Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies
Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often a...
Saved in:
Published in | IEEE transactions on nuclear science Vol. 67; no. 7; pp. 1216 - 1240 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9499 1558-1578 |
DOI | 10.1109/TNS.2020.2971861 |
Cover
Loading…
Abstract | Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO 2 ) to 1 Mrad(SiO 2 ) or higher. Oxygen vacancies in SiO 2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO 2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of GaN-based HEMTs and thin metal lines are illustrated for comparison. |
---|---|
AbstractList | Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO 2 ) to 1 Mrad(SiO 2 ) or higher. Oxygen vacancies in SiO 2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO 2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of GaN-based HEMTs and thin metal lines are illustrated for comparison. Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO2) to 1 Mrad(SiO2) or higher. Oxygen vacancies in SiO2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/[Formula Omitted] noise of GaN-based HEMTs and thin metal lines are illustrated for comparison. |
Author | Fleetwood, Daniel M. |
Author_xml | – sequence: 1 givenname: Daniel M. orcidid: 0000-0003-4257-7142 surname: Fleetwood fullname: Fleetwood, Daniel M. email: dan.fleetwood@vanderbilt.edu organization: Electrical Engineering and Computer Science Department, Vanderbilt University, Nashville, TN, USA |
BookMark | eNp9kMFPwjAUhxuDiYDeTbws8eqg7dpuPSqikiAcGOeldm9YMlpsx0H_ekswHjx4evklv--9l2-AetZZQOia4BEhWI7LxWpEMcUjKnNSCHKG-oTzIiU8L3qojzEpUsmkvECDELYxMo55H61L16k2nTlrvozdpI8uQDJtGtBduEsenK_BJ6VX-5iUrRMybpKFM7FkbDLdgd9EKnldrpIS9Lt1rdsYCJfovFFtgKufOUTrp2k5eUnny-fZ5H6eaipJl3KtNOj6raC5Aowpq2va1JzUuaw51kw0hcg0YKA4a3LIsGBUCCmoygVjTGVDdHvau_fu4wChq7bu4G08WVFGuSAM5zS2xKmlvQvBQ1Np06nOONt5ZdqK4OqosIoKq6PC6kdhBPEfcO_NTvnP_5CbE2IA4LdeyCJ-LrNvn7B8Gg |
CODEN | IETNAE |
CitedBy_id | crossref_primary_10_1109_TED_2022_3170539 crossref_primary_10_1016_j_sse_2024_108882 crossref_primary_10_1103_PhysRevApplied_21_064065 crossref_primary_10_1109_TNS_2024_3487524 crossref_primary_10_1109_TNS_2022_3146318 crossref_primary_10_1109_TNS_2021_3066612 crossref_primary_10_1109_TNS_2024_3384767 crossref_primary_10_1109_TNS_2021_3065563 crossref_primary_10_1109_TNS_2023_3242267 crossref_primary_10_1109_TNS_2023_3298063 crossref_primary_10_1109_TDMR_2023_3240976 crossref_primary_10_1109_LED_2022_3176238 crossref_primary_10_1109_TNS_2021_3076977 crossref_primary_10_1021_acsaelm_3c01646 crossref_primary_10_1109_TNS_2021_3053424 crossref_primary_10_3390_ma15124052 crossref_primary_10_1109_TNS_2023_3346834 crossref_primary_10_1088_1748_0221_19_06_P06045 crossref_primary_10_1063_5_0203047 crossref_primary_10_1016_j_nima_2022_166727 crossref_primary_10_1109_TNS_2020_2981881 crossref_primary_10_1109_TNS_2021_3138077 crossref_primary_10_1109_TNS_2023_3236625 crossref_primary_10_1002_aelm_202100619 crossref_primary_10_1080_10420150_2022_2039928 crossref_primary_10_1063_5_0105173 crossref_primary_10_1109_TNS_2022_3177269 crossref_primary_10_1149_2162_8777_adb685 crossref_primary_10_1109_TNS_2021_3059594 crossref_primary_10_1109_TNS_2023_3334997 crossref_primary_10_1016_j_snb_2023_133551 crossref_primary_10_1134_S102745102402023X crossref_primary_10_1007_s00339_021_04313_2 crossref_primary_10_1016_j_apsusc_2022_155257 