried out on the PAW system, with fatigue feedback provided by the user via a joystick. The performance tends to increase gradually after learning. The results obtained demonstrate the effectiveness and the feasibility of PoWER in our application.
Author Feng, Guoxi
Guerra, Thierry-Marie
Busoniu, Lucian
Mohammad, Sami
Author_xml – sequence: 1
  givenname: Guoxi
  orcidid: 0000-0002-5469-9377
  surname: Feng
  fullname: Feng, Guoxi
  email: guoxi.feng@uphf.fr
  organization: LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
– sequence: 2
  givenname: Lucian
  orcidid: 0000-0001-8017-1296
  surname: Busoniu
  fullname: Busoniu, Lucian
  email: lucian@busoniu.net
  organization: Department of Automation, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
– sequence: 3
  givenname: Thierry-Marie
  surname: Guerra
  fullname: Guerra, Thierry-Marie
  email: thierry.guerra@uphf.fr
  organization: LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
– sequence: 4
  givenname: Sami
  surname: Mohammad
  fullname: Mohammad, Sami
  email: sami.mohammad@autonomad-mobility.com
  organization: Autonomad Mobility, Valenciennes, France
BookMark eNo9kEFLAzEQRoMo2FbvgpcFz1uT7CabHEutWihUpOLBw5JNJm1Km9Rki9Rf75YWT8M3fG8GXh9d-uABoTuCh4Rg-biYToYUEzmkEhcVIxeoRxircilLcYl6mFYix7jk16if0hpjUjLCeujrSbUqn1jrtAPfZu_gvA1Rw_aYZqCid36Zdats4iEuD9l817qt-1WtCz4LNnsLPxDzUUoutWCyzxXARq-Ui-kGXVm1SXB7ngP08TxZjF_z2fxlOh7Nck0laXPOqG2obEosKQHDjRQSjAZmuago5bqsCsEFMwQaUmIqtGkIKKKMtk0Dphigh9PdXQzfe0htvQ776LuXdYdLzjtKdC18aukYUopg6110WxUPNcH1UWHdKayPCuuzwg65PyEOAP7rgvMKk6L4A_Wfb7Y
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_conengprac_2020_104716
crossref_primary_10_1109_TIE_2020_2984462
crossref_primary_10_1109_TIE_2021_3090707
crossref_primary_10_1109_THMS_2022_3195890
crossref_primary_10_1109_TVT_2020_3009979
Cites_doi 10.1561/2300000021
10.1007/978-3-319-03194-1_4
10.23919/ACC.2018.8431038
10.1162/neco.1997.9.2.271
10.1109/ISCAS.2000.856049
10.1126/science.153.3731.34
10.1109/TIE.2008.917061
10.1007/BF00992696
10.1109/ACC.2014.6859373
10.1109/TIE.2009.2014747
10.1016/j.apm.2015.11.040
10.1109/ACC.2013.6580849
10.1109/CDC.2015.7402338
10.1109/IROS.2006.282564
10.1016/0003-9993(94)90343-3
10.1016/j.automatica.2010.02.006
10.1109/TCYB.2014.2334695
10.1023/A:1017936530646
10.1109/TCST.2015.2473821
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2019.2903751
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 9744
ExternalDocumentID 10_1109_TIE_2019_2903751
8667013
Genre orig-research
GrantInformation_xml – fundername: French Ministry of Research
– fundername: Romanian Ministry of Research and Innovation
– fundername: CNCS-UEFISCDI
  grantid: PN-III-P1-1.1-TE-2016-0670
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-652fb29b40921ed6d989edce5f687226c4738685d1eb14028cdb1ea1adcfbbed3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Oct 10 20:15:19 EDT 2024
Fri Aug 23 01:00:39 EDT 2024
Wed Jun 26 19:30:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-652fb29b40921ed6d989edce5f687226c4738685d1eb14028cdb1ea1adcfbbed3
ORCID 0000-0002-5469-9377
0000-0001-8017-1296
PQID 2269661408
PQPubID 85464
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIE_2019_2903751
ieee_primary_8667013
proquest_journals_2269661408
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
rodgers (ref25) 1994; 75
ref2
ref17
kober (ref21) 0
ref16
ref19
ref18
tanohata (ref6) 2010
(ref1) 2011
ref23
deisenroth (ref22) 2013; 2
ref20
mohammad (ref7) 2015
sutton (ref8) 0
ref9
ref4
ref3
ref5
bu?oniu (ref10) 0
ma (ref24) 2015; 45
References_xml – volume: 2
  start-page: 1
  year: 2013
  ident: ref22
  article-title: A survey on policy search for robotics
  publication-title: Foundations and Trends in Robotics
  doi: 10.1561/2300000021
  contributor:
    fullname: deisenroth
– ident: ref13
  doi: 10.1007/978-3-319-03194-1_4
– ident: ref17
  doi: 10.23919/ACC.2018.8431038
– ident: ref23
  doi: 10.1162/neco.1997.9.2.271
– ident: ref19
  doi: 10.1109/ISCAS.2000.856049
– ident: ref12
  doi: 10.1126/science.153.3731.34
– year: 2015
  ident: ref7
  article-title: Method and device assisting with the electric propulsion of a rolling system, wheelchair kit comprising such a device and wheelchair equipped with such a device
  contributor:
    fullname: mohammad
– year: 2011
  ident: ref1
  article-title: World report on disability
– start-page: 1057
  year: 0
  ident: ref8
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: sutton
– ident: ref16
  doi: 10.1109/TIE.2008.917061
– ident: ref9
  doi: 10.1007/BF00992696
– ident: ref4
  doi: 10.1109/ACC.2014.6859373
– ident: ref5
  doi: 10.1109/TIE.2009.2014747
– ident: ref15
  doi: 10.1016/j.apm.2015.11.040
– start-page: 1595
  year: 2010
  ident: ref6
  article-title: Battery friendly driving control of electric power-assisted wheelchair based on fuzzy algorithm
  publication-title: Soc Instrum Control Eng Annu Conf
  contributor:
    fullname: tanohata
– ident: ref14
  doi: 10.1109/ACC.2013.6580849
– ident: ref2
  doi: 10.1109/CDC.2015.7402338
– start-page: 849
  year: 0
  ident: ref21
  article-title: Policy search for motor primitives in robotics
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: kober
– ident: ref20
  doi: 10.1109/IROS.2006.282564
– volume: 75
  start-page: 85
  year: 1994
  ident: ref25
  article-title: Biomechanics of wheelchair propulsion during fatigue
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/0003-9993(94)90343-3
  contributor:
    fullname: rodgers
– ident: ref18
  doi: 10.1016/j.automatica.2010.02.006
– volume: 45
  start-page: 728
  year: 2015
  ident: ref24
  article-title: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2334695
  contributor:
    fullname: ma
– start-page: 486
  year: 0
  ident: ref10
  article-title: Online least-squares policy iteration for reinforcement learning control
  publication-title: Proc Amer Control Conf
  contributor:
    fullname: bu?oniu
– ident: ref11
  doi: 10.1023/A:1017936530646
– ident: ref3
  doi: 10.1109/TCST.2015.2473821
SSID ssj0014515
Score 2.4042165
Snippet The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 9734
SubjectTerms Adaptation models
Algorithms
Assistive control
Computer simulation
disabled persons
Energy consumption
Fatigue
Force
Heuristic algorithms
Iterative methods
Machine learning
Markov chains
Numerical models
Optimal control
Optimization
Parameterization
power-assisted wheelchairs
reinforcement learning
Wheelchairs
Title Data-Efficient Reinforcement Learning for Energy Optimization of Power-Assisted Wheelchairs
URI https://ieeexplore.ieee.org/document/8667013
https://www.proquest.com/docview/2269661408
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14Edw22WaT3aNoShWqIi0UPIR9RUFtRdOLv97ZTVJ8HbyEsCRh2ZnMzuzMfB9CxwHTjCdaEWr6FgIUaYhkvE9gMweLTEEjPIvC6DoeTqKrKZs20OmyF8Za64vPbNfd-ly-meuFOyrr8ThOAkdRu5IIUfZqLTMGESvZCqhDjIWgr05JBqI3vkxdDZfoUuEYX8NvW5DnVPlliP3uMthAo3peZVHJU3dRqK7--AHZ-N-Jb6L1ys3EZ6VebKGGnW2jtS_ggy10fyELSVIPIQFv4zvrQVS1Py_EFe7qA4YhnPoGQXwD5uWl6tvE8xzfOoY1AgJ2qmIw2HX7rB9dgmgHTQbp-HxIKqoFoqkICxIzmisqFER7NLQmNoILVx_K8pgn4KHpyJGDcmZCsO0QcnJtVGhlKI3OlbKmv4uas_nM7iEcBzyRuYRho6IogIvmXGkFg0qyxLTRSb362WuJqJH5SCQQGUgqc5LKKkm1Ucst5vK5ah3bqFOLK6t-ufcMZimcsxHw_b_fOkCr7ttlLUoHNYu3hT0Ej6JQR16VPgGnzMpV
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED-rBVxXrcw9eBJMmaTbZPYpW6qMq0kLBQ9hXFNRWNL34653dJMXXwUsIS0KWncnszM7M9wEcBFRRlirpRbptMEAR2hOUtT3czNEiR6gRjkWhd510B_HFkA5n4GjaC2OMccVnxre3Lpevx2pij8paLEnSwFLUzqFfzZKyW2uaM4hpyVcQWcxYDPvqpGTAW_3zjq3i4n7ELedr-G0Tcqwqv0yx21_OlqFXz6wsK3nyJ4X01ccP0Mb_Tn0FlipHkxyXmrEKM2a0Botf4AcbcH8qCuF1HIgEvk3ujINRVe7EkFTIqw8Eh0jHtQiSGzQwL1XnJhnn5NZyrHkoYqssmqBlN8_q0aaI1mFw1umfdL2KbMFTEQ8LL6FRLiMuMd6LQqMTzRm3FaI0T1iKPpqKLT0oozpE645BJ1NahkaEQqtcSqPbGzA7Go_MJpAkYKnIBQ5rGccBXhRjUkkclIKmugmH9epnryWmRuZikYBnKKnMSiqrJNWEhl3M6XPVOjZhpxZXVv107xnOklt3I2Bbf7-1D_Pdfu8quzq_vtyGBfudsjJlB2aLt4nZRf-ikHtOrT4BY9_NoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Efficient+Reinforcement+Learning+for+Energy+Optimization+of+Power-Assisted+Wheelchairs&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Feng%2C+Guoxi&rft.au=Busoniu%2C+Lucian&rft.au=Thierry-Marie+Guerra&rft.au=Sami+Mohammad&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=12&rft.spage=9734&rft_id=info:doi/10.1109%2FTIE.2019.2903751&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon