On the Numerical Integration of the Multidimensional Kuramoto Model
The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with D - 1 internal phases, represented by a...
Saved in:
Published in | Brazilian journal of physics Vol. 54; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with
D
-
1
internal phases, represented by a point on the surface of the unit D-sphere. Particles are then more easily represented by
D
-dimensional unit vectors than by
D
-
1
spherical angles. However, numerical integration of the state equations should ensure that the propagated vectors remain unit and that particles rotate on the sphere as predicted by the dynamical equations. As discussed in (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403,
2023
), integration of the three-dimensional Kuramoto model using Euler’s method with time step
Δ
t
not only changes the norm of the vectors but produces a small rotation of the particles around the wrong axis. Importantly, the error in the axis’ direction does not vanish in the limit
Δ
t
→
0
. Therefore, instead of displacing the unit vectors in the direction of the velocity, one should perform a sequence of direct small rotations, as dictated by the equations of motion. This keeps the particles on the sphere at all times, ensuring exact norm preservation, and rotates the particles around the proper axis for small
Δ
t
(Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403,
2023
). Here, I propose an alternative way to do such integration by rotations in 3D that can be generalized to more dimensions using Cayley-Hamilton’s theorem. Explicit formulas are provided for 2, 3, and 4 dimensions. I also compare the results with the fourth-order Runge–Kutta method, which seems to provide accurate results even requiring renormalization of the vectors after each integration step. |
---|---|
AbstractList | The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with
D
-
1
internal phases, represented by a point on the surface of the unit D-sphere. Particles are then more easily represented by
D
-dimensional unit vectors than by
D
-
1
spherical angles. However, numerical integration of the state equations should ensure that the propagated vectors remain unit and that particles rotate on the sphere as predicted by the dynamical equations. As discussed in (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403,
2023
), integration of the three-dimensional Kuramoto model using Euler’s method with time step
Δ
t
not only changes the norm of the vectors but produces a small rotation of the particles around the wrong axis. Importantly, the error in the axis’ direction does not vanish in the limit
Δ
t
→
0
. Therefore, instead of displacing the unit vectors in the direction of the velocity, one should perform a sequence of direct small rotations, as dictated by the equations of motion. This keeps the particles on the sphere at all times, ensuring exact norm preservation, and rotates the particles around the proper axis for small
Δ
t
(Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403,
2023
). Here, I propose an alternative way to do such integration by rotations in 3D that can be generalized to more dimensions using Cayley-Hamilton’s theorem. Explicit formulas are provided for 2, 3, and 4 dimensions. I also compare the results with the fourth-order Runge–Kutta method, which seems to provide accurate results even requiring renormalization of the vectors after each integration step. |
ArticleNumber | 119 |
Author | de Aguiar, Marcus A. M. |
Author_xml | – sequence: 1 givenname: Marcus A. M. surname: de Aguiar fullname: de Aguiar, Marcus A. M. email: aguiar@ifi.unicamp.br organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970 |
BookMark | eNp9kLtOAzEQRS0EEkngB6j2Bwx-77pEEY-IhDRQW8axg6NdG9negnw9JqGiSDWaufeMZu4UnIcYLAA3GN1ihNq7jCmnHUSEQYSZpHB_BiZYtB1kjHXnYIIwolC2lF6Cac47hAhHjE7AfB2a8mmb13GwyRvdN4tQ7Dbp4mNoojuIq7EvfuMHG3KdVs_LmPQQS2xWcWP7K3DhdJ_t9V-dgffHh7f5M1yunxbz-yU0ROIC-UbyVgsnhJAMCcE_eBWElEwTYzssOa4t6lonkaZEGmG4IJa1xEnijKYz0B33mhRzTtYp48vh0JK07xVG6jcMdQxD1TDUIQy1ryj5h34lP-j0fRqiRyhXc9japHZxTPX_fIr6Ad3Hc_I |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2025_108650 |
Cites_doi | 10.1140/epjb/e2008-00098-8 10.1143/PTP.76.576 10.1038/s41467-017-01190-3 10.1103/PhysRevE.105.014211 10.1103/PhysRevLett.106.128701 10.1088/1367-2630/17/1/015012 10.1119/1.1501118 10.1088/1742-5468/accce4 10.1038/nphys2535 10.1016/j.chaos.2021.111090 10.1098/rspa.2021.0303 10.1016/j.physa.2019.122051 10.1088/1367-2630/16/2/023016 10.1016/j.physd.2006.12.004 10.1063/1.3049136 10.1007/BFb0013365 10.1016/j.chaos.2020.110395 10.1016/j.physrep.2015.10.008 10.1186/s13408-020-00086-9 10.1016/j.neunet.2015.03.003 10.1103/PhysRevLett.106.054102 10.1103/PhysRevE.107.044205 10.1007/978-3-642-69689-3_6 10.1126/science.1089287 10.1103/PhysRevE.101.062213 10.1137/10081530X 10.3389/fnhum.2010.00190 10.1103/PhysRevLett.82.648 10.1073/pnas.2206994120 10.1038/s41467-021-21290-5 10.1103/PhysRevE.90.042905 10.1103/RevModPhys.77.137 10.1007/s13324-021-00567-4 10.1016/j.physa.2018.09.096 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Sociedade Brasileira de Física 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Física 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13538-024-01493-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1678-4448 |
ExternalDocumentID | 10_1007_s13538_024_01493_z |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2021/14335-0 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 301082/2019‐7 funderid: http://dx.doi.org/10.13039/501100003593 |
GroupedDBID | -EM 06D 0R~ 0VY 203 23N 29~ 2KG 2LR 2VQ 2WC 30V 4.4 406 408 5GY 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXHO ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APOWU AXYYD AYJHY AZFZN BGNMA C1A CS3 CSCUP DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV KQ8 LLZTM M4Y M~E NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9T PT4 R9I RDY ROL RSC RSV S1Z S27 S3B SCD SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE T13 TR2 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB Z7Y ZMTXR ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT |
ID | FETCH-LOGICAL-c291t-5d957a6f666940665b5c296994a2ce81951296087f90a329c6c562e472f92fca3 |
IEDL.DBID | U2A |
ISSN | 0103-9733 |
IngestDate | Thu Apr 24 23:12:39 EDT 2025 Tue Jul 01 00:36:04 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Synchronization Numerical methods Cayley-Hamilton’s theorem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5d957a6f666940665b5c296994a2ce81951296087f90a329c6c562e472f92fca3 |
ParticipantIDs | crossref_citationtrail_10_1007_s13538_024_01493_z crossref_primary_10_1007_s13538_024_01493_z springer_journals_10_1007_s13538_024_01493_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Brazilian journal of physics |
PublicationTitleAbbrev | Braz J Phys |