crossref_primary_10_1016_j_microrel_2022_114636 crossref_primary_10_1016_j_measurement_2023_112772 crossref_primary_10_1109_TNS_2022_3147771 crossref_primary_10_3390_electronics13071214 crossref_primary_10_1109_TNS_2021_3140204 crossref_primary_10_1039_D3NR02427J crossref_primary_10_1109_TNS_2024_3431436 crossref_primary_10_3390_nano12234344 crossref_primary_10_31857_S1028096024060137 crossref_primary_10_1109_TNS_2023_3323548 crossref_primary_10_3390_chips4010012 crossref_primary_10_1016_j_sse_2020_107951 crossref_primary_10_3390_electronics12112398 crossref_primary_10_1109_TNS_2025_3527445 crossref_primary_10_31857_S1028096023010053 crossref_primary_10_1134_S1027451023010056 crossref_primary_10_1016_j_physe_2022_115264 crossref_primary_10_1063_5_0147587 crossref_primary_10_1016_j_nanoen_2022_107452 crossref_primary_10_3390_mi15111292 crossref_primary_10_1109_TNS_2023_3326481 crossref_primary_10_1109_TNS_2020_3048669 crossref_primary_10_1109_TED_2024_3403984 crossref_primary_10_1063_5_0230997 crossref_primary_10_1109_TNS_2023_3280432 crossref_primary_10_1016_j_microrel_2023_114927 crossref_primary_10_1109_TNS_2019_2960815 crossref_primary_10_1109_TNS_2023_3242644 crossref_primary_10_1109_TED_2023_3347212 crossref_primary_10_3390_mi13111860 crossref_primary_10_1109_TNS_2023_3237179 crossref_primary_10_1080_10420150_2023_2240934 crossref_primary_10_1109_TNS_2023_3346178 crossref_primary_10_1063_5_0222225 crossref_primary_10_1109_TNS_2023_3336836 crossref_primary_10_1016_j_microrel_2020_114016 crossref_primary_10_1109_TNS_2022_3142385 crossref_primary_10_2139_ssrn_4069758 crossref_primary_10_1063_5_0146549 crossref_primary_10_1109_TNS_2021_3138020 crossref_primary_10_1109_TNS_2021_3128835 crossref_primary_10_1109_TNS_2021_3055694 crossref_primary_10_1109_TNS_2021_3125769 crossref_primary_10_1109_TNS_2022_3144204 crossref_primary_10_1109_TNS_2021_3133407 crossref_primary_10_1109_TNS_2024_3349956 crossref_primary_10_1109_TNS_2023_3239844 crossref_primary_10_3390_mi14030602 crossref_primary_10_1109_TED_2023_3342768 crossref_primary_10_1109_TNS_2023_3346825 crossref_primary_10_1109_TED_2023_3265939 crossref_primary_10_1109_TNS_2022_3219432 crossref_primary_10_1109_TNS_2023_3235648 crossref_primary_10_1016_j_microrel_2023_115125 crossref_primary_10_1063_5_0147563 |
Cites_doi | 10.1109/TNS.2019.2897278 10.1109/TNS.2006.884351 10.1109/16.333839 10.1109/23.124147 10.1109/23.556849 10.1016/j.microrel.2018.03.014 10.1063/1.3281027 10.1201/9781420043778.ch7 10.1063/1.1361065 10.1109/TNS.2018.2827675 10.1109/TNS.2015.2497090 10.1039/C5TC01484K 10.1016/j.microrel.2017.12.021 10.1109/16.333811 10.1063/1.110275 10.1016/0038-1101(91)90087-F 10.1103/PhysRevLett.61.889 10.1109/23.510713 10.1063/1.4947582 10.1109/23.488768 10.1109/TNS.2017.2761747 10.1063/1.100378 10.1109/TNS.2020.2981881 10.1063/1.4876920 10.1103/PhysRevLett.64.579 10.1063/1.431090 10.1063/1.2424441 10.1109/TNS.2011.2170854 10.1109/23.685206 10.1103/RevModPhys.53.497 10.1109/TNS.2017.2705118 10.1109/TNS.2005.860671 10.1109/TNS.2004.839201 10.1109/23.45374 10.1109/LED.2015.2407195 10.1051/anphys/193711070071 10.1109/TNS.2011.2170433 10.1063/1.99828 10.1109/23.736456 10.1109/23.983177 10.1038/ncomms5458 10.1147/rd.504.0387 10.1126/science.aah4698 10.1109/16.333810 10.1109/TNS.2016.2619060 10.1109/16.47770 10.1109/23.277495 10.1109/23.25465 10.1109/TNS.2008.921935 10.1109/LED.2018.2841899 10.1103/PhysRevB.33.4898 10.1016/j.mee.2006.01.271 