Time Series Classification With Multivariate Convolutional Neural Network

Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 6; pp. 4788 - 4797
Main Authors Liu, Chien-Liang, Hsaio, Wen-Hoar, Tu, Yao-Chung
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning has achieved breakthrough performance in many tasks. In deep learning, the convolutional neural network (CNN) is one of the most well-known approaches, since it incorporates feature learning and classification task in a unified network architecture. Although CNN has been successfully applied to image and text domains, it is still a challenge to apply CNN to time series data. This paper proposes a tensor scheme along with a novel deep learning architecture called multivariate convolutional neural network (MVCNN) for multivariate time series classification, in which the proposed architecture considers multivariate and lag-feature characteristics. We evaluate our proposed method with the prognostics and health management (PHM) 2015 challenge data, and compare with several algorithms. The experimental results indicate that the proposed method outperforms the other alternatives using the prediction score, which is the evaluation metric used by the PHM Society 2015 data challenge. Besides performance evaluation, we provide detailed analysis about the proposed method.
AbstractList Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning has achieved breakthrough performance in many tasks. In deep learning, the convolutional neural network (CNN) is one of the most well-known approaches, since it incorporates feature learning and classification task in a unified network architecture. Although CNN has been successfully applied to image and text domains, it is still a challenge to apply CNN to time series data. This paper proposes a tensor scheme along with a novel deep learning architecture called multivariate convolutional neural network (MVCNN) for multivariate time series classification, in which the proposed architecture considers multivariate and lag-feature characteristics. We evaluate our proposed method with the prognostics and health management (PHM) 2015 challenge data, and compare with several algorithms. The experimental results indicate that the proposed method outperforms the other alternatives using the prediction score, which is the evaluation metric used by the PHM Society 2015 data challenge. Besides performance evaluation, we provide detailed analysis about the proposed method.
Author Hsaio, Wen-Hoar
Liu, Chien-Liang
Tu, Yao-Chung
Author_xml – sequence: 1
  givenname: Chien-Liang
  orcidid: 0000-0002-2724-7199
  surname: Liu
  fullname: Liu, Chien-Liang
  email: clliu@mail.nctu.edu.tw
– sequence: 2
  givenname: Wen-Hoar
  orcidid: 0000-0002-4439-676X
  surname: Hsaio
  fullname: Hsaio, Wen-Hoar
  email: bass28.cs96g@g2.nctu.edu.tw
– sequence: 3
  givenname: Yao-Chung
  surname: Tu
  fullname: Tu, Yao-Chung
  email: joey3300101@gmail.com
BookMark eNo9kMFLwzAUxoNMcJveBS8Fz50vadqkRylzDqYenHgMafuCmV0zk3bif2_nhqfv8H7fx-M3IaPWtUjINYUZpZDfrZfzGQMqZ0xmXAA7I2OapiLOcy5HZAxMyBiAZxdkEsIGgPKUpmOyXNstRq_oLYaoaHQI1thKd9a10bvtPqKnvunsXnurO4wK1-5d0x-uuomesfd_0X07_3lJzo1uAl6dckreHubr4jFevSyWxf0qrlhOuzijaSlzChp5ktXClFpmlNWmTCo0QtcSS2RcYw4lSxk3UFes1qY2WtaQJJBMye1xd-fdV4-hUxvX--GfoBgVaSZoNnBTAkeq8i4Ej0btvN1q_6MoqIMwNQhTB2HqJGyo3BwrFhH_cckTwXie_AKhnGnF
CODEN ITIED6
CitedBy_id crossref_primary_10_1007_s10489_022_03859_9
crossref_primary_10_1016_j_imu_2021_100729
crossref_primary_10_1016_j_asoc_2021_108117
crossref_primary_10_1007_s00521_023_09162_z
crossref_primary_10_1016_j_eswa_2022_119073
crossref_primary_10_1016_j_aquaeng_2023_102373
crossref_primary_10_1088_1361_6501_ac8ca4
crossref_primary_10_3389_fnut_2022_901333
crossref_primary_10_1109_JSEN_2023_3253176
crossref_primary_10_1016_j_eswa_2021_115147
crossref_primary_10_1109_ACCESS_2019_2950960
crossref_primary_10_1007_s13278_023_01190_w
crossref_primary_10_3390_electronics11091417
crossref_primary_10_1016_j_ijrefrig_2022_12_019
crossref_primary_10_1007_s11356_024_32228_x
crossref_primary_10_1016_j_asoc_2022_109458
crossref_primary_10_1016_j_ins_2023_119881
crossref_primary_10_1007_s12665_023_11072_1
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1177_0165551520979870
crossref_primary_10_1007_s11042_021_11885_x
crossref_primary_10_1364_BOE_10_006129
crossref_primary_10_1016_j_knosys_2024_111638
crossref_primary_10_1109_OJITS_2022_3177007
crossref_primary_10_1016_j_heliyon_2023_e20684
crossref_primary_10_1109_JIOT_2021_3130156
crossref_primary_10_1115_1_4046673
crossref_primary_10_1007_s11063_022_10944_0
crossref_primary_10_1109_ACCESS_2022_3179720
crossref_primary_10_1007_s10462_021_09993_z
crossref_primary_10_1088_1361_6501_ac900e
crossref_primary_10_1109_ACCESS_2019_2958330
crossref_primary_10_1109_TKDE_2021_3094908
crossref_primary_10_1016_j_neunet_2022_02_019
crossref_primary_10_1371_journal_pone_0279305
crossref_primary_10_1007_s00521_022_07736_x
crossref_primary_10_1109_TPWRS_2022_3217579
crossref_primary_10_1155_2021_6694538
crossref_primary_10_32604_iasc_2020_011688
crossref_primary_10_1007_s10462_023_10554_9
crossref_primary_10_1016_j_rineng_2024_101834
crossref_primary_10_2139_ssrn_4148156
crossref_primary_10_1016_j_ins_2021_03_024
crossref_primary_10_1142_S0129065723500028
crossref_primary_10_1007_s11760_023_02823_5
crossref_primary_10_1016_j_ultrasmedbio_2022_04_005
crossref_primary_10_1080_07373937_2021_1876722
crossref_primary_10_1109_ACCESS_2020_2993538
crossref_primary_10_12677_CSA_2019_912262
crossref_primary_10_1109_TIM_2021_3068180
crossref_primary_10_1016_j_compeleceng_2021_107558
crossref_primary_10_1016_j_inffus_2022_12_017
crossref_primary_10_3390_jmmp7050164
crossref_primary_10_1109_TNNLS_2021_3132376
crossref_primary_10_3390_math9233051
crossref_primary_10_1061__ASCE_AS_1943_5525_0001294
crossref_primary_10_3390_pr8070790
crossref_primary_10_1021_acs_energyfuels_3c03971
crossref_primary_10_3390_a14070192
crossref_primary_10_1016_j_engappai_2024_108171
crossref_primary_10_1016_j_renene_2023_119399
crossref_primary_10_1109_TAI_2023_3241896
crossref_primary_10_1109_TCOMM_2021_3071448
crossref_primary_10_1016_j_engappai_2021_104258
crossref_primary_10_1109_TIE_2021_3055155
crossref_primary_10_3390_info12060252
crossref_primary_10_1109_ACCESS_2019_2949287
crossref_primary_10_1109_TCYB_2020_3034755
crossref_primary_10_1177_15501477211004112
crossref_primary_10_3390_electronics13091628
crossref_primary_10_1080_00051144_2023_2218164
crossref_primary_10_1186_s40537_020_00340_7
crossref_primary_10_1016_j_jmsy_2022_04_008
crossref_primary_10_1186_s12911_021_01529_3
crossref_primary_10_1109_LSENS_2021_3119056
crossref_primary_10_1109_TASE_2020_3026065
crossref_primary_10_1109_TIM_2020_3026497
crossref_primary_10_1007_s40808_023_01934_9
crossref_primary_10_3390_pr9071121
crossref_primary_10_1109_TII_2020_3015241
crossref_primary_10_1145_3569422
crossref_primary_10_3390_en14217262
crossref_primary_10_1155_2022_5596676
crossref_primary_10_1364_BOE_516063
crossref_primary_10_1007_s10489_023_05079_1