PublicationYear | 2024 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Dörfler, Bullo (CR27) 2011; 10 Goldstein, Poole, Safko (CR41) 2002 Reis, Iarosz, Ferrari, Caldas, Batista, Viana (CR13) 2021; 142 Acebrón, Bonilla, Vicente, Ritort, Spigler (CR26) 2005; 77 Kuramoto (CR3) 1984 O’Keeffe, Ceron, Petersen (CR33) 2022; 105 Muller (CR40) 2021; A 477 Lee, Hong, Yeo (CR1) 2023; 2023 Pantaleone (CR14) 2002; 70 Yamaguchi, Isejima, Matsuo, Okura, Yagita, Kobayashi, Okamura (CR4) 2003; 302 Ji, Peron, Menck, Rodrigues, Kurths (CR25) 2013; 110 Climaco (CR23) 2019; 29 O’Keeffe, Hong (CR32) 2017; 8 Moreira, de Aguiar (CR31) 2019; 533 Barioni, de Aguiar (CR36) 2021; 149 Bhowmik (CR11) 2012 Sakaguchi, Kuramoto (CR15) 1986; 76 Breakspear, Heitmann, Daffertshofer (CR21) 2010; 4 Nishikawa, Motter (CR8) 2015; 17 Ferrari, Viana, Lopes, Stoop (CR12) 2015; 66 Chandra, Girvan, Ott (CR35) 2019; 9 Yue, Smith, Gottwald (CR16) 2020; 101 Lipton, Mirollo, Strogatz (CR38) 2021; 31 Filatrella, Nielsen, Pedersen (CR6) 2008; 61 Buzanello, Barioni, de Aguiar (CR17) 2022; 32 Cumin, Unsworth (CR10) 2007; 226 Yeung, Strogatz (CR20) 1999; 82 Childs, Strogatz (CR29) 2008; 18 Hong, Strogatz (CR19) 2011; 106 Crnkić, Jaćimović, Marković (CR39) 2021; 11 de Aguiar (CR18) 2023; 107 Rodrigues, Peron, Ji, Kurths (CR22) 2016; 610 Tanaka (CR37) 2014; 16 Olmi, Navas, Boccaletti, Torcini (CR28) 2014; 90 Molnar, Nishikawa, Motter (CR9) 2021; 12 Supekar, Song, Hastewell, Choi, Mietke, Dunkel (CR34) 2023; 120 Motter, Myers, Anghel, Nishikawa (CR7) 2013; 9 Gomez-Gardenes, Gomez, Arenas, Moreno (CR24) 2011; 106 Kuramoto (CR2) 1975 Bick, Goodfellow, Laing, Martens (CR5) 2020; 10 Moreira, de Aguiar (CR30) 2019; 514 H Hong (1493_CR19) 2011; 106 S Olmi (1493_CR28) 2014; 90 KP O’Keeffe (1493_CR32) 2017; 8 JS Climaco (1493_CR23) 2019; 29 C Bick (1493_CR5) 2020; 10 S Chandra (1493_CR35) 2019; 9 A Muller (1493_CR40) 2021; A 477 R Supekar (1493_CR34) 2023; 120 Y Kuramoto (1493_CR2) 1975 CA Moreira (1493_CR31) 2019; 533 Y Kuramoto (1493_CR3) 1984 K O’Keeffe (1493_CR33) 2022; 105 AS Reis (1493_CR13) 2021; 142 J Pantaleone (1493_CR14) 2002; 70 H Goldstein (1493_CR41) 2002 HK Lee (1493_CR1) 2023; 2023 F Dörfler (1493_CR27) 2011; 10 H Sakaguchi (1493_CR15) 1986; 76 M Lipton (1493_CR38) 2021; 31 T Nishikawa (1493_CR8) 2015; 17 T Tanaka (1493_CR37) 2014; 16 P Ji (1493_CR25) 2013; 110 MS Yeung (1493_CR20) 1999; 82 W Yue (1493_CR16) 2020; 101 MAM de Aguiar (1493_CR18) 2023; 107 M Breakspear (1493_CR21) 2010; 4 F Molnar (1493_CR9) 2021; 12 AED Barioni (1493_CR36) 2021; 149 FA Rodrigues (1493_CR22) 2016; 610 G Filatrella (1493_CR6) 2008; 61 D Cumin (1493_CR10) 2007; 226 S Yamaguchi (1493_CR4) 2003; 302 A Crnkić (1493_CR39) 2021; 11 D Bhowmik (1493_CR11) 2012 J Gomez-Gardenes (1493_CR24) 2011; 106 JA Acebrón (1493_CR26) 2005; 77 FA Ferrari (1493_CR12) 2015; 66 GL Buzanello (1493_CR17) 2022; 32 AE Motter (1493_CR7) 2013; 9 LM Childs (1493_CR29) 2008; 18 CA Moreira (1493_CR30) 2019; 514 |
References_xml | – volume: 142 start-page: 110395 year: 2021 ident: CR13 article-title: Bursting synchronization in neuronal assemblies of scale-free networks publication-title: Chaos, Solitons Fractals – volume: 77 start-page: 137 issue: 1 year: 2005 end-page: 185 ident: CR26 article-title: The Kuramoto model: a simple paradigm for synchronization phenomena publication-title: Rev. Mod. Phys. – volume: 90 start-page: 042905 issue: 4 year: 2014 ident: CR28 article-title: Hysteretic transitions in the Kuramoto model with inertia publication-title: Phys. Rev. E – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 43 ident: CR5 article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review publication-title: J. Math. Neurosci. – volume: 106 start-page: 054102 issue: 5 year: 2011 ident: CR19 article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators publication-title: Phys. Rev. Lett. – volume: 10 start-page: 1070 issue: 3 year: 2011 end-page: 1099 ident: CR27 article-title: On the critical coupling for Kuramoto oscillators publication-title: SIAM J. Appl. Dyn. Syst. – volume: 533 start-page: 122051 year: 2019 ident: CR31 article-title: Modular structure in C. elegans neural network and its response to external localized stimuli publication-title: Physica A – volume: A 477 start-page: 20210303 issue: 2253 year: 2021 ident: CR40 article-title: Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems publication-title: Proc. R. Soc. – volume: 66 start-page: 107 year: 2015 end-page: 118 ident: CR12 article-title: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model publication-title: Neural Netw. – volume: 4 start-page: 190 year: 2010 ident: CR21 article-title: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model publication-title: Front. Hum. Neurosci. – volume: 29 start-page: 073115 issue: 7 year: 2019 ident: CR23 article-title: Optimal global synchronization of partially forced Kuramoto oscillators publication-title: J. Nonlinear Sci. – start-page: 1 year: 2012 end-page: 8 ident: CR11 article-title: How well do oscillator models capture the behaviour of biological neurons? publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN) – volume: 11 start-page: 1 issue: 3 year: 2021 end-page: 13 ident: CR39 article-title: On synchronization in Kuramoto models on spheres publication-title: Anal. Math. Phys. – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 13 ident: CR32 article-title: Oscillators that sync and swarm publication-title: Nat. Commun. – volume: 2023 start-page: 043403 issue: 4 year: 2023 ident: CR1 article-title: Improved numerical scheme for the generalized Kuramoto model publication-title: J. Stat. Mech: Theory Exp. – volume: 82 start-page: 648 issue: 3 year: 1999 ident: CR20 article-title: Time delay in the Kuramoto model of coupled oscillators publication-title: Phys. Rev. Lett. – year: 2002 ident: CR41 publication-title: Classical mechanics, chapter 4 – volume: 514 start-page: 487 year: 2019 end-page: 496 ident: CR30 article-title: Global synchronization of partially forced Kuramoto oscillators on networks publication-title: Physica A – volume: 32 start-page: 093130 issue: 9 year: 2022 ident: CR17 article-title: Matrix coupling and generalized frustration in Kuramoto oscillators publication-title: J. Nonlinear Sci. – volume: 120 start-page: e2206994120 issue: 7 year: 2023 ident: CR34 article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments publication-title: Proc. Natl. Acad. Sci. – volume: 61 start-page: 485 issue: 4 year: 2008 end-page: 491 ident: CR6 article-title: Analysis of a power grid using a Kuramoto-like model publication-title: Eur Phys J B – volume: 9 start-page: 011002 issue: 1 year: 2019 ident: CR35 article-title: Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: odd D is different publication-title: Phys. Rev. X – volume: 76 start-page: 576 issue: 3 year: 1986 end-page: 581 ident: CR15 article-title: A soluble active rotater model showing phase transitions via mutual entertainment publication-title: Progress Theoret. Phys. – volume: 17 start-page: 015012 year: 2015 ident: CR8 article-title: Comparative analysis of existing models for power-grid synchronization publication-title: New J. Phys. – volume: 12 start-page: 1457 issue: 1 year: 2021 ident: CR9 article-title: Asymmetry underlies stability in power grids publication-title: Nat. Commun. – volume: 101 start-page: 062213 issue: 6 year: 2020 ident: CR16 article-title: Model reduction for the Kuramoto-Sakaguchi model: the importance of nonentrained rogue oscillators publication-title: Phys. Rev. E – volume: 70 start-page: 992 issue: 10 year: 2002 end-page: 1000 ident: CR14 article-title: Synchronization of metronomes publication-title: Am. J. Phys. – volume: 18 start-page: 1 issue: 4 year: 2008 end-page: 9 ident: CR29 article-title: Stability diagram for the forced Kuramoto model publication-title: Chaos – volume: 226 start-page: 181 issue: 2 year: 2007 end-page: 196 ident: CR10 article-title: Generalising the Kuramoto model for the study of neuronal synchronisation in the brain publication-title: Physica D – volume: 9 start-page: 191 issue: 3 year: 2013 end-page: 197 ident: CR7 article-title: Spontaneous synchrony in power-grid networks publication-title: Nat. Phys. – start-page: 420 year: 1975 end-page: 422 ident: CR2 article-title: Self-entrainment of a population of coupled non-linear oscillators publication-title: International Symposium on Mathematical Problems in Theoretical Physics – volume: 31 start-page: 093113 issue: 9 year: 2021 ident: CR38 article-title: The Kuramoto model on a sphere: explaining its low-dimensional dynamics with group theory and hyperbolic geometry publication-title: J. Nonlinear Sci. – start-page: 89 year: 1984 end-page: 110 ident: CR3 article-title: Chemical waves publication-title: Chemical oscillations, waves, and turbulence – volume: 105 start-page: 014211 issue: 1 year: 2022 ident: CR33 article-title: Collective behavior of swarmalators on a ring publication-title: Phys. Rev. E – volume: 110 start-page: 1 issue: 21 year: 2013 end-page: 5 ident: CR25 article-title: Cluster explosive synchronization in complex networks publication-title: Phys. Rev. Lett. – volume: 149 start-page: 111090 year: 2021 ident: CR36 article-title: Complexity reduction in the 3D Kuramoto model publication-title: Chaos, Solitons Fractals – volume: 107 start-page: 044205 year: 2023 ident: CR18 article-title: Generalized frustration in the multidimensional Kuramoto model publication-title: Phys. Rev. E – volume: 610 start-page: 1 year: 2016 end-page: 98 ident: CR22 article-title: The Kuramoto model in complex networks publication-title: Phys. Rep. – volume: 106 start-page: 1 issue: 12 year: 2011 end-page: 4 ident: CR24 article-title: Explosive synchronization transitions in scale-free networks publication-title: Phys. Rev. Lett. – volume: 302 start-page: 1408 issue: 5649 year: 2003 end-page: 1412 ident: CR4 article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus publication-title: Science – volume: 16 start-page: 01 year: 2014 ident: CR37 article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere publication-title: New J. Phys. – volume: 29 start-page: 073115 issue: 7 year: 2019 ident: 1493_CR23 publication-title: J. Nonlinear Sci. – volume-title: Classical mechanics, chapter 4 year: 2002 ident: 1493_CR41 – volume: 61 start-page: 485 issue: 4 year: 2008 ident: 1493_CR6 publication-title: Eur Phys J B doi: 10.1140/epjb/e2008-00098-8 – volume: 76 start-page: 576 issue: 3 year: 1986 ident: 1493_CR15 publication-title: Progress Theoret. Phys. doi: 10.1143/PTP.76.576 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 1493_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01190-3 – volume: 105 start-page: 014211 issue: 1 year: 2022 ident: 1493_CR33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.105.014211 – volume: 106 start-page: 1 issue: 12 year: 2011 ident: 1493_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.128701 – volume: 17 start-page: 015012 year: 2015 ident: 1493_CR8 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/1/015012 – volume: 70 start-page: 992 issue: 10 year: 2002 ident: 1493_CR14 publication-title: Am. J. Phys. doi: 10.1119/1.1501118 – volume: 2023 start-page: 043403 issue: 4 year: 2023 ident: 1493_CR1 publication-title: J. Stat. Mech: Theory Exp. doi: 10.1088/1742-5468/accce4 – volume: 9 start-page: 191 issue: 3 year: 2013 ident: 1493_CR7 publication-title: Nat. Phys. doi: 10.1038/nphys2535 – volume: 149 start-page: 111090 year: 2021 ident: 1493_CR36 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2021.111090 – volume: A 477 start-page: 20210303 issue: 2253 year: 2021 ident: 1493_CR40 publication-title: Proc. R. Soc. doi: 10.1098/rspa.2021.0303 – volume: 533 start-page: 122051 year: 2019 ident: 1493_CR31 publication-title: Physica A doi: 10.1016/j.physa.2019.122051 – volume: 16 start-page: 01 year: 2014 ident: 1493_CR37 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/2/023016 – volume: 226 start-page: 181 issue: 2 year: 2007 ident: 1493_CR10 publication-title: Physica D doi: 10.1016/j.physd.2006.12.004 – volume: 18 start-page: 1 issue: 4 year: 2008 ident: 1493_CR29 publication-title: Chaos doi: 10.1063/1.3049136 – start-page: 420 volume-title: International Symposium on Mathematical Problems in Theoretical Physics year: 1975 ident: 1493_CR2 doi: 10.1007/BFb0013365 – volume: 142 start-page: 110395 year: 2021 ident: 1493_CR13 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110395 – volume: 610 start-page: 1 year: 2016 ident: 1493_CR22 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.10.008 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1493_CR5 publication-title: J. Math. Neurosci. doi: 10.1186/s13408-020-00086-9 – volume: 66 start-page: 107 year: 2015 ident: 1493_CR12 publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.03.003 – volume: 106 start-page: 054102 issue: 5 year: 2011 ident: 1493_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.054102 – volume: 107 start-page: 044205 year: 2023 ident: 1493_CR18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.107.044205 – start-page: 89 volume-title: Chemical oscillations, waves, and turbulence year: 1984 ident: 1493_CR3 doi: 10.1007/978-3-642-69689-3_6 – volume: 302 start-page: 1408 issue: 5649 year: 2003 ident: 1493_CR4 publication-title: Science doi: 10.1126/science.1089287 – volume: 101 start-page: 062213 issue: 6 year: 2020 ident: 1493_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.062213 – volume: 9 start-page: 011002 issue: 1 year: 2019 ident: 1493_CR35 publication-title: Phys. Rev. X – volume: 10 start-page: 1070 issue: 3 year: 2011 ident: 1493_CR27 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/10081530X – volume: 31 start-page: 093113 issue: 9 year: 2021 ident: 1493_CR38 publication-title: J. Nonlinear Sci. – volume: 4 start-page: 190 year: 2010 ident: 1493_CR21 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00190 – volume: 82 start-page: 648 issue: 3 year: 1999 ident: 1493_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.648 – volume: 120 start-page: e2206994120 issue: 7 year: 2023 ident: 1493_CR34 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2206994120 – volume: 110 start-page: 1 issue: 21 year: 2013 ident: 1493_CR25 publication-title: Phys. Rev. Lett. – start-page: 1 volume-title: The 2012 International Joint Conference on Neural Networks (IJCNN) year: 2012 ident: 1493_CR11 – volume: 12 start-page: 1457 issue: 1 year: 2021 ident: 1493_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21290-5 – volume: 90 start-page: 042905 issue: 4 year: 2014 ident: 1493_CR28 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.042905 – volume: 77 start-page: 137 issue: 1 year: 2005 ident: 1493_CR26 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.137 – volume: 11 start-page: 1 issue: 3 year: 2021 ident: 1493_CR39 publication-title: Anal. Math. Phys. doi: 10.1007/s13324-021-00567-4 – volume: 514 start-page: 487 year: 2019 ident: 1493_CR30 publication-title: Physica A doi: 10.1016/j.physa.2018.09.096 – volume: 32 start-page: 093130 issue: 9 year: 2022 ident: 1493_CR17 publication-title: J. Nonlinear Sci. |
SSID | ssj0025043 |
Score | 2.3499537 |
Snippet | The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Physics Physics and Astronomy |
Title | On the Numerical Integration of the Multidimensional Kuramoto Model |
URI | https://link.springer.com/article/10.1007/s13538-024-01493-z |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED7ahEKX0idNH0FDt1ZgS7JsjUlImjY0XRpIJyPL9hSckseSX1-dbCcESqCTB508fCfp7ri77wCeMu77xvNymgqZUJEyRZMImTCTlHOWs1Ab7B3-GMvhRLxPg2nVFLasq93rlKR7qXfNbhwvp7UpFN16TjfH0AwwdreneMI62zALOblc4aLHqQo5r1pl_v7Hvjnaz4U6EzM4h7PKNySdUpkXcJQVl3DiajTN8gp6nwWx7hoZr8ssy4y8VVwPFlsyz92ia6hNkbK_pNsgo_VCW3XMCU49m13DZND_6g1pNQOBGqb8FQ1SFYRa5jbKUALTJElgF6RSQjOTYRLMGmzpRWGuPM2ZMtJYjyYTIcsVy43mN9Ao5kV2CyQKDDIRShsMB0JkRuvI06FJpEy1xUy3wK-hiE1FEI5zKmbxjtoY4YstfLGDL9604Hm756ekxzgo_VIjHFdXZXlA_O5_4vdwypxmsTrvARqrxTp7tB7DKmlDszPodsf4ff0e9dvuwPwCy9S4og |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED7alNIupU-aPjV0awW2JMvWGEJD0jy6JJBNyLI8BafkseTXV5LthEAJdNbZw3eW7zvu7juAN0PDUAdBjjPGU8wyInCaOCXMNKOU5CRW2s0OD0e8O2Ff02haDYUt6273uiTp_9S7YTfqLqeNKdjReoo3x3BiyUDiGrkmpLVNs5wml29cDCgWMaXVqMzf79gPR_u1UB9iOpdwUXFD1CqdeQVHpriGU9-jqZc30P4ukKVraLQuqywz1Ku0Hiy2aJ77Qz9QmznJ_lJuA_XXC2XdMUdu69nsFiadz3G7i6sdCFgTEa5wlIkoVjy3WYZgrkySRvaAC8EU0cYVwWzA5kES5yJQlAjNtWU0hsUkFyTXit5Bo5gX5h5QEmmnRMhtMhwxZrRSSaBinXKeKYuZakJYQyF1JRDu9lTM5E7a2MEnLXzSwyc3TXjfPvNTymMctP6oEZbVVVkeMH_4n_krnHXHw4Ec9Eb9Rzgn3suuU-8JGqvF2jxb9rBKX_zH8gsQ-LiF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELZaqlZdqj4FfXro1loktuPEI6JFUFraoUhskePEEwoIwsKvr88JUKQKqbMvGT4_7k5333cIPWbM97XnGZJykRCeUkmSCJQwk5QxamioNHCHPwaiO-Rvo2D0i8Xvut1XJcmS0wAqTXnRnKamuSG-Mbio1r8QCPEZWe6jA_sc-3Cuh7S1TrlAn8s1MXqMyJCxijbz9z-2XdN2XdS5m84pOqniRNwqN_YM7WX5OTp0_Zp6foHanzm2oRseLMqKyxj3Kt0HizOeGLfoyLUpyPeX0hu4v5gpuzUTDBPQxpdo2Hn9bndJNQ-BaCr9ggSpDEIljM04JIeSSRLYBSElV1RnUBCzzlt4UWikpxiVWmgb3WQ8pEZSoxW7QrV8kmd1hKNAgyqhsIlxwHmmlYo8FepEiFRZzFQD-SsoYl2JhcPMinG8kTkG-GILX-zgi5cN9LT-ZlpKZey0fl4hHFfXZr7D_Pp_5g_o6OulE7_3Bv0bdEzdJkPT3i2qFbNFdmcDiSK5d2flBzTwvME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Numerical+Integration+of+the+Multidimensional+Kuramoto+Model&rft.jtitle=Brazilian+journal+of+physics&rft.au=de+Aguiar%2C+Marcus+A.+M.&rft.date=2024-08-01&rft.issn=0103-9733&rft.eissn=1678-4448&rft.volume=54&rft.issue=4&rft_id=info:doi/10.1007%2Fs13538-024-01493-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13538_024_01493_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0103-9733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0103-9733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0103-9733&client=summon |