10.1109/TNS.2010.2086478 10.1016/S0022-3093(98)00720-0 10.1109/TNS.2012.2189894 10.1103/PhysRevB.31.1157 10.1109/23.45373 10.1109/TED.2011.2164543 10.1103/RevModPhys.60.537 10.1109/TNS.2015.2414426 10.1109/TCSI.2009.2028411 10.1109/TDMR.2016.2611533 10.1103/PhysRevB.38.10371 10.1109/LED.2012.2228161 10.1109/TNS.2010.2042613 10.1063/1.126596 10.1063/1.4801497 10.1109/16.55763 10.1038/srep08989 10.1109/23.211421 10.1063/1.1651995 10.1109/23.45393 10.1063/1.3544310 10.1109/TNS.1987.4337445 10.1063/1.3662041 10.1109/TNS.2011.2167519 10.1109/TNS.2018.2876943 10.1109/TNS.2012.2221479 10.1109/TED.2012.2231867 10.1109/TNS.1975.4328095 10.1109/TNS.2017.2760629 10.1109/TNS.2014.2365522 10.1109/TNS.2003.812928 10.1109/23.736501 10.1109/TNS.2014.2367157 10.1109/TED.2019.2907816 10.1109/TNS.2006.880943 10.1109/TNS.2002.805408 10.1109/23.25437 10.1109/TED.2013.2263426 10.1063/1.4784114 10.1109/TNS.2013.2259260 10.1109/TNS.1987.4337513 10.1109/23.124145 10.1063/1.106807 10.1080/00018738900101122 10.1103/PhysRevLett.89.285505 10.1109/TNS.2015.2405852 10.1063/1.359365 10.1109/TNS.2018.2828080 10.1063/1.353348 10.1109/TNS.2003.813130 10.1109/TNS.2005.860698 10.1116/1.590301 10.1016/S0026-2714(99)00225-5 10.1109/TNS.2007.908461 10.1063/1.5093549 10.1063/1.349348 10.1016/j.tsf.2005.08.175 10.1063/1.3554428 10.1016/0022-3093(95)00138-7 10.1109/23.101173 10.1109/TNS.2011.2169279 10.1063/1.3524185 10.1007/s11214-012-9908-y 10.1109/TNS.2013.2255313 10.1063/1.1703105 10.1016/j.microrel.2003.12.005 10.1109/TNS.2017.2761904 10.1109/TNS.2017.2776326 10.1063/1.111943 10.1021/nn501723y 10.1109/TNS.2007.892116 10.1109/TNS.2014.2367036 10.1109/TNS.1980.4331084 10.1016/0920-2307(91)90005-8 10.1109/23.101181 10.1109/TNS.2019.2957028 10.1109/TED.2009.2036297 10.1109/23.488774 10.1109/LED.2012.2184520 10.1016/j.mee.2011.03.099 10.1063/1.1721637 10.1109/TNS.2018.2878105 10.1109/TNS.2019.2960815 10.1016/j.microrel.2017.11.007 10.1109/TNS.2015.2498539 10.1109/TNS.1984.4333529 10.1109/TNS.2005.860667 10.1109/TNS.2008.2005410 10.1063/1.1866507 10.1109/23.45391 10.1109/T-ED.1984.21472 10.1109/TNS.2008.2001040 10.1109/TNS.2016.2636123 10.1038/nnano.2010.279 10.1109/23.211419 10.1109/TDMR.2018.2847338 10.1109/TED.2006.870287 10.1109/TNS.2013.2254722 10.1063/1.111757 10.1021/nl2018178 10.1016/S0065-2539(08)60768-4 10.1063/1.2119425 10.1109/TNS.2017.2786140 10.1103/PhysRevLett.83.372 10.1109/TNS.2006.885952 10.1109/23.273535 10.1109/TNS.2017.2761298 10.1016/S0026-2714(02)00025-2 10.1109/23.101179 10.1016/j.mee.2007.04.094 10.1109/TNS.2003.812927 10.1109/TED.2004.826877 10.1016/j.microrel.2011.09.002 10.1063/1.1641521 10.1109/TNS.1985.4334126 10.1109/TNS.2013.2281771 10.1109/TNS.2010.2049584 10.1109/23.856489 10.1038/nnano.2014.35 10.1103/PhysRevB.47.10509 10.1109/23.658947 10.1109/16.992869 10.1109/23.211380 10.1038/nature10677 10.1016/0038-1101(68)90100-7 10.1109/TNS.2015.2492778 10.1109/TNS.2003.812930 10.1109/TDMR.2007.911379 10.1063/1.353777 10.1103/RevModPhys.77.1083 10.1103/PhysRevLett.52.228 10.1016/0026-2714(95)93068-L 10.1103/PhysRevLett.17.956 10.1103/PhysRevB.36.4479 10.1109/TNS.2007.908375 10.1109/TNS.2018.2885751 10.1109/TNS.1984.4333525 10.1109/TNS.2018.2885649 10.1109/TNS.2014.2362918 10.1109/TDMR.2009.2020406 10.1038/386587a0 10.1109/TNS.1985.4334049 10.1016/S0026-2714(02)00019-7 10.1016/S0038-1101(98)00322-0 10.1109/TNS.2006.885841 10.1109/TNS.2002.805407 10.1109/23.903763 10.1109/T-ED.1984.21687 