crossref_primary_10_3390_aerospace9110732
crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1109_TIE_2020_3009604
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1016_j_engstruct_2023_115708
crossref_primary_10_1016_j_eswa_2022_118463
crossref_primary_10_1049_itr2_12385
crossref_primary_10_1007_s11042_020_10476_6
crossref_primary_10_1016_j_engappai_2024_108110
crossref_primary_10_1109_TSC_2021_3075053
crossref_primary_10_1007_s00607_021_00928_8
crossref_primary_10_3390_s24082655
crossref_primary_10_1016_j_bspc_2021_102729
crossref_primary_10_1145_3478125
crossref_primary_10_1109_LRA_2020_2974709
crossref_primary_10_1142_S0129065723500478
crossref_primary_10_1093_mnras_stac076
crossref_primary_10_1109_TAI_2020_3027279
crossref_primary_10_1109_ACCESS_2020_3037073
crossref_primary_10_1038_s41598_022_24887_y
crossref_primary_10_1109_ACCESS_2024_3401234
crossref_primary_10_1016_j_aei_2024_102604
crossref_primary_10_1016_j_heliyon_2023_e22026
crossref_primary_10_1016_j_segan_2023_101248
crossref_primary_10_1155_2020_9564287
crossref_primary_10_1051_matecconf_202439201161
crossref_primary_10_1007_s10994_021_06055_x
crossref_primary_10_1109_TSMC_2020_2968516
crossref_primary_10_1007_s12652_022_03752_w
crossref_primary_10_3390_s20247211
crossref_primary_10_3390_su151712885
crossref_primary_10_1109_TAI_2022_3143079
crossref_primary_10_3390_data6060055
crossref_primary_10_1080_00207543_2021_1893853
crossref_primary_10_1109_ACCESS_2019_2940853
crossref_primary_10_3390_en15239240
crossref_primary_10_1155_2024_9257508
crossref_primary_10_1109_TII_2022_3220872
crossref_primary_10_3389_fpsyg_2022_980778
crossref_primary_10_3390_aerospace10040354
crossref_primary_10_1109_ACCESS_2024_3379529
crossref_primary_10_1109_TII_2023_3264111
crossref_primary_10_1016_j_nancom_2022_100420
crossref_primary_10_1016_j_jbi_2022_104216
crossref_primary_10_3390_app10124124
crossref_primary_10_3390_s20123580
crossref_primary_10_1063_5_0081858
crossref_primary_10_3390_rs15082047
crossref_primary_10_1007_s11356_023_27922_1
crossref_primary_10_1115_1_4063720
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1002_jrs_6283
crossref_primary_10_3390_e23010083
crossref_primary_10_1109_JIOT_2024_3362587
crossref_primary_10_1109_TIE_2020_2982085
crossref_primary_10_1007_s11517_024_03120_0
crossref_primary_10_1088_1361_6501_acf665
crossref_primary_10_1016_j_procs_2023_08_192
crossref_primary_10_1109_JSEN_2020_3020828
crossref_primary_10_1109_TII_2022_3216006
crossref_primary_10_1109_ACCESS_2021_3103903
crossref_primary_10_48084_etasr_5230
crossref_primary_10_1002_cjce_25228
crossref_primary_10_1088_1741_2552_abfa71
crossref_primary_10_3390_s22051911
crossref_primary_10_1016_j_frl_2023_104304
crossref_primary_10_1016_j_eswa_2023_122154
crossref_primary_10_1145_3649448
Cites_doi 10.1162/neco.1997.9.8.1735
10.1016/j.jprocont.2012.06.009
10.1023/A:1010933404324
10.1109/TII.2016.2633335
10.1109/5.726791
10.1007/s11222-007-9033-z
10.1177/1748006X16683321
10.36001/ijphm.2016.v7i1.2330
10.1007/s40747-016-0019-3
10.1007/s10115-004-0154-9
10.1016/S0169-7439(99)00061-1
10.1007/BF00994018
10.1007/978-0-387-21606-5
10.1080/00207543.2017.1308576
10.1137/1.9781611972832.64
10.1007/978-1-4615-0377-4_5
10.1109/TSM.2007.907607
10.1007/978-3-319-32025-0_14
10.1016/j.compchemeng.2003.10.002
10.1016/j.patrec.2005.10.010
10.1109/TII.2014.2374993
10.1109/ICPHM.2017.7998311
10.1016/j.enbuild.2015.11.071
10.1109/CVPR.2015.7298594
10.1214/aos/1013203451
10.1145/2939672.2939785
10.1016/S0888-3270(03)00020-7
10.1109/TNNLS.2016.2582798
10.1109/TPAMI.2013.72
10.1109/TII.2015.2496231
10.1007/s10618-007-0064-z
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2018.2864702
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 4797
ExternalDocumentID 10_1109_TIE_2018_2864702
8437249
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2221-E-009-100; MOST 106-2218-E-009-031
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
VJK
XFK
AAYXX
AGSQL
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-615b8910ae436d7fba8612dfb3cef7ad8ebe24ae90b2524f0dc2dafdfa8d03303
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Oct 10 19:23:49 EDT 2024
Fri Dec 06 01:39:52 EST 2024
Wed Jun 26 19:27:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-615b8910ae436d7fba8612dfb3cef7ad8ebe24ae90b2524f0dc2dafdfa8d03303
ORCID 0000-0002-2724-7199
0000-0002-4439-676X
PQID 2175671603
PQPubID 85464
PageCount 10
ParticipantIDs ieee_primary_8437249
crossref_primary_10_1109_TIE_2018_2864702
proquest_journals_2175671603
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Kingma (ref40) 2014
ref15
ref14
Bach (ref28) 2004
ref36
ref31
ref30
ref11
ref10
Guo (ref22) 2006
ref2
ref1
Cui (ref25) 2016
ref17
ref16
ref19
Yi (ref26) 2017
Dauphin (ref34) 2016
ref18
Xiao (ref5) 2016
Nair (ref39) 2010
Kim (ref8) 2016; 7
ref24
Breiman (ref6) 2001; 45
ref23
Lin (ref37) 2013
ref20
ref42
Yao-Chung Tu (ref41) 2016
ref44
ref21
ref43
Van Den Oord (ref33) 2016
ref27
ref29
ref7
ref9
Gehring (ref32) 2017
ref4
ref3
Szegedy (ref38) 2014
References_xml – ident: ref30
  doi: 10.1162/neco.1997.9.8.1735
– year: 2017
  ident: ref32
  article-title: Convolutional sequence to sequence learning
  publication-title: arXiv:1705.03122
  contributor:
    fullname: Gehring
– ident: ref17
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref6
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– year: 2016
  ident: ref5
  article-title: A probabilistic machine learning approach to detect industrial plant faults
  publication-title: arXiv:1603.05770
  contributor:
    fullname: Xiao
– start-page: 807
  volume-title: Proc. 27th Int. Conf. Mach. Learn.
  year: 2010
  ident: ref39
  article-title: Rectified linear units improve restricted boltzmann machines
  contributor:
    fullname: Nair
– ident: ref13
  doi: 10.1109/TII.2016.2633335
– ident: ref23
  doi: 10.1109/5.726791
– ident: ref27
  doi: 10.1007/s11222-007-9033-z
– year: 2014
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
  contributor:
    fullname: Kingma
– ident: ref2
  doi: 10.1177/1748006X16683321
– year: 2013
  ident: ref37
  article-title: Network in network
  publication-title: arXiv:1312.4400
  contributor:
    fullname: Lin
– volume: 7
  issue: 1
  year: 2016
  ident: ref8
  publication-title: Int. J. Prognostics Health Manage.
  doi: 10.36001/ijphm.2016.v7i1.2330
  contributor:
    fullname: Kim
– ident: ref3
  doi: 10.1007/s40747-016-0019-3
– start-page: 972
  volume-title: Advances in Natural Computation
  year: 2006
  ident: ref22
  article-title: Self-adaptive chaos differential evolution
  contributor:
    fullname: Guo
– ident: ref9
  doi: 10.1007/s10115-004-0154-9
– ident: ref15
  doi: 10.1016/S0169-7439(99)00061-1
– ident: ref19
  doi: 10.1007/BF00994018
– year: 2017
  ident: ref26
  article-title: Grouped convolutional neural networks for multivariate time series
  publication-title: arXiv:1703.09938
  contributor:
    fullname: Yi
– year: 2016
  ident: ref41
  article-title: Data sampling to imbalanced data of industrial plant fault prediction
  publication-title: Int. Symp. Semicond. Manuf. Intell.
  contributor:
    fullname: Yao-Chung Tu
– ident: ref43
  doi: 10.1007/978-0-387-21606-5
– ident: ref1
  doi: 10.1080/00207543.2017.1308576
– ident: ref36
  doi: 10.1137/1.9781611972832.64
– year: 2016
  ident: ref25
  article-title: Multi-scale convolutional neural networks for time series classification
  publication-title: arXiv:1603.06995
  contributor:
    fullname: Cui
– ident: ref20
  doi: 10.1007/978-1-4615-0377-4_5
– ident: ref18
  doi: 10.1109/TSM.2007.907607
– ident: ref29
  doi: 10.1007/978-3-319-32025-0_14
– ident: ref16
  doi: 10.1016/j.compchemeng.2003.10.002
– ident: ref44
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref11
  doi: 10.1109/TII.2014.2374993
– year: 2016
  ident: ref34
  article-title: Language modeling with gated convolutional networks
  publication-title: arXiv:1612.08083
  contributor:
    fullname: Dauphin
– ident: ref31
  doi: 10.1109/ICPHM.2017.7998311
– ident: ref4
  doi: 10.1016/j.enbuild.2015.11.071
– start-page: 305
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  year: 2004
  ident: ref28
  article-title: Learning spectral clustering
  contributor:
    fullname: Bach
– ident: ref24
  doi: 10.1109/CVPR.2015.7298594
– year: 2014
  ident: ref38
  article-title: Going deeper with convolutions
  contributor:
    fullname: Szegedy
– ident: ref7
  doi: 10.1214/aos/1013203451
– ident: ref42
  doi: 10.1145/2939672.2939785
– ident: ref21
  doi: 10.1016/S0888-3270(03)00020-7
– ident: ref35
  doi: 10.1109/TNNLS.2016.2582798
– ident: ref14
  doi: 10.1109/TPAMI.2013.72
– ident: ref12
  doi: 10.1109/TII.2015.2496231
– ident: ref10
  doi: 10.1007/s10618-007-0064-z
– year: 2016
  ident: ref33
  article-title: Wavenet: A generative model for raw audio
  publication-title: arXiv:1609.03499
  contributor:
    fullname: Van Den Oord
SSID ssj0014515
Score 2.6784322
Snippet Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 4788
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Classification
Convolutional neural networks
Convolutional neural networks (CNN)
Data mining
Domains
Machine learning
Machine learning algorithms
Neural networks
Performance evaluation
Prognostics and health management
prognostics and health management (PHM)
Sensors
Tensile stress
Tensors
Time series
Time series analysis
time series classification
Title Time Series Classification With Multivariate Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/8437249
https://www.proquest.com/docview/2175671603
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiOKpgcvJhbKdtvuHg2BgImeIHJr9hmNCRgpHPz1zm5bYtSDp_bQbjY70843M9_MANxQqVKDMBp9E0FDGgsbMqpJaNM0irliShnP8n1KJ3P6sEgWDbjb1cIYYzz5zPTcrc_l65XauFBZn7kkE-VNaGY8K2u1dhkDmpTTCojrGItOX52SjHh_Nh05DhfrEZbSrAqg1CbIz1T59SP21mV8CI_1vkpSyVtvU8ie-vzRsvG_Gz-CgwpmBvelXhxDwyxPYP9b88E2TF31R-CiY2Yd-NmYjjXkBRU8vxYvga_N3aIvjXA0GK6W20pLcV3X0sNfPIf8FObj0Ww4CavBCqEifFCgu5hIhjhBGBqnOrNSMAQ62spYGZsJzVCyhArDI0kSQm2kFdHCaiuYjmI0emfQWq6W5hwCZlKpBoK7Nn2IDSJJE83jyBgEWpaRrAO39Vnn72X_jNz7HRHPUS65k0teyaUDbXd0u-eqU-tAtxZOXn1g6xw9qSTN3Izsi7_fuoQ9XJuXrK4utIqPjblC_FDIa684XyuFwuY
link.rule.ids 315,781,785,797,27929,27930,54763
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IozwwsSKSkjpPYI6patVCYiugW-SkQUosgZeDXc3aSCgEDUzLEiXVnx9_dfXcHcE6lSg3CaLRNBA1pLGzIqCahTdMo5oopZTzL9z4dPtCbaTJtwOUyF8YY48lnpuNufSxfz9XCucqumAsyUb4CqwnFfVFmay1jBjQp-xUQVzMWzb46KBnxq8mo71hcrENYSrPKhVIfQr6ryq9fsT9fBltwV8-spJW8dBaF7KjPH0Ub_zv1bdisgGZwXa6MHWiY2S5sfCs_2IKRy_8InH_MvAe-O6bjDXlVBY_PxVPgs3M_0JpGQBr05rOPap3ie11RD3_xLPI9eBj0J71hWLVWCBXh3QINxkQyRArC0DjVmZWCIdTRVsbK2ExohrolVBgeSZIQaiOtiBZWW8F0FOOxtw_N2XxmDiBgJpWqK7gr1IfoIJI00TyOjEGoZRnJ2nBRyzp_LSto5N7yiHiOesmdXvJKL21oOdEtn6uk1objWjl5tcXec7SlkjRzXbIP_x51BmvDyd04H4_ub49gHb_DS47XMTSLt4U5QTRRyFO_iL4AjsbGNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Series+Classification+With+Multivariate+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Liu%2C+Chien-Liang&rft.au=Hsaio%2C+Wen-Hoar&rft.au=Tu%2C+Yao-Chung&rft.date=2019-06-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=6&rft.spage=4788&rft.epage=4797&rft_id=info:doi/10.1109%2FTIE.2018.2864702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2018_2864702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon