On the Numerical Integration of the Multidimensional Kuramoto Model

The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with D - 1 internal phases, represented by a...

Full description

Saved in:
Bibliographic Details
Published inBrazilian journal of physics Vol. 54; no. 4
Main Author de Aguiar, Marcus A. M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with D - 1 internal phases, represented by a point on the surface of the unit D-sphere. Particles are then more easily represented by D -dimensional unit vectors than by D - 1 spherical angles. However, numerical integration of the state equations should ensure that the propagated vectors remain unit and that particles rotate on the sphere as predicted by the dynamical equations. As discussed in (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403, 2023 ), integration of the three-dimensional Kuramoto model using Euler’s method with time step Δ t not only changes the norm of the vectors but produces a small rotation of the particles around the wrong axis. Importantly, the error in the axis’ direction does not vanish in the limit Δ t → 0 . Therefore, instead of displacing the unit vectors in the direction of the velocity, one should perform a sequence of direct small rotations, as dictated by the equations of motion. This keeps the particles on the sphere at all times, ensuring exact norm preservation, and rotates the particles around the proper axis for small Δ t (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403, 2023 ). Here, I propose an alternative way to do such integration by rotations in 3D that can be generalized to more dimensions using Cayley-Hamilton’s theorem. Explicit formulas are provided for 2, 3, and 4 dimensions. I also compare the results with the fourth-order Runge–Kutta method, which seems to provide accurate results even requiring renormalization of the vectors after each integration step.
AbstractList The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension of the model replaces the oscillators, originally characterized by a single phase, by particles with D - 1 internal phases, represented by a point on the surface of the unit D-sphere. Particles are then more easily represented by D -dimensional unit vectors than by D - 1 spherical angles. However, numerical integration of the state equations should ensure that the propagated vectors remain unit and that particles rotate on the sphere as predicted by the dynamical equations. As discussed in (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403, 2023 ), integration of the three-dimensional Kuramoto model using Euler’s method with time step Δ t not only changes the norm of the vectors but produces a small rotation of the particles around the wrong axis. Importantly, the error in the axis’ direction does not vanish in the limit Δ t → 0 . Therefore, instead of displacing the unit vectors in the direction of the velocity, one should perform a sequence of direct small rotations, as dictated by the equations of motion. This keeps the particles on the sphere at all times, ensuring exact norm preservation, and rotates the particles around the proper axis for small Δ t (Lee et al. in Journal of Statistical Mechanics: Theory and Experiment 2023(4):043403, 2023 ). Here, I propose an alternative way to do such integration by rotations in 3D that can be generalized to more dimensions using Cayley-Hamilton’s theorem. Explicit formulas are provided for 2, 3, and 4 dimensions. I also compare the results with the fourth-order Runge–Kutta method, which seems to provide accurate results even requiring renormalization of the vectors after each integration step.
ArticleNumber 119
Author de Aguiar, Marcus A. M.
Author_xml – sequence: 1
  givenname: Marcus A. M.
  surname: de Aguiar
  fullname: de Aguiar, Marcus A. M.
  email: aguiar@ifi.unicamp.br
  organization: Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Unicamp 13083-970
BookMark eNp9kLtOAzEQRS0EEkngB6j2Bwx-77pEEY-IhDRQW8axg6NdG9negnw9JqGiSDWaufeMZu4UnIcYLAA3GN1ihNq7jCmnHUSEQYSZpHB_BiZYtB1kjHXnYIIwolC2lF6Cac47hAhHjE7AfB2a8mmb13GwyRvdN4tQ7Dbp4mNoojuIq7EvfuMHG3KdVs_LmPQQS2xWcWP7K3DhdJ_t9V-dgffHh7f5M1yunxbz-yU0ROIC-UbyVgsnhJAMCcE_eBWElEwTYzssOa4t6lonkaZEGmG4IJa1xEnijKYz0B33mhRzTtYp48vh0JK07xVG6jcMdQxD1TDUIQy1ryj5h34lP-j0fRqiRyhXc9japHZxTPX_fIr6Ad3Hc_I
CitedBy_id crossref_primary_10_1016_j_cnsns_2025_108650
Cites_doi 10.1140/epjb/e2008-00098-8
10.1143/PTP.76.576
10.1038/s41467-017-01190-3
10.1103/PhysRevE.105.014211
10.1103/PhysRevLett.106.128701
10.1088/1367-2630/17/1/015012
10.1119/1.1501118
10.1088/1742-5468/accce4
10.1038/nphys2535
10.1016/j.chaos.2021.111090
10.1098/rspa.2021.0303
10.1016/j.physa.2019.122051
10.1088/1367-2630/16/2/023016
10.1016/j.physd.2006.12.004
10.1063/1.3049136
10.1007/BFb0013365
10.1016/j.chaos.2020.110395
10.1016/j.physrep.2015.10.008
10.1186/s13408-020-00086-9
10.1016/j.neunet.2015.03.003
10.1103/PhysRevLett.106.054102
10.1103/PhysRevE.107.044205
10.1007/978-3-642-69689-3_6
10.1126/science.1089287
10.1103/PhysRevE.101.062213
10.1137/10081530X
10.3389/fnhum.2010.00190
10.1103/PhysRevLett.82.648
10.1073/pnas.2206994120
10.1038/s41467-021-21290-5
10.1103/PhysRevE.90.042905
10.1103/RevModPhys.77.137
10.1007/s13324-021-00567-4
10.1016/j.physa.2018.09.096
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedade Brasileira de Física 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Física 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13538-024-01493-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1678-4448
ExternalDocumentID 10_1007_s13538_024_01493_z
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2021/14335-0
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 301082/2019‐7
  funderid: http://dx.doi.org/10.13039/501100003593
GroupedDBID -EM
06D
0R~
0VY
203
23N
29~
2KG
2LR
2VQ
2WC
30V
4.4
406
408
5GY
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXHO
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APOWU
AXYYD
AYJHY
AZFZN
BGNMA
C1A
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9T
PT4
R9I
RDY
ROL
RSC
RSV
S1Z
S27
S3B
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
T13
TR2
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
Z7Y
ZMTXR
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
ID FETCH-LOGICAL-c291t-5d957a6f666940665b5c296994a2ce81951296087f90a329c6c562e472f92fca3
IEDL.DBID U2A
ISSN 0103-9733
IngestDate Thu Apr 24 23:12:39 EDT 2025
Tue Jul 01 00:36:04 EDT 2025
Fri Feb 21 02:40:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Synchronization
Numerical methods
Cayley-Hamilton’s theorem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5d957a6f666940665b5c296994a2ce81951296087f90a329c6c562e472f92fca3
ParticipantIDs crossref_citationtrail_10_1007_s13538_024_01493_z
crossref_primary_10_1007_s13538_024_01493_z
springer_journals_10_1007_s13538_024_01493_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Brazilian journal of physics
PublicationTitleAbbrev Braz J Phys
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References Dörfler, Bullo (CR27) 2011; 10
Goldstein, Poole, Safko (CR41) 2002
Reis, Iarosz, Ferrari, Caldas, Batista, Viana (CR13) 2021; 142
Acebrón, Bonilla, Vicente, Ritort, Spigler (CR26) 2005; 77
Kuramoto (CR3) 1984
O’Keeffe, Ceron, Petersen (CR33) 2022; 105
Muller (CR40) 2021; A 477
Lee, Hong, Yeo (CR1) 2023; 2023
Pantaleone (CR14) 2002; 70
Yamaguchi, Isejima, Matsuo, Okura, Yagita, Kobayashi, Okamura (CR4) 2003; 302
Ji, Peron, Menck, Rodrigues, Kurths (CR25) 2013; 110
Climaco (CR23) 2019; 29
O’Keeffe, Hong (CR32) 2017; 8
Moreira, de Aguiar (CR31) 2019; 533
Barioni, de Aguiar (CR36) 2021; 149
Bhowmik (CR11) 2012
Sakaguchi, Kuramoto (CR15) 1986; 76
Breakspear, Heitmann, Daffertshofer (CR21) 2010; 4
Nishikawa, Motter (CR8) 2015; 17
Ferrari, Viana, Lopes, Stoop (CR12) 2015; 66
Chandra, Girvan, Ott (CR35) 2019; 9
Yue, Smith, Gottwald (CR16) 2020; 101
Lipton, Mirollo, Strogatz (CR38) 2021; 31
Filatrella, Nielsen, Pedersen (CR6) 2008; 61
Buzanello, Barioni, de Aguiar (CR17) 2022; 32
Cumin, Unsworth (CR10) 2007; 226
Yeung, Strogatz (CR20) 1999; 82
Childs, Strogatz (CR29) 2008; 18
Hong, Strogatz (CR19) 2011; 106
Crnkić, Jaćimović, Marković (CR39) 2021; 11
de Aguiar (CR18) 2023; 107
Rodrigues, Peron, Ji, Kurths (CR22) 2016; 610
Tanaka (CR37) 2014; 16
Olmi, Navas, Boccaletti, Torcini (CR28) 2014; 90
Molnar, Nishikawa, Motter (CR9) 2021; 12
Supekar, Song, Hastewell, Choi, Mietke, Dunkel (CR34) 2023; 120
Motter, Myers, Anghel, Nishikawa (CR7) 2013; 9
Gomez-Gardenes, Gomez, Arenas, Moreno (CR24) 2011; 106
Kuramoto (CR2) 1975
Bick, Goodfellow, Laing, Martens (CR5) 2020; 10
Moreira, de Aguiar (CR30) 2019; 514
H Hong (1493_CR19) 2011; 106
S Olmi (1493_CR28) 2014; 90
KP O’Keeffe (1493_CR32) 2017; 8
JS Climaco (1493_CR23) 2019; 29
C Bick (1493_CR5) 2020; 10
S Chandra (1493_CR35) 2019; 9
A Muller (1493_CR40) 2021; A 477
R Supekar (1493_CR34) 2023; 120
Y Kuramoto (1493_CR2) 1975
CA Moreira (1493_CR31) 2019; 533
Y Kuramoto (1493_CR3) 1984
K O’Keeffe (1493_CR33) 2022; 105
AS Reis (1493_CR13) 2021; 142
J Pantaleone (1493_CR14) 2002; 70
H Goldstein (1493_CR41) 2002
HK Lee (1493_CR1) 2023; 2023
F Dörfler (1493_CR27) 2011; 10
H Sakaguchi (1493_CR15) 1986; 76
M Lipton (1493_CR38) 2021; 31
T Nishikawa (1493_CR8) 2015; 17
T Tanaka (1493_CR37) 2014; 16
P Ji (1493_CR25) 2013; 110
MS Yeung (1493_CR20) 1999; 82
W Yue (1493_CR16) 2020; 101
MAM de Aguiar (1493_CR18) 2023; 107
M Breakspear (1493_CR21) 2010; 4
F Molnar (1493_CR9) 2021; 12
AED Barioni (1493_CR36) 2021; 149
FA Rodrigues (1493_CR22) 2016; 610
G Filatrella (1493_CR6) 2008; 61
D Cumin (1493_CR10) 2007; 226
S Yamaguchi (1493_CR4) 2003; 302
A Crnkić (1493_CR39) 2021; 11
D Bhowmik (1493_CR11) 2012
J Gomez-Gardenes (1493_CR24) 2011; 106
JA Acebrón (1493_CR26) 2005; 77
FA Ferrari (1493_CR12) 2015; 66
GL Buzanello (1493_CR17) 2022; 32
AE Motter (1493_CR7) 2013; 9
LM Childs (1493_CR29) 2008; 18
CA Moreira (1493_CR30) 2019; 514
References_xml – volume: 142
  start-page: 110395
  year: 2021
  ident: CR13
  article-title: Bursting synchronization in neuronal assemblies of scale-free networks
  publication-title: Chaos, Solitons Fractals
– volume: 77
  start-page: 137
  issue: 1
  year: 2005
  end-page: 185
  ident: CR26
  article-title: The Kuramoto model: a simple paradigm for synchronization phenomena
  publication-title: Rev. Mod. Phys.
– volume: 90
  start-page: 042905
  issue: 4
  year: 2014
  ident: CR28
  article-title: Hysteretic transitions in the Kuramoto model with inertia
  publication-title: Phys. Rev. E
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 43
  ident: CR5
  article-title: Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
  publication-title: J. Math. Neurosci.
– volume: 106
  start-page: 054102
  issue: 5
  year: 2011
  ident: CR19
  article-title: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 1070
  issue: 3
  year: 2011
  end-page: 1099
  ident: CR27
  article-title: On the critical coupling for Kuramoto oscillators
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 533
  start-page: 122051
  year: 2019
  ident: CR31
  article-title: Modular structure in C. elegans neural network and its response to external localized stimuli
  publication-title: Physica A
– volume: A 477
  start-page: 20210303
  issue: 2253
  year: 2021
  ident: CR40
  article-title: Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems
  publication-title: Proc. R. Soc.
– volume: 66
  start-page: 107
  year: 2015
  end-page: 118
  ident: CR12
  article-title: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model
  publication-title: Neural Netw.
– volume: 4
  start-page: 190
  year: 2010
  ident: CR21
  article-title: Generative models of cortical oscillations: neurobiological implications of the Kuramoto model
  publication-title: Front. Hum. Neurosci.
– volume: 29
  start-page: 073115
  issue: 7
  year: 2019
  ident: CR23
  article-title: Optimal global synchronization of partially forced Kuramoto oscillators
  publication-title: J. Nonlinear Sci.
– start-page: 1
  year: 2012
  end-page: 8
  ident: CR11
  article-title: How well do oscillator models capture the behaviour of biological neurons?
  publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN)
– volume: 11
  start-page: 1
  issue: 3
  year: 2021
  end-page: 13
  ident: CR39
  article-title: On synchronization in Kuramoto models on spheres
  publication-title: Anal. Math. Phys.
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 13
  ident: CR32
  article-title: Oscillators that sync and swarm
  publication-title: Nat. Commun.
– volume: 2023
  start-page: 043403
  issue: 4
  year: 2023
  ident: CR1
  article-title: Improved numerical scheme for the generalized Kuramoto model
  publication-title: J. Stat. Mech: Theory Exp.
– volume: 82
  start-page: 648
  issue: 3
  year: 1999
  ident: CR20
  article-title: Time delay in the Kuramoto model of coupled oscillators
  publication-title: Phys. Rev. Lett.
– year: 2002
  ident: CR41
  publication-title: Classical mechanics, chapter 4
– volume: 514
  start-page: 487
  year: 2019
  end-page: 496
  ident: CR30
  article-title: Global synchronization of partially forced Kuramoto oscillators on networks
  publication-title: Physica A
– volume: 32
  start-page: 093130
  issue: 9
  year: 2022
  ident: CR17
  article-title: Matrix coupling and generalized frustration in Kuramoto oscillators
  publication-title: J. Nonlinear Sci.
– volume: 120
  start-page: e2206994120
  issue: 7
  year: 2023
  ident: CR34
  article-title: Learning hydrodynamic equations for active matter from particle simulations and experiments
  publication-title: Proc. Natl. Acad. Sci.
– volume: 61
  start-page: 485
  issue: 4
  year: 2008
  end-page: 491
  ident: CR6
  article-title: Analysis of a power grid using a Kuramoto-like model
  publication-title: Eur Phys J B
– volume: 9
  start-page: 011002
  issue: 1
  year: 2019
  ident: CR35
  article-title: Continuous versus discontinuous transitions in the d-dimensional generalized Kuramoto model: odd D is different
  publication-title: Phys. Rev. X
– volume: 76
  start-page: 576
  issue: 3
  year: 1986
  end-page: 581
  ident: CR15
  article-title: A soluble active rotater model showing phase transitions via mutual entertainment
  publication-title: Progress Theoret. Phys.
– volume: 17
  start-page: 015012
  year: 2015
  ident: CR8
  article-title: Comparative analysis of existing models for power-grid synchronization
  publication-title: New J. Phys.
– volume: 12
  start-page: 1457
  issue: 1
  year: 2021
  ident: CR9
  article-title: Asymmetry underlies stability in power grids
  publication-title: Nat. Commun.
– volume: 101
  start-page: 062213
  issue: 6
  year: 2020
  ident: CR16
  article-title: Model reduction for the Kuramoto-Sakaguchi model: the importance of nonentrained rogue oscillators
  publication-title: Phys. Rev. E
– volume: 70
  start-page: 992
  issue: 10
  year: 2002
  end-page: 1000
  ident: CR14
  article-title: Synchronization of metronomes
  publication-title: Am. J. Phys.
– volume: 18
  start-page: 1
  issue: 4
  year: 2008
  end-page: 9
  ident: CR29
  article-title: Stability diagram for the forced Kuramoto model
  publication-title: Chaos
– volume: 226
  start-page: 181
  issue: 2
  year: 2007
  end-page: 196
  ident: CR10
  article-title: Generalising the Kuramoto model for the study of neuronal synchronisation in the brain
  publication-title: Physica D
– volume: 9
  start-page: 191
  issue: 3
  year: 2013
  end-page: 197
  ident: CR7
  article-title: Spontaneous synchrony in power-grid networks
  publication-title: Nat. Phys.
– start-page: 420
  year: 1975
  end-page: 422
  ident: CR2
  article-title: Self-entrainment of a population of coupled non-linear oscillators
  publication-title: International Symposium on Mathematical Problems in Theoretical Physics
– volume: 31
  start-page: 093113
  issue: 9
  year: 2021
  ident: CR38
  article-title: The Kuramoto model on a sphere: explaining its low-dimensional dynamics with group theory and hyperbolic geometry
  publication-title: J. Nonlinear Sci.
– start-page: 89
  year: 1984
  end-page: 110
  ident: CR3
  article-title: Chemical waves
  publication-title: Chemical oscillations, waves, and turbulence
– volume: 105
  start-page: 014211
  issue: 1
  year: 2022
  ident: CR33
  article-title: Collective behavior of swarmalators on a ring
  publication-title: Phys. Rev. E
– volume: 110
  start-page: 1
  issue: 21
  year: 2013
  end-page: 5
  ident: CR25
  article-title: Cluster explosive synchronization in complex networks
  publication-title: Phys. Rev. Lett.
– volume: 149
  start-page: 111090
  year: 2021
  ident: CR36
  article-title: Complexity reduction in the 3D Kuramoto model
  publication-title: Chaos, Solitons Fractals
– volume: 107
  start-page: 044205
  year: 2023
  ident: CR18
  article-title: Generalized frustration in the multidimensional Kuramoto model
  publication-title: Phys. Rev. E
– volume: 610
  start-page: 1
  year: 2016
  end-page: 98
  ident: CR22
  article-title: The Kuramoto model in complex networks
  publication-title: Phys. Rep.
– volume: 106
  start-page: 1
  issue: 12
  year: 2011
  end-page: 4
  ident: CR24
  article-title: Explosive synchronization transitions in scale-free networks
  publication-title: Phys. Rev. Lett.
– volume: 302
  start-page: 1408
  issue: 5649
  year: 2003
  end-page: 1412
  ident: CR4
  article-title: Synchronization of cellular clocks in the suprachiasmatic nucleus
  publication-title: Science
– volume: 16
  start-page: 01
  year: 2014
  ident: CR37
  article-title: Solvable model of the collective motion of heterogeneous particles interacting on a sphere
  publication-title: New J. Phys.
– volume: 29
  start-page: 073115
  issue: 7
  year: 2019
  ident: 1493_CR23
  publication-title: J. Nonlinear Sci.
– volume-title: Classical mechanics, chapter 4
  year: 2002
  ident: 1493_CR41
– volume: 61
  start-page: 485
  issue: 4
  year: 2008
  ident: 1493_CR6
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2008-00098-8
– volume: 76
  start-page: 576
  issue: 3
  year: 1986
  ident: 1493_CR15
  publication-title: Progress Theoret. Phys.
  doi: 10.1143/PTP.76.576
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 1493_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01190-3
– volume: 105
  start-page: 014211
  issue: 1
  year: 2022
  ident: 1493_CR33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.014211
– volume: 106
  start-page: 1
  issue: 12
  year: 2011
  ident: 1493_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.128701
– volume: 17
  start-page: 015012
  year: 2015
  ident: 1493_CR8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/1/015012
– volume: 70
  start-page: 992
  issue: 10
  year: 2002
  ident: 1493_CR14
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1501118
– volume: 2023
  start-page: 043403
  issue: 4
  year: 2023
  ident: 1493_CR1
  publication-title: J. Stat. Mech: Theory Exp.
  doi: 10.1088/1742-5468/accce4
– volume: 9
  start-page: 191
  issue: 3
  year: 2013
  ident: 1493_CR7
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2535
– volume: 149
  start-page: 111090
  year: 2021
  ident: 1493_CR36
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2021.111090
– volume: A 477
  start-page: 20210303
  issue: 2253
  year: 2021
  ident: 1493_CR40
  publication-title: Proc. R. Soc.
  doi: 10.1098/rspa.2021.0303
– volume: 533
  start-page: 122051
  year: 2019
  ident: 1493_CR31
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122051
– volume: 16
  start-page: 01
  year: 2014
  ident: 1493_CR37
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/2/023016
– volume: 226
  start-page: 181
  issue: 2
  year: 2007
  ident: 1493_CR10
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.12.004
– volume: 18
  start-page: 1
  issue: 4
  year: 2008
  ident: 1493_CR29
  publication-title: Chaos
  doi: 10.1063/1.3049136
– start-page: 420
  volume-title: International Symposium on Mathematical Problems in Theoretical Physics
  year: 1975
  ident: 1493_CR2
  doi: 10.1007/BFb0013365
– volume: 142
  start-page: 110395
  year: 2021
  ident: 1493_CR13
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110395
– volume: 610
  start-page: 1
  year: 2016
  ident: 1493_CR22
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.10.008
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1493_CR5
  publication-title: J. Math. Neurosci.
  doi: 10.1186/s13408-020-00086-9
– volume: 66
  start-page: 107
  year: 2015
  ident: 1493_CR12
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.03.003
– volume: 106
  start-page: 054102
  issue: 5
  year: 2011
  ident: 1493_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.054102
– volume: 107
  start-page: 044205
  year: 2023
  ident: 1493_CR18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.107.044205
– start-page: 89
  volume-title: Chemical oscillations, waves, and turbulence
  year: 1984
  ident: 1493_CR3
  doi: 10.1007/978-3-642-69689-3_6
– volume: 302
  start-page: 1408
  issue: 5649
  year: 2003
  ident: 1493_CR4
  publication-title: Science
  doi: 10.1126/science.1089287
– volume: 101
  start-page: 062213
  issue: 6
  year: 2020
  ident: 1493_CR16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.062213
– volume: 9
  start-page: 011002
  issue: 1
  year: 2019
  ident: 1493_CR35
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 1070
  issue: 3
  year: 2011
  ident: 1493_CR27
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/10081530X
– volume: 31
  start-page: 093113
  issue: 9
  year: 2021
  ident: 1493_CR38
  publication-title: J. Nonlinear Sci.
– volume: 4
  start-page: 190
  year: 2010
  ident: 1493_CR21
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00190
– volume: 82
  start-page: 648
  issue: 3
  year: 1999
  ident: 1493_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.648
– volume: 120
  start-page: e2206994120
  issue: 7
  year: 2023
  ident: 1493_CR34
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2206994120
– volume: 110
  start-page: 1
  issue: 21
  year: 2013
  ident: 1493_CR25
  publication-title: Phys. Rev. Lett.
– start-page: 1
  volume-title: The 2012 International Joint Conference on Neural Networks (IJCNN)
  year: 2012
  ident: 1493_CR11
– volume: 12
  start-page: 1457
  issue: 1
  year: 2021
  ident: 1493_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21290-5
– volume: 90
  start-page: 042905
  issue: 4
  year: 2014
  ident: 1493_CR28
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.042905
– volume: 77
  start-page: 137
  issue: 1
  year: 2005
  ident: 1493_CR26
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.137
– volume: 11
  start-page: 1
  issue: 3
  year: 2021
  ident: 1493_CR39
  publication-title: Anal. Math. Phys.
  doi: 10.1007/s13324-021-00567-4
– volume: 514
  start-page: 487
  year: 2019
  ident: 1493_CR30
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.096
– volume: 32
  start-page: 093130
  issue: 9
  year: 2022
  ident: 1493_CR17
  publication-title: J. Nonlinear Sci.
SSID ssj0025043
Score 2.3499537
Snippet The Kuramoto model, describing the synchronization dynamics of coupled oscillators, has been generalized in many ways over the past years. One recent extension...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Physics
Physics and Astronomy
Title On the Numerical Integration of the Multidimensional Kuramoto Model
URI https://link.springer.com/article/10.1007/s13538-024-01493-z
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED7ahEKX0idNH0FDt1ZgS7JsjUlImjY0XRpIJyPL9hSckseSX1-dbCcESqCTB508fCfp7ri77wCeMu77xvNymgqZUJEyRZMImTCTlHOWs1Ab7B3-GMvhRLxPg2nVFLasq93rlKR7qXfNbhwvp7UpFN16TjfH0AwwdreneMI62zALOblc4aLHqQo5r1pl_v7Hvjnaz4U6EzM4h7PKNySdUpkXcJQVl3DiajTN8gp6nwWx7hoZr8ssy4y8VVwPFlsyz92ia6hNkbK_pNsgo_VCW3XMCU49m13DZND_6g1pNQOBGqb8FQ1SFYRa5jbKUALTJElgF6RSQjOTYRLMGmzpRWGuPM2ZMtJYjyYTIcsVy43mN9Ao5kV2CyQKDDIRShsMB0JkRuvI06FJpEy1xUy3wK-hiE1FEI5zKmbxjtoY4YstfLGDL9604Hm756ekxzgo_VIjHFdXZXlA_O5_4vdwypxmsTrvARqrxTp7tB7DKmlDszPodsf4ff0e9dvuwPwCy9S4og
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED7alNIupU-aPjV0awW2JMvWGEJD0jy6JJBNyLI8BafkseTXV5LthEAJdNbZw3eW7zvu7juAN0PDUAdBjjPGU8wyInCaOCXMNKOU5CRW2s0OD0e8O2Ff02haDYUt6273uiTp_9S7YTfqLqeNKdjReoo3x3BiyUDiGrkmpLVNs5wml29cDCgWMaXVqMzf79gPR_u1UB9iOpdwUXFD1CqdeQVHpriGU9-jqZc30P4ukKVraLQuqywz1Ku0Hiy2aJ77Qz9QmznJ_lJuA_XXC2XdMUdu69nsFiadz3G7i6sdCFgTEa5wlIkoVjy3WYZgrkySRvaAC8EU0cYVwWzA5kES5yJQlAjNtWU0hsUkFyTXit5Bo5gX5h5QEmmnRMhtMhwxZrRSSaBinXKeKYuZakJYQyF1JRDu9lTM5E7a2MEnLXzSwyc3TXjfPvNTymMctP6oEZbVVVkeMH_4n_krnHXHw4Ec9Eb9Rzgn3suuU-8JGqvF2jxb9rBKX_zH8gsQ-LiF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELZaqlZdqj4FfXro1loktuPEI6JFUFraoUhskePEEwoIwsKvr88JUKQKqbMvGT4_7k5333cIPWbM97XnGZJykRCeUkmSCJQwk5QxamioNHCHPwaiO-Rvo2D0i8Xvut1XJcmS0wAqTXnRnKamuSG-Mbio1r8QCPEZWe6jA_sc-3Cuh7S1TrlAn8s1MXqMyJCxijbz9z-2XdN2XdS5m84pOqniRNwqN_YM7WX5OTp0_Zp6foHanzm2oRseLMqKyxj3Kt0HizOeGLfoyLUpyPeX0hu4v5gpuzUTDBPQxpdo2Hn9bndJNQ-BaCr9ggSpDEIljM04JIeSSRLYBSElV1RnUBCzzlt4UWikpxiVWmgb3WQ8pEZSoxW7QrV8kmd1hKNAgyqhsIlxwHmmlYo8FepEiFRZzFQD-SsoYl2JhcPMinG8kTkG-GILX-zgi5cN9LT-ZlpKZey0fl4hHFfXZr7D_Pp_5g_o6OulE7_3Bv0bdEzdJkPT3i2qFbNFdmcDiSK5d2flBzTwvME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Numerical+Integration+of+the+Multidimensional+Kuramoto+Model&rft.jtitle=Brazilian+journal+of+physics&rft.au=de+Aguiar%2C+Marcus+A.+M.&rft.date=2024-08-01&rft.issn=0103-9733&rft.eissn=1678-4448&rft.volume=54&rft.issue=4&rft_id=info:doi/10.1007%2Fs13538-024-01493-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13538_024_01493_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0103-9733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0103-9733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0103-9733&client=summon