10.1063/1.332937 10.1016/j.mee.2011.03.117 10.1109/23.124108 10.1109/REDW.2015.7336740 10.1109/LED.2011.2105241 10.1109/TNS.2003.820763 10.1109/TNS.2015.2488650 10.1109/LED.2006.880640 10.1109/16.293349 10.1109/TED.2007.908895 10.1109/23.490892 10.1007/s00706-009-0149-z 10.1109/23.819140 10.1088/0034-4885/69/2/R02 10.1103/PhysRevLett.59.381 10.1109/LED.2003.808844 10.1109/TED.2008.926672 10.1063/1.361002 10.1109/23.903774 10.1063/1.2820380 10.1109/LED.2002.805000 10.1109/TNS.2016.2634538 10.1063/1.2236466 10.1109/TED.2011.2165725 10.1109/TNS.2008.2000480 10.1109/FREQ.1979.200297 10.1109/23.659030 10.1109/TNS.2007.911423 10.1109/23.340515 10.1038/ncomms2018 10.1103/PhysRevB.81.085119 10.1109/TNS.2009.2034155 10.1016/0038-1098(74)90840-0 10.1063/1.345199 10.1109/IRPS.2014.6860643 10.1109/TNS.2019.2909720 10.1021/am506351u 10.1109/TNS.2012.2237522 10.1109/TNS.2015.2470665 10.1016/j.sse.2012.05.035 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
DOI | 10.1109/TNS.2020.2971861 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1578 |
EndPage | 1240 |
ExternalDocumentID | 10_1109_TNS_2020_2971861 8984269 |
Genre | orig-research |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: 10.13039/100000181 – fundername: Defense Threat Reduction Agency funderid: 10.13039/100000774 |
GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION RIG 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
ID | FETCH-LOGICAL-c291t-5cacecdb827ae0024dd2fd51d79d50c46f863ce0e203f7e3064266962a76444a3 |
IEDL.DBID | RIE |
ISSN | 0018-9499 |
IngestDate | Mon Jun 30 08:48:32 EDT 2025 Tue Jul 01 03:45:59 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Wed Aug 27 02:35:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5cacecdb827ae0024dd2fd51d79d50c46f863ce0e203f7e3064266962a76444a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4257-7142 |
PQID | 2425614072 |
PQPubID | 85457 |
PageCount | 25 |
ParticipantIDs | crossref_citationtrail_10_1109_TNS_2020_2971861 ieee_primary_8984269 proquest_journals_2425614072 crossref_primary_10_1109_TNS_2020_2971861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on nuclear science |
PublicationTitleAbbrev | TNS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 ref52 ref204 ref55 ref201 ref202 tuttle (ref115) 2010; 57 fleetwood (ref54) 1988; 35 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 (ref38) 0 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 cartier (ref61) 2011 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref200 ref249 ref129 ref97 ref126 ref247 ref96 ref127 ref248 ref99 ref124 ref245 ref98 ref125 ref246 ref93 ref133 ref92 ref95 ref131 ref94 ref132 nicklaw (ref167) 2002; 49 ref250 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref229 ref108 ref78 ref109 ref227 ref106 ref228 ref107 ref75 ref225 ref104 ref74 ref226 ref105 ref223 ref102 ref76 ref224 ref71 ref232 ref111 ref70 ref233 ref112 ref73 ref230 ref72 ref231 ref110 ref68 ref119 ref67 ref117 ref69 ref239 ref118 ref64 ref236 ref63 ref237 ref116 ref66 ref234 ref113 ref65 ref235 ref114 grasser (ref103) 2014 ref60 ref243 ref122 ref244 ref123 ref62 ref241 ref120 ref242 ref121 ref240 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 waldron (ref192) 2014 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref164 ref165 ref162 ref163 ref160 ref161 dasgupta (ref77) 2010; 57 ref13 ref12 ref15 ref14 ref11 ref10 press (ref128) 1978; 7 mcwhorter (ref134) 1957 ref17 ref16 ref19 ref18 gaillardin (ref27) 2018 ref2 ref1 ref191 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 roy (ref238) 2010; 57 |
References_xml | – ident: ref47 doi: 10.1109/TNS.2019.2897278 – ident: ref49 doi: 10.1109/TNS.2006.884351 – ident: ref241 doi: 10.1109/16.333839 – ident: ref138 doi: 10.1109/23.124147 – ident: ref31 doi: 10.1109/23.556849 – ident: ref46 doi: 10.1016/j.microrel.2018.03.014 – ident: ref195 doi: 10.1063/1.3281027 – ident: ref34 doi: 10.1201/9781420043778.ch7 – ident: ref64 doi: 10.1063/1.1361065 – ident: ref70 doi: 10.1109/TNS.2018.2827675 – ident: ref203 doi: 10.1109/TNS.2015.2497090 – ident: ref209 doi: 10.1039/C5TC01484K – ident: ref105 doi: 10.1016/j.microrel.2017.12.021 – ident: ref123 doi: 10.1109/16.333811 – ident: ref163 doi: 10.1063/1.110275 – ident: ref242 doi: 10.1016/0038-1101(91)90087-F – ident: ref248 doi: 10.1103/PhysRevLett.61.889 – ident: ref68 doi: 10.1109/23.510713 – ident: ref244 doi: 10.1063/1.4947582 – ident: ref153 doi: 10.1109/23.488768 – ident: ref227 doi: 10.1109/TNS.2017.2761747 – ident: ref183 doi: 10.1063/1.100378 – ident: ref58 doi: 10.1109/TNS.2020.2981881 – year: 2018 ident: ref27 publication-title: Process variations and radiation effects in advanced transistors – ident: ref201 doi: 10.1063/1.4876920 – ident: ref158 doi: 10.1103/PhysRevLett.64.579 – start-page: 207 year: 1957 ident: ref134 article-title: 1/f noise and germanium surface properties publication-title: Semiconductor Surface Physics – ident: ref126 doi: 10.1063/1.431090 – ident: ref175 doi: 10.1063/1.2424441 – ident: ref23 doi: 10.1109/TNS.2011.2170854 – ident: ref14 doi: 10.1109/23.685206 – ident: ref129 doi: 10.1103/RevModPhys.53.497 – ident: ref24 doi: 10.1109/TNS.2017.2705118 – ident: ref19 doi: 10.1109/TNS.2005.860671 – ident: ref17 doi: 10.1109/TNS.2004.839201 – ident: ref149 doi: 10.1109/23.45374 – ident: ref210 doi: 10.1109/LED.2015.2407195 – start-page: 18.4.1 year: 2011 ident: ref61 article-title: Fundamental aspects of HfO?-based high-k metal gate stack reliability and implications on tinv-scaling publication-title: IEDM Tech Dig – ident: ref132 doi: 10.1051/anphys/193711070071 – ident: ref239 doi: 10.1109/TNS.2011.2170433 – ident: ref30 doi: 10.1063/1.99828 – ident: ref176 doi: 10.1109/23.736456 – ident: ref213 doi: 10.1109/23.983177 – ident: ref208 doi: 10.1038/ncomms5458 – ident: ref63 doi: 10.1147/rd.504.0387 – ident: ref217 doi: 10.1126/science.aah4698 – ident: ref143 doi: 10.1109/16.333810 – ident: ref177 doi: 10.1109/TNS.2016.2619060 – ident: ref141 doi: 10.1109/16.47770 – ident: ref66 doi: 10.1109/23.277495 – volume: 35 start-page: 1361 year: 1988 ident: ref54 article-title: total-dose hardness assurance issues for soi mosfets publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/23.25465 – ident: ref189 doi: 10.1109/TNS.2008.921935 – ident: ref204 doi: 10.1109/LED.2018.2841899 – ident: ref139 doi: 10.1103/PhysRevB.33.4898 – ident: ref62 doi: 10.1016/j.mee.2006.01.271 – ident: ref25 doi: 10.1109/TNS.2010.2086478 – ident: ref106 doi: 10.1016/S0022-3093(98)00720-0 – ident: ref147 doi: 10.1109/TNS.2012.2189894 – ident: ref246 doi: 10.1103/PhysRevB.31.1157 – ident: ref94 doi: 10.1109/23.45373 – ident: ref98 doi: 10.1109/TED.2011.2164543 – ident: ref131 doi: 10.1103/RevModPhys.60.537 – ident: ref33 doi: 10.1109/TNS.2015.2414426 – ident: ref32 doi: 10.1109/TCSI.2009.2028411 – ident: ref125 doi: 10.1109/TDMR.2016.2611533 – ident: ref247 doi: 10.1103/PhysRevB.38.10371 – ident: ref229 doi: 10.1109/LED.2012.2228161 – ident: ref22 doi: 10.1109/TNS.2010.2042613 – ident: ref133 doi: 10.1063/1.126596 – ident: ref200 doi: 10.1063/1.4801497 – ident: ref144 doi: 10.1109/16.55763 – ident: ref211 doi: 10.1038/srep08989 – ident: ref162 doi: 10.1109/23.211421 – ident: ref136 doi: 10.1063/1.1651995 – ident: ref35 doi: 10.1109/23.45393 – ident: ref196 doi: 10.1063/1.3544310 – ident: ref110 doi: 10.1109/TNS.1987.4337445 – ident: ref234 doi: 10.1063/1.3662041 – ident: ref224 doi: 10.1109/TNS.2011.2167519 – ident: ref57 doi: 10.1109/TNS.2018.2876943 – ident: ref225 doi: 10.1109/TNS.2012.2221479 – ident: ref198 doi: 10.1109/TED.2012.2231867 – ident: ref86 doi: 10.1109/TNS.1975.4328095 – ident: ref56 doi: 10.1109/TNS.2017.2760629 – ident: ref220 doi: 10.1109/TNS.2014.2365522 – ident: ref2 doi: 10.1109/TNS.2003.812928 – ident: ref13 doi: 10.1109/23.736501 – ident: ref42 doi: 10.1109/TNS.2014.2367157 – ident: ref178 doi: 10.1109/TED.2019.2907816 – ident: ref59 doi: 10.1109/TNS.2006.880943 – volume: 49 start-page: 2667 year: 2002 ident: ref167 article-title: The structure, properties, and dynamics of oxygen vacancies in amorphous SiO? publication-title: IEEE Trans Nucl Sci doi: 10.1109/TNS.2002.805408 – ident: ref93 doi: 10.1109/23.25437 – ident: ref232 doi: 10.1109/TED.2013.2263426 – ident: ref206 doi: 10.1063/1.4784114 – ident: ref5 doi: 10.1109/TNS.2013.2259260 – ident: ref76 doi: 10.1109/TNS.1987.4337513 – ident: ref36 doi: 10.1109/23.124145 – ident: ref151 doi: 10.1063/1.106807 – ident: ref184 doi: 10.1080/00018738900101122 – ident: ref166 doi: 10.1103/PhysRevLett.89.285505 – ident: ref97 doi: 10.1109/TNS.2015.2405852 – ident: ref165 doi: 10.1063/1.359365 – ident: ref124 doi: 10.1109/TNS.2018.2828080 – ident: ref112 doi: 10.1063/1.353348 – ident: ref39 doi: 10.1109/TNS.2003.813130 – volume: 57 start-page: 3060 year: 2010 ident: ref238 article-title: Process dependence of proton-induced degradation in GaN HEMTs publication-title: IEEE Trans Nucl Sci – ident: ref18 doi: 10.1109/TNS.2005.860698 – ident: ref107 doi: 10.1116/1.590301 – ident: ref10 doi: 10.1016/S0026-2714(99)00225-5 – ident: ref20 doi: 10.1109/TNS.2007.908461 – ident: ref245 doi: 10.1063/1.5093549 – ident: ref90 doi: 10.1063/1.349348 – ident: ref173 doi: 10.1016/j.tsf.2005.08.175 – ident: ref230 doi: 10.1063/1.3554428 – ident: ref159 doi: 10.1016/0022-3093(95)00138-7 – ident: ref111 doi: 10.1109/23.101173 – ident: ref78 doi: 10.1109/TNS.2011.2169279 – ident: ref235 doi: 10.1063/1.3524185 – ident: ref11 doi: 10.1007/s11214-012-9908-y – ident: ref52 doi: 10.1109/TNS.2013.2255313 – ident: ref85 doi: 10.1063/1.1703105 – volume: 57 start-page: 3463 year: 2010 ident: ref77 article-title: Dose enhancement and reduction in SiO? and high-? MOS insulators publication-title: IEEE Trans Nucl Sci – ident: ref71 doi: 10.1016/j.microrel.2003.12.005 – ident: ref119 doi: 10.1109/TNS.2017.2761904 – start-page: 21.1.1 year: 2014 ident: ref103 article-title: On the microscopic structure of hole traps in pMOSFETs publication-title: IEDM Tech Dig – ident: ref53 doi: 10.1109/TNS.2017.2776326 – year: 0 ident: ref38 publication-title: ESCC Basic Specification No 22900 – ident: ref164 doi: 10.1063/1.111943 – ident: ref219 doi: 10.1021/nn501723y – ident: ref80 doi: 10.1109/TNS.2007.892116 – ident: ref226 doi: 10.1109/TNS.2014.2367036 – ident: ref28 doi: 10.1109/TNS.1980.4331084 – ident: ref243 doi: 10.1016/0920-2307(91)90005-8 – ident: ref89 doi: 10.1109/23.101181 – ident: ref205 doi: 10.1109/TNS.2019.2957028 – ident: ref146 doi: 10.1109/TED.2009.2036297 – ident: ref101 doi: 10.1109/23.488774 – volume: 57 start-page: 3046 year: 2010 ident: ref115 article-title: Defect interactions of H? in SiO?: Implications for ELDRS and latent interface trap buildup publication-title: IEEE Trans Nucl Sci – ident: ref218 doi: 10.1109/LED.2012.2184520 – ident: ref222 doi: 10.1016/j.mee.2011.03.099 – ident: ref180 doi: 10.1063/1.1721637 – ident: ref41 doi: 10.1109/TNS.2018.2878105 – ident: ref179 doi: 10.1109/TNS.2019.2960815 – ident: ref69 doi: 10.1016/j.microrel.2017.11.007 – ident: ref26 doi: 10.1109/TNS.2015.2498539 – ident: ref150 doi: 10.1109/TNS.1984.4333529 – ident: ref72 doi: 10.1109/TNS.2005.860667 – ident: ref190 doi: 10.1109/TNS.2008.2005410 – ident: ref169 doi: 10.1063/1.1866507 – ident: ref155 doi: 10.1109/23.45391 – ident: ref154 doi: 10.1109/T-ED.1984.21472 – ident: ref4 doi: 10.1109/TNS.2008.2001040 – ident: ref145 doi: 10.1109/TNS.2016.2636123 – ident: ref215 doi: 10.1038/nnano.2010.279 – ident: ref152 doi: 10.1109/23.211419 – ident: ref237 doi: 10.1109/TDMR.2018.2847338 – ident: ref170 doi: 10.1109/TED.2006.870287 – ident: ref40 doi: 10.1109/TNS.2013.2254722 – ident: ref148 doi: 10.1063/1.111757 – ident: ref214 doi: 10.1021/nl2018178 – volume: 7 start-page: 103 year: 1978 ident: ref128 article-title: Flicker noises in astronomy and elsewhere publication-title: Comments Astrophys – ident: ref121 doi: 10.1016/S0065-2539(08)60768-4 – ident: ref172 doi: 10.1063/1.2119425 – ident: ref6 doi: 10.1109/TNS.2017.2786140 – ident: ref108 doi: 10.1103/PhysRevLett.83.372 – ident: ref3 doi: 10.1109/TNS.2006.885952 – ident: ref100 doi: 10.1109/23.273535 – ident: ref120 doi: 10.1109/TNS.2017.2761298 – ident: ref122 doi: 10.1016/S0026-2714(02)00025-2 – ident: ref156 doi: 10.1109/23.101179 – ident: ref193 doi: 10.1016/j.mee.2007.04.094 – ident: ref1 doi: 10.1109/TNS.2003.812927 – ident: ref168 doi: 10.1109/TED.2004.826877 – ident: ref102 doi: 10.1016/j.microrel.2011.09.002 – ident: ref75 doi: 10.1063/1.1641521 – ident: ref79 doi: 10.1109/TNS.1985.4334126 – ident: ref236 doi: 10.1109/TNS.2013.2281771 – ident: ref60 doi: 10.1109/TNS.2010.2049584 – ident: ref48 doi: 10.1109/23.856489 – ident: ref207 doi: 10.1038/nnano.2014.35 – ident: ref250 doi: 10.1103/PhysRevB.47.10509 – ident: ref160 doi: 10.1109/23.658947 – ident: ref186 doi: 10.1109/16.992869 – ident: ref37 doi: 10.1109/23.211380 – ident: ref191 doi: 10.1038/nature10677 – ident: ref137 doi: 10.1016/0038-1101(68)90100-7 – ident: ref55 doi: 10.1109/TNS.2015.2492778 – ident: ref16 doi: 10.1109/TNS.2003.812930 – ident: ref109 doi: 10.1109/TDMR.2007.911379 – ident: ref67 doi: 10.1063/1.353777 – start-page: 26 year: 2014 ident: ref192 article-title: An InGaAs/InP quantum well FinFET using the replacement fin process integrated in an RMG flow on 300 mm Si substrates publication-title: Symp VLSI Technol Dig Tech Papers – ident: ref91 doi: 10.1103/RevModPhys.77.1083 – ident: ref182 doi: 10.1103/PhysRevLett.52.228 – ident: ref82 doi: 10.1016/0026-2714(95)93068-L – ident: ref135 doi: 10.1103/PhysRevLett.17.956 – ident: ref249 doi: 10.1103/PhysRevB.36.4479 – ident: ref188 doi: 10.1109/TNS.2007.908375 – ident: ref221 doi: 10.1109/TNS.2018.2885751 – ident: ref99 doi: 10.1109/TNS.1984.4333525 – ident: ref12 doi: 10.1109/TNS.2018.2885649 – ident: ref74 doi: 10.1109/TNS.2014.2362918 – ident: ref194 doi: 10.1109/TDMR.2009.2020406 – ident: ref87 doi: 10.1038/386587a0 – ident: ref29 doi: 10.1109/TNS.1985.4334049 – ident: ref114 doi: 10.1016/S0026-2714(02)00019-7 – ident: ref185 doi: 10.1016/S0038-1101(98)00322-0 – ident: ref50 doi: 10.1109/TNS.2006.885841 – ident: ref96 doi: 10.1109/TNS.2002.805407 – ident: ref113 doi: 10.1109/23.903763 – ident: ref140 doi: 10.1109/T-ED.1984.21687 – ident: ref117 doi: 10.1063/1.332937 – ident: ref212 doi: 10.1016/j.mee.2011.03.117 – ident: ref157 doi: 10.1109/23.124108 – ident: ref43 doi: 10.1109/REDW.2015.7336740 – ident: ref118 doi: 10.1109/LED.2011.2105241 – ident: ref228 doi: 10.1109/TNS.2003.820763 – ident: ref233 doi: 10.1109/TNS.2015.2488650 – ident: ref181 doi: 10.1109/LED.2006.880640 – ident: ref92 doi: 10.1109/16.293349 – ident: ref187 doi: 10.1109/TED.2007.908895 – ident: ref7 doi: 10.1109/23.490892 – ident: ref88 doi: 10.1007/s00706-009-0149-z – ident: ref9 doi: 10.1109/23.819140 – ident: ref65 doi: 10.1088/0034-4885/69/2/R02 – ident: ref130 doi: 10.1103/PhysRevLett.59.381 – ident: ref171 doi: 10.1109/LED.2003.808844 – ident: ref231 doi: 10.1109/TED.2008.926672 – ident: ref83 doi: 10.1063/1.361002 – ident: ref15 doi: 10.1109/23.903774 – ident: ref116 doi: 10.1063/1.2820380 – ident: ref81 doi: 10.1109/LED.2002.805000 – ident: ref44 doi: 10.1109/TNS.2016.2634538 – ident: ref174 doi: 10.1063/1.2236466 – ident: ref197 doi: 10.1109/TED.2011.2165725 – ident: ref21 doi: 10.1109/TNS.2008.2000480 – ident: ref127 doi: 10.1109/FREQ.1979.200297 – ident: ref8 doi: 10.1109/23.659030 – ident: ref73 doi: 10.1109/TNS.2007.911423 – ident: ref95 doi: 10.1109/23.340515 – ident: ref216 doi: 10.1038/ncomms2018 – ident: ref223 doi: 10.1103/PhysRevB.81.085119 – ident: ref51 doi: 10.1109/TNS.2009.2034155 – ident: ref161 doi: 10.1016/0038-1098(74)90840-0 – ident: ref84 doi: 10.1063/1.345199 – ident: ref104 doi: 10.1109/IRPS.2014.6860643 – ident: ref45 doi: 10.1109/TNS.2019.2909720 – ident: ref202 doi: 10.1021/am506351u – ident: ref199 doi: 10.1109/TNS.2012.2237522 – ident: ref240 doi: 10.1109/TNS.2015.2470665 – ident: ref142 doi: 10.1016/j.sse.2012.05.035 |
SSID | ssj0014505 |
Score | 2.5709596 |
Snippet | Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1216 |
SubjectTerms | Border traps Couplings defects Density functional theory Dielectrics Electrostatics High electron mobility transistors high-K dielectrics hydrogen interface traps Irradiation Leakage current LF noise Logic gates MOS MOS devices MOSFET Noise oxide traps Oxides Radiation dosage Semiconductor devices Silicon carbide Silicon dioxide total ionizing dose (TID) Two dimensional materials Vacancies |
Title | Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies |
URI | https://ieeexplore.ieee.org/document/8984269 https://www.proquest.com/docview/2425614072 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHliQ6sRx87BHngKkloFW6hYltiNVoATRduHXc3bSiJcQmxOdE8tn--7z2d8BnIlQGR1GjBaSa2oDhlQqI2mS5QiHVKCEo8wfDOO7cfgwiSYd6LV3YYwx7vCZ8WzRxfJ1pRZ2q8wXUtiblyuwgsCtvqvVRgzwf022ApzA6MYvQ5JM-qPhEwJBzjwucSWOgy8myOVU-bEQO-tyuwmDZbvqQyXP3mKee-r9G2Xjfxu-BRuNm0ku6nGxDR1T7sD6J_LBXRiPKnS86T1O6nd8Qa-rmSE1mfGsRy4dJydBU_aKT1mpSeAXZFhNUWhaEruXZdMbkcHjE2m35xF178H49mZ0dUebJAtUcRnMaaQyZZTOBU8yYy221rzQUaATqSOmwrgQcV8ZZjjrF4lxgCWOZcyzBF2pMOvvw2pZleYACEqKvsq1CsIsxJJkKC6jKNeh0KJQXfCX_Z6qhoHcJsJ4SR0SYTJFTaVWU2mjqS6ctzVea_aNP2R3bce