Time Series Classification With Multivariate Convolutional Neural Network
Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 66; no. 6; pp. 4788 - 4797 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning has achieved breakthrough performance in many tasks. In deep learning, the convolutional neural network (CNN) is one of the most well-known approaches, since it incorporates feature learning and classification task in a unified network architecture. Although CNN has been successfully applied to image and text domains, it is still a challenge to apply CNN to time series data. This paper proposes a tensor scheme along with a novel deep learning architecture called multivariate convolutional neural network (MVCNN) for multivariate time series classification, in which the proposed architecture considers multivariate and lag-feature characteristics. We evaluate our proposed method with the prognostics and health management (PHM) 2015 challenge data, and compare with several algorithms. The experimental results indicate that the proposed method outperforms the other alternatives using the prediction score, which is the evaluation metric used by the PHM Society 2015 data challenge. Besides performance evaluation, we provide detailed analysis about the proposed method. |
---|---|
AbstractList | Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application domains. Recent studies have shown that machine learning algorithms could benefit from good feature representation, explaining why deep learning has achieved breakthrough performance in many tasks. In deep learning, the convolutional neural network (CNN) is one of the most well-known approaches, since it incorporates feature learning and classification task in a unified network architecture. Although CNN has been successfully applied to image and text domains, it is still a challenge to apply CNN to time series data. This paper proposes a tensor scheme along with a novel deep learning architecture called multivariate convolutional neural network (MVCNN) for multivariate time series classification, in which the proposed architecture considers multivariate and lag-feature characteristics. We evaluate our proposed method with the prognostics and health management (PHM) 2015 challenge data, and compare with several algorithms. The experimental results indicate that the proposed method outperforms the other alternatives using the prediction score, which is the evaluation metric used by the PHM Society 2015 data challenge. Besides performance evaluation, we provide detailed analysis about the proposed method. |
Author | Hsaio, Wen-Hoar Liu, Chien-Liang Tu, Yao-Chung |
Author_xml | – sequence: 1 givenname: Chien-Liang orcidid: 0000-0002-2724-7199 surname: Liu fullname: Liu, Chien-Liang email: clliu@mail.nctu.edu.tw – sequence: 2 givenname: Wen-Hoar orcidid: 0000-0002-4439-676X surname: Hsaio fullname: Hsaio, Wen-Hoar email: bass28.cs96g@g2.nctu.edu.tw – sequence: 3 givenname: Yao-Chung surname: Tu fullname: Tu, Yao-Chung email: joey3300101@gmail.com |
BookMark | eNo9kMFLwzAUxoNMcJveBS8Fz50vadqkRylzDqYenHgMafuCmV0zk3bif2_nhqfv8H7fx-M3IaPWtUjINYUZpZDfrZfzGQMqZ0xmXAA7I2OapiLOcy5HZAxMyBiAZxdkEsIGgPKUpmOyXNstRq_oLYaoaHQI1thKd9a10bvtPqKnvunsXnurO4wK1-5d0x-uuomesfd_0X07_3lJzo1uAl6dckreHubr4jFevSyWxf0qrlhOuzijaSlzChp5ktXClFpmlNWmTCo0QtcSS2RcYw4lSxk3UFes1qY2WtaQJJBMye1xd-fdV4-hUxvX--GfoBgVaSZoNnBTAkeq8i4Ej0btvN1q_6MoqIMwNQhTB2HqJGyo3BwrFhH_cckTwXie_AKhnGnF |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1007_s10489_022_03859_9 crossref_primary_10_1016_j_imu_2021_100729 crossref_primary_10_1016_j_asoc_2021_108117 crossref_primary_10_1007_s00521_023_09162_z crossref_primary_10_1016_j_eswa_2022_119073 crossref_primary_10_1016_j_aquaeng_2023_102373 crossref_primary_10_1088_1361_6501_ac8ca4 crossref_primary_10_3389_fnut_2022_901333 crossref_primary_10_1109_JSEN_2023_3253176 crossref_primary_10_1016_j_eswa_2021_115147 crossref_primary_10_1109_ACCESS_2019_2950960 crossref_primary_10_1007_s13278_023_01190_w crossref_primary_10_3390_electronics11091417 crossref_primary_10_1016_j_ijrefrig_2022_12_019 crossref_primary_10_1007_s11356_024_32228_x crossref_primary_10_1016_j_asoc_2022_109458 crossref_primary_10_1016_j_ins_2023_119881 crossref_primary_10_1007_s12665_023_11072_1 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1177_0165551520979870 crossref_primary_10_1007_s11042_021_11885_x crossref_primary_10_1364_BOE_10_006129 crossref_primary_10_1016_j_knosys_2024_111638 crossref_primary_10_1109_OJITS_2022_3177007 crossref_primary_10_1016_j_heliyon_2023_e20684 crossref_primary_10_1109_JIOT_2021_3130156 crossref_primary_10_1115_1_4046673 crossref_primary_10_1007_s11063_022_10944_0 crossref_primary_10_1109_ACCESS_2022_3179720 crossref_primary_10_1007_s10462_021_09993_z crossref_primary_10_1088_1361_6501_ac900e crossref_primary_10_1109_ACCESS_2019_2958330 crossref_primary_10_1109_TKDE_2021_3094908 crossref_primary_10_1016_j_neunet_2022_02_019 crossref_primary_10_1371_journal_pone_0279305 crossref_primary_10_1007_s00521_022_07736_x crossref_primary_10_1109_TPWRS_2022_3217579 crossref_primary_10_1155_2021_6694538 crossref_primary_10_32604_iasc_2020_011688 crossref_primary_10_1007_s10462_023_10554_9 crossref_primary_10_1016_j_rineng_2024_101834 crossref_primary_10_2139_ssrn_4148156 crossref_primary_10_1016_j_ins_2021_03_024 crossref_primary_10_1142_S0129065723500028 crossref_primary_10_1007_s11760_023_02823_5 crossref_primary_10_1016_j_ultrasmedbio_2022_04_005 crossref_primary_10_1080_07373937_2021_1876722 crossref_primary_10_1109_ACCESS_2020_2993538 crossref_primary_10_12677_CSA_2019_912262 crossref_primary_10_1109_TIM_2021_3068180 crossref_primary_10_1016_j_compeleceng_2021_107558 crossref_primary_10_1016_j_inffus_2022_12_017 crossref_primary_10_3390_jmmp7050164 crossref_primary_10_1109_TNNLS_2021_3132376 crossref_primary_10_3390_math9233051 crossref_primary_10_1061__ASCE_AS_1943_5525_0001294 crossref_primary_10_3390_pr8070790 crossref_primary_10_1021_acs_energyfuels_3c03971 crossref_primary_10_3390_a14070192 crossref_primary_10_1016_j_engappai_2024_108171 crossref_primary_10_1016_j_renene_2023_119399 crossref_primary_10_1109_TAI_2023_3241896 crossref_primary_10_1109_TCOMM_2021_3071448 crossref_primary_10_1016_j_engappai_2021_104258 crossref_primary_10_1109_TIE_2021_3055155 crossref_primary_10_3390_info12060252 crossref_primary_10_1109_ACCESS_2019_2949287 crossref_primary_10_1109_TCYB_2020_3034755 crossref_primary_10_1177_15501477211004112 crossref_primary_10_3390_electronics13091628 crossref_primary_10_1080_00051144_2023_2218164 crossref_primary_10_1186_s40537_020_00340_7 crossref_primary_10_1016_j_jmsy_2022_04_008 crossref_primary_10_1186_s12911_021_01529_3 crossref_primary_10_1109_LSENS_2021_3119056 crossref_primary_10_1109_TASE_2020_3026065 crossref_primary_10_1109_TIM_2020_3026497 crossref_primary_10_1007_s40808_023_01934_9 crossref_primary_10_3390_pr9071121 crossref_primary_10_1109_TII_2020_3015241 crossref_primary_10_1145_3569422 crossref_primary_10_3390_en14217262 crossref_primary_10_1155_2022_5596676 crossref_primary_10_1364_BOE_516063 crossref_primary_10_1007_s10489_023_05079_1 crossref_primary_10_3390_aerospace9110732 crossref_primary_10_1016_j_apenergy_2022_119608 crossref_primary_10_1109_TIE_2020_3009604 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1016_j_engstruct_2023_115708 crossref_primary_10_1016_j_eswa_2022_118463 crossref_primary_10_1049_itr2_12385 crossref_primary_10_1007_s11042_020_10476_6 crossref_primary_10_1016_j_engappai_2024_108110 crossref_primary_10_1109_TSC_2021_3075053 crossref_primary_10_1007_s00607_021_00928_8 crossref_primary_10_3390_s24082655 crossref_primary_10_1016_j_bspc_2021_102729 crossref_primary_10_1145_3478125 crossref_primary_10_1109_LRA_2020_2974709 crossref_primary_10_1142_S0129065723500478 crossref_primary_10_1093_mnras_stac076 crossref_primary_10_1109_TAI_2020_3027279 crossref_primary_10_1109_ACCESS_2020_3037073 crossref_primary_10_1038_s41598_022_24887_y crossref_primary_10_1109_ACCESS_2024_3401234 crossref_primary_10_1016_j_aei_2024_102604 crossref_primary_10_1016_j_heliyon_2023_e22026 crossref_primary_10_1016_j_segan_2023_101248 crossref_primary_10_1155_2020_9564287 crossref_primary_10_1051_matecconf_202439201161 crossref_primary_10_1007_s10994_021_06055_x crossref_primary_10_1109_TSMC_2020_2968516 crossref_primary_10_1007_s12652_022_03752_w crossref_primary_10_3390_s20247211 crossref_primary_10_3390_su151712885 crossref_primary_10_1109_TAI_2022_3143079 crossref_primary_10_3390_data6060055 crossref_primary_10_1080_00207543_2021_1893853 crossref_primary_10_1109_ACCESS_2019_2940853 crossref_primary_10_3390_en15239240 crossref_primary_10_1155_2024_9257508 crossref_primary_10_1109_TII_2022_3220872 crossref_primary_10_3389_fpsyg_2022_980778 crossref_primary_10_3390_aerospace10040354 crossref_primary_10_1109_ACCESS_2024_3379529 crossref_primary_10_1109_TII_2023_3264111 crossref_primary_10_1016_j_nancom_2022_100420 crossref_primary_10_1016_j_jbi_2022_104216 crossref_primary_10_3390_app10124124 crossref_primary_10_3390_s20123580 crossref_primary_10_1063_5_0081858 crossref_primary_10_3390_rs15082047 crossref_primary_10_1007_s11356_023_27922_1 crossref_primary_10_1115_1_4063720 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1002_jrs_6283 crossref_primary_10_3390_e23010083 crossref_primary_10_1109_JIOT_2024_3362587 crossref_primary_10_1109_TIE_2020_2982085 crossref_primary_10_1007_s11517_024_03120_0 crossref_primary_10_1088_1361_6501_acf665 crossref_primary_10_1016_j_procs_2023_08_192 crossref_primary_10_1109_JSEN_2020_3020828 crossref_primary_10_1109_TII_2022_3216006 crossref_primary_10_1109_ACCESS_2021_3103903 crossref_primary_10_48084_etasr_5230 crossref_primary_10_1002_cjce_25228 crossref_primary_10_1088_1741_2552_abfa71 crossref_primary_10_3390_s22051911 crossref_primary_10_1016_j_frl_2023_104304 crossref_primary_10_1016_j_eswa_2023_122154 crossref_primary_10_1145_3649448 |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1016/j.jprocont.2012.06.009 10.1023/A:1010933404324 10.1109/TII.2016.2633335 10.1109/5.726791 10.1007/s11222-007-9033-z 10.1177/1748006X16683321 10.36001/ijphm.2016.v7i1.2330 10.1007/s40747-016-0019-3 10.1007/s10115-004-0154-9 10.1016/S0169-7439(99)00061-1 10.1007/BF00994018 10.1007/978-0-387-21606-5 10.1080/00207543.2017.1308576 10.1137/1.9781611972832.64 10.1007/978-1-4615-0377-4_5 10.1109/TSM.2007.907607 10.1007/978-3-319-32025-0_14 10.1016/j.compchemeng.2003.10.002 10.1016/j.patrec.2005.10.010 10.1109/TII.2014.2374993 10.1109/ICPHM.2017.7998311 10.1016/j.enbuild.2015.11.071 10.1109/CVPR.2015.7298594 10.1214/aos/1013203451 10.1145/2939672.2939785 10.1016/S0888-3270(03)00020-7 10.1109/TNNLS.2016.2582798 10.1109/TPAMI.2013.72 10.1109/TII.2015.2496231 10.1007/s10618-007-0064-z |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2018.2864702 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 4797 |
ExternalDocumentID | 10_1109_TIE_2018_2864702 8437249 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2221-E-009-100; MOST 106-2218-E-009-031 funderid: 10.13039/501100004663 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 VJK XFK AAYXX AGSQL CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-615b8910ae436d7fba8612dfb3cef7ad8ebe24ae90b2524f0dc2dafdfa8d03303 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Thu Oct 10 19:23:49 EDT 2024 Fri Dec 06 01:39:52 EST 2024 Wed Jun 26 19:27:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-615b8910ae436d7fba8612dfb3cef7ad8ebe24ae90b2524f0dc2dafdfa8d03303 |
ORCID | 0000-0002-2724-7199 0000-0002-4439-676X |
PQID | 2175671603 |
PQPubID | 85464 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8437249 crossref_primary_10_1109_TIE_2018_2864702 proquest_journals_2175671603 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 Kingma (ref40) 2014 ref15 ref14 Bach (ref28) 2004 ref36 ref31 ref30 ref11 ref10 Guo (ref22) 2006 ref2 ref1 Cui (ref25) 2016 ref17 ref16 ref19 Yi (ref26) 2017 Dauphin (ref34) 2016 ref18 Xiao (ref5) 2016 Nair (ref39) 2010 Kim (ref8) 2016; 7 ref24 Breiman (ref6) 2001; 45 ref23 Lin (ref37) 2013 ref20 ref42 Yao-Chung Tu (ref41) 2016 ref44 ref21 ref43 Van Den Oord (ref33) 2016 ref27 ref29 ref7 ref9 Gehring (ref32) 2017 ref4 ref3 Szegedy (ref38) 2014 |
References_xml | – ident: ref30 doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: ref32 article-title: Convolutional sequence to sequence learning publication-title: arXiv:1705.03122 contributor: fullname: Gehring – ident: ref17 doi: 10.1016/j.jprocont.2012.06.009 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref6 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – year: 2016 ident: ref5 article-title: A probabilistic machine learning approach to detect industrial plant faults publication-title: arXiv:1603.05770 contributor: fullname: Xiao – start-page: 807 volume-title: Proc. 27th Int. Conf. Mach. Learn. year: 2010 ident: ref39 article-title: Rectified linear units improve restricted boltzmann machines contributor: fullname: Nair – ident: ref13 doi: 10.1109/TII.2016.2633335 – ident: ref23 doi: 10.1109/5.726791 – ident: ref27 doi: 10.1007/s11222-007-9033-z – year: 2014 ident: ref40 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 contributor: fullname: Kingma – ident: ref2 doi: 10.1177/1748006X16683321 – year: 2013 ident: ref37 article-title: Network in network publication-title: arXiv:1312.4400 contributor: fullname: Lin – volume: 7 issue: 1 year: 2016 ident: ref8 publication-title: Int. J. Prognostics Health Manage. doi: 10.36001/ijphm.2016.v7i1.2330 contributor: fullname: Kim – ident: ref3 doi: 10.1007/s40747-016-0019-3 – start-page: 972 volume-title: Advances in Natural Computation year: 2006 ident: ref22 article-title: Self-adaptive chaos differential evolution contributor: fullname: Guo – ident: ref9 doi: 10.1007/s10115-004-0154-9 – ident: ref15 doi: 10.1016/S0169-7439(99)00061-1 – ident: ref19 doi: 10.1007/BF00994018 – year: 2017 ident: ref26 article-title: Grouped convolutional neural networks for multivariate time series publication-title: arXiv:1703.09938 contributor: fullname: Yi – year: 2016 ident: ref41 article-title: Data sampling to imbalanced data of industrial plant fault prediction publication-title: Int. Symp. Semicond. Manuf. Intell. contributor: fullname: Yao-Chung Tu – ident: ref43 doi: 10.1007/978-0-387-21606-5 – ident: ref1 doi: 10.1080/00207543.2017.1308576 – ident: ref36 doi: 10.1137/1.9781611972832.64 – year: 2016 ident: ref25 article-title: Multi-scale convolutional neural networks for time series classification publication-title: arXiv:1603.06995 contributor: fullname: Cui – ident: ref20 doi: 10.1007/978-1-4615-0377-4_5 – ident: ref18 doi: 10.1109/TSM.2007.907607 – ident: ref29 doi: 10.1007/978-3-319-32025-0_14 – ident: ref16 doi: 10.1016/j.compchemeng.2003.10.002 – ident: ref44 doi: 10.1016/j.patrec.2005.10.010 – ident: ref11 doi: 10.1109/TII.2014.2374993 – year: 2016 ident: ref34 article-title: Language modeling with gated convolutional networks publication-title: arXiv:1612.08083 contributor: fullname: Dauphin – ident: ref31 doi: 10.1109/ICPHM.2017.7998311 – ident: ref4 doi: 10.1016/j.enbuild.2015.11.071 – start-page: 305 volume-title: Proc. Advances Neural Inf. Process. Syst. year: 2004 ident: ref28 article-title: Learning spectral clustering contributor: fullname: Bach – ident: ref24 doi: 10.1109/CVPR.2015.7298594 – year: 2014 ident: ref38 article-title: Going deeper with convolutions contributor: fullname: Szegedy – ident: ref7 doi: 10.1214/aos/1013203451 – ident: ref42 doi: 10.1145/2939672.2939785 – ident: ref21 doi: 10.1016/S0888-3270(03)00020-7 – ident: ref35 doi: 10.1109/TNNLS.2016.2582798 – ident: ref14 doi: 10.1109/TPAMI.2013.72 – ident: ref12 doi: 10.1109/TII.2015.2496231 – ident: ref10 doi: 10.1007/s10618-007-0064-z – year: 2016 ident: ref33 article-title: Wavenet: A generative model for raw audio publication-title: arXiv:1609.03499 contributor: fullname: Van Den Oord |
SSID | ssj0014515 |
Score | 2.6784322 |
Snippet | Time series classification is an important research topic in machine learning and data mining communities, since time series data exist in many application... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 4788 |
SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Classification Convolutional neural networks Convolutional neural networks (CNN) Data mining Domains Machine learning Machine learning algorithms Neural networks Performance evaluation Prognostics and health management prognostics and health management (PHM) Sensors Tensile stress Tensors Time series Time series analysis time series classification |
Title | Time Series Classification With Multivariate Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/8437249 https://www.proquest.com/docview/2175671603 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiOKpgcvJhbKdtvuHg2BgImeIHJr9hmNCRgpHPz1zm5bYtSDp_bQbjY70843M9_MANxQqVKDMBp9E0FDGgsbMqpJaNM0irliShnP8n1KJ3P6sEgWDbjb1cIYYzz5zPTcrc_l65XauFBZn7kkE-VNaGY8K2u1dhkDmpTTCojrGItOX52SjHh_Nh05DhfrEZbSrAqg1CbIz1T59SP21mV8CI_1vkpSyVtvU8ie-vzRsvG_Gz-CgwpmBvelXhxDwyxPYP9b88E2TF31R-CiY2Yd-NmYjjXkBRU8vxYvga_N3aIvjXA0GK6W20pLcV3X0sNfPIf8FObj0Ww4CavBCqEifFCgu5hIhjhBGBqnOrNSMAQ62spYGZsJzVCyhArDI0kSQm2kFdHCaiuYjmI0emfQWq6W5hwCZlKpBoK7Nn2IDSJJE83jyBgEWpaRrAO39Vnn72X_jNz7HRHPUS65k0teyaUDbXd0u-eqU-tAtxZOXn1g6xw9qSTN3Izsi7_fuoQ9XJuXrK4utIqPjblC_FDIa684XyuFwuY |
link.rule.ids | 315,781,785,797,27929,27930,54763 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IozwwsSKSkjpPYI6patVCYiugW-SkQUosgZeDXc3aSCgEDUzLEiXVnx9_dfXcHcE6lSg3CaLRNBA1pLGzIqCahTdMo5oopZTzL9z4dPtCbaTJtwOUyF8YY48lnpuNufSxfz9XCucqumAsyUb4CqwnFfVFmay1jBjQp-xUQVzMWzb46KBnxq8mo71hcrENYSrPKhVIfQr6ryq9fsT9fBltwV8-spJW8dBaF7KjPH0Ub_zv1bdisgGZwXa6MHWiY2S5sfCs_2IKRy_8InH_MvAe-O6bjDXlVBY_PxVPgs3M_0JpGQBr05rOPap3ie11RD3_xLPI9eBj0J71hWLVWCBXh3QINxkQyRArC0DjVmZWCIdTRVsbK2ExohrolVBgeSZIQaiOtiBZWW8F0FOOxtw_N2XxmDiBgJpWqK7gr1IfoIJI00TyOjEGoZRnJ2nBRyzp_LSto5N7yiHiOesmdXvJKL21oOdEtn6uk1objWjl5tcXec7SlkjRzXbIP_x51BmvDyd04H4_ub49gHb_DS47XMTSLt4U5QTRRyFO_iL4AjsbGNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Series+Classification+With+Multivariate+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Liu%2C+Chien-Liang&rft.au=Hsaio%2C+Wen-Hoar&rft.au=Tu%2C+Yao-Chung&rft.date=2019-06-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=6&rft.spage=4788&rft.epage=4797&rft_id=info:doi/10.1109%2FTIE.2018.2864702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2018_2864702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |