Data-Efficient Reinforcement Learning for Energy Optimization of Power-Assisted Wheelchairs
The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 66; no. 12; pp. 9734 - 9744 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is formulated as an optimal control problem and solved by Feng et al. using the model-free approach gradient of partially observable Markov decision processes. To increase the data efficiency of the model-free framework, we here propose to use policy learning by weighting exploration with the returns (PoWER) with 25 control parameters. Moreover, we provide a new near-optimality analysis of the finite-horizon fuzzy Q -iteration, which derives a model-based baseline solution to verify numerically the near-optimality of the presented model-free approaches. Simulation results show that the PoWER algorithm with the new parameterization converges to a near-optimal solution within 200 trials and possesses the adaptability to cope with changes of the human fatigue dynamics. Finally, 24 experimental trials are carried out on the PAW system, with fatigue feedback provided by the user via a joystick. The performance tends to increase gradually after learning. The results obtained demonstrate the effectiveness and the feasibility of PoWER in our application. |
---|---|
AbstractList | The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy consumption over a predefined distance-to-go is optimal, while at the same time bringing users to a desired fatigue level. This assistive task is formulated as an optimal control problem and solved by Feng et al. using the model-free approach gradient of partially observable Markov decision processes. To increase the data efficiency of the model-free framework, we here propose to use policy learning by weighting exploration with the returns (PoWER) with 25 control parameters. Moreover, we provide a new near-optimality analysis of the finite-horizon fuzzy Q -iteration, which derives a model-based baseline solution to verify numerically the near-optimality of the presented model-free approaches. Simulation results show that the PoWER algorithm with the new parameterization converges to a near-optimal solution within 200 trials and possesses the adaptability to cope with changes of the human fatigue dynamics. Finally, 24 experimental trials are carried out on the PAW system, with fatigue feedback provided by the user via a joystick. The performance tends to increase gradually after learning. The results obtained demonstrate the effectiveness and the feasibility of PoWER in our application. |
Author | Feng, Guoxi Guerra, Thierry-Marie Busoniu, Lucian Mohammad, Sami |
Author_xml | – sequence: 1 givenname: Guoxi orcidid: 0000-0002-5469-9377 surname: Feng fullname: Feng, Guoxi email: guoxi.feng@uphf.fr organization: LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France – sequence: 2 givenname: Lucian orcidid: 0000-0001-8017-1296 surname: Busoniu fullname: Busoniu, Lucian email: lucian@busoniu.net organization: Department of Automation, Technical University of Cluj-Napoca, Cluj-Napoca, Romania – sequence: 3 givenname: Thierry-Marie surname: Guerra fullname: Guerra, Thierry-Marie email: thierry.guerra@uphf.fr organization: LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France – sequence: 4 givenname: Sami surname: Mohammad fullname: Mohammad, Sami email: sami.mohammad@autonomad-mobility.com organization: Autonomad Mobility, Valenciennes, France |
BookMark | eNo9kEFLAzEQRoMo2FbvgpcFz1uT7CabHEutWihUpOLBw5JNJm1Km9Rki9Rf75YWT8M3fG8GXh9d-uABoTuCh4Rg-biYToYUEzmkEhcVIxeoRxircilLcYl6mFYix7jk16if0hpjUjLCeujrSbUqn1jrtAPfZu_gvA1Rw_aYZqCid36Zdats4iEuD9l817qt-1WtCz4LNnsLPxDzUUoutWCyzxXARq-Ui-kGXVm1SXB7ngP08TxZjF_z2fxlOh7Nck0laXPOqG2obEosKQHDjRQSjAZmuago5bqsCsEFMwQaUmIqtGkIKKKMtk0Dphigh9PdXQzfe0htvQ776LuXdYdLzjtKdC18aukYUopg6110WxUPNcH1UWHdKayPCuuzwg65PyEOAP7rgvMKk6L4A_Wfb7Y |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2020_104716 crossref_primary_10_1109_TIE_2020_2984462 crossref_primary_10_1109_TIE_2021_3090707 crossref_primary_10_1109_THMS_2022_3195890 crossref_primary_10_1109_TVT_2020_3009979 |
Cites_doi | 10.1561/2300000021 10.1007/978-3-319-03194-1_4 10.23919/ACC.2018.8431038 10.1162/neco.1997.9.2.271 10.1109/ISCAS.2000.856049 10.1126/science.153.3731.34 10.1109/TIE.2008.917061 10.1007/BF00992696 10.1109/ACC.2014.6859373 10.1109/TIE.2009.2014747 10.1016/j.apm.2015.11.040 10.1109/ACC.2013.6580849 10.1109/CDC.2015.7402338 10.1109/IROS.2006.282564 10.1016/0003-9993(94)90343-3 10.1016/j.automatica.2010.02.006 10.1109/TCYB.2014.2334695 10.1023/A:1017936530646 10.1109/TCST.2015.2473821 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2019.2903751 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 9744 |
ExternalDocumentID | 10_1109_TIE_2019_2903751 8667013 |
Genre | orig-research |
GrantInformation_xml | – fundername: French Ministry of Research – fundername: Romanian Ministry of Research and Innovation – fundername: CNCS-UEFISCDI grantid: PN-III-P1-1.1-TE-2016-0670 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-652fb29b40921ed6d989edce5f687226c4738685d1eb14028cdb1ea1adcfbbed3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Thu Oct 10 20:15:19 EDT 2024 Fri Aug 23 01:00:39 EDT 2024 Wed Jun 26 19:30:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-652fb29b40921ed6d989edce5f687226c4738685d1eb14028cdb1ea1adcfbbed3 |
ORCID | 0000-0002-5469-9377 0000-0001-8017-1296 |
PQID | 2269661408 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TIE_2019_2903751 ieee_primary_8667013 proquest_journals_2269661408 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 rodgers (ref25) 1994; 75 ref2 ref17 kober (ref21) 0 ref16 ref19 ref18 tanohata (ref6) 2010 (ref1) 2011 ref23 deisenroth (ref22) 2013; 2 ref20 mohammad (ref7) 2015 sutton (ref8) 0 ref9 ref4 ref3 ref5 bu?oniu (ref10) 0 ma (ref24) 2015; 45 |
References_xml | – volume: 2 start-page: 1 year: 2013 ident: ref22 article-title: A survey on policy search for robotics publication-title: Foundations and Trends in Robotics doi: 10.1561/2300000021 contributor: fullname: deisenroth – ident: ref13 doi: 10.1007/978-3-319-03194-1_4 – ident: ref17 doi: 10.23919/ACC.2018.8431038 – ident: ref23 doi: 10.1162/neco.1997.9.2.271 – ident: ref19 doi: 10.1109/ISCAS.2000.856049 – ident: ref12 doi: 10.1126/science.153.3731.34 – year: 2015 ident: ref7 article-title: Method and device assisting with the electric propulsion of a rolling system, wheelchair kit comprising such a device and wheelchair equipped with such a device contributor: fullname: mohammad – year: 2011 ident: ref1 article-title: World report on disability – start-page: 1057 year: 0 ident: ref8 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: sutton – ident: ref16 doi: 10.1109/TIE.2008.917061 – ident: ref9 doi: 10.1007/BF00992696 – ident: ref4 doi: 10.1109/ACC.2014.6859373 – ident: ref5 doi: 10.1109/TIE.2009.2014747 – ident: ref15 doi: 10.1016/j.apm.2015.11.040 – start-page: 1595 year: 2010 ident: ref6 article-title: Battery friendly driving control of electric power-assisted wheelchair based on fuzzy algorithm publication-title: Soc Instrum Control Eng Annu Conf contributor: fullname: tanohata – ident: ref14 doi: 10.1109/ACC.2013.6580849 – ident: ref2 doi: 10.1109/CDC.2015.7402338 – start-page: 849 year: 0 ident: ref21 article-title: Policy search for motor primitives in robotics publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: kober – ident: ref20 doi: 10.1109/IROS.2006.282564 – volume: 75 start-page: 85 year: 1994 ident: ref25 article-title: Biomechanics of wheelchair propulsion during fatigue publication-title: Arch Phys Med Rehabil doi: 10.1016/0003-9993(94)90343-3 contributor: fullname: rodgers – ident: ref18 doi: 10.1016/j.automatica.2010.02.006 – volume: 45 start-page: 728 year: 2015 ident: ref24 article-title: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2334695 contributor: fullname: ma – start-page: 486 year: 0 ident: ref10 article-title: Online least-squares policy iteration for reinforcement learning control publication-title: Proc Amer Control Conf contributor: fullname: bu?oniu – ident: ref11 doi: 10.1023/A:1017936530646 – ident: ref3 doi: 10.1109/TCST.2015.2473821 |
SSID | ssj0014515 |
Score | 2.4042165 |
Snippet | The objective of this paper is to develop a method for assisting users to push power-assisted wheelchairs (PAWs) in such a way that the electrical energy... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 9734 |
SubjectTerms | Adaptation models Algorithms Assistive control Computer simulation disabled persons Energy consumption Fatigue Force Heuristic algorithms Iterative methods Machine learning Markov chains Numerical models Optimal control Optimization Parameterization power-assisted wheelchairs reinforcement learning Wheelchairs |
Title | Data-Efficient Reinforcement Learning for Energy Optimization of Power-Assisted Wheelchairs |
URI | https://ieeexplore.ieee.org/document/8667013 https://www.proquest.com/docview/2269661408 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT14Edw22WaT3aNoShWqIi0UPIR9RUFtRdOLv97ZTVJ8HbyEsCRh2ZnMzuzMfB9CxwHTjCdaEWr6FgIUaYhkvE9gMweLTEEjPIvC6DoeTqKrKZs20OmyF8Za64vPbNfd-ly-meuFOyrr8ThOAkdRu5IIUfZqLTMGESvZCqhDjIWgr05JBqI3vkxdDZfoUuEYX8NvW5DnVPlliP3uMthAo3peZVHJU3dRqK7--AHZ-N-Jb6L1ys3EZ6VebKGGnW2jtS_ggy10fyELSVIPIQFv4zvrQVS1Py_EFe7qA4YhnPoGQXwD5uWl6tvE8xzfOoY1AgJ2qmIw2HX7rB9dgmgHTQbp-HxIKqoFoqkICxIzmisqFER7NLQmNoILVx_K8pgn4KHpyJGDcmZCsO0QcnJtVGhlKI3OlbKmv4uas_nM7iEcBzyRuYRho6IogIvmXGkFg0qyxLTRSb362WuJqJH5SCQQGUgqc5LKKkm1Ucst5vK5ah3bqFOLK6t-ufcMZimcsxHw_b_fOkCr7ttlLUoHNYu3hT0Ej6JQR16VPgGnzMpV |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED-rBVxXrcw9eBJMmaTbZPYpW6qMq0kLBQ9hXFNRWNL34653dJMXXwUsIS0KWncnszM7M9wEcBFRRlirpRbptMEAR2hOUtT3czNEiR6gRjkWhd510B_HFkA5n4GjaC2OMccVnxre3Lpevx2pij8paLEnSwFLUzqFfzZKyW2uaM4hpyVcQWcxYDPvqpGTAW_3zjq3i4n7ELedr-G0Tcqwqv0yx21_OlqFXz6wsK3nyJ4X01ccP0Mb_Tn0FlipHkxyXmrEKM2a0Botf4AcbcH8qCuF1HIgEvk3ujINRVe7EkFTIqw8Eh0jHtQiSGzQwL1XnJhnn5NZyrHkoYqssmqBlN8_q0aaI1mFw1umfdL2KbMFTEQ8LL6FRLiMuMd6LQqMTzRm3FaI0T1iKPpqKLT0oozpE645BJ1NahkaEQqtcSqPbGzA7Go_MJpAkYKnIBQ5rGccBXhRjUkkclIKmugmH9epnryWmRuZikYBnKKnMSiqrJNWEhl3M6XPVOjZhpxZXVv107xnOklt3I2Bbf7-1D_Pdfu8quzq_vtyGBfudsjJlB2aLt4nZRf-ikHtOrT4BY9_NoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Efficient+Reinforcement+Learning+for+Energy+Optimization+of+Power-Assisted+Wheelchairs&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Feng%2C+Guoxi&rft.au=Busoniu%2C+Lucian&rft.au=Thierry-Marie+Guerra&rft.au=Sami+Mohammad&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=12&rft.spage=9734&rft_id=info:doi/10.1109%2FTIE.2019.2903751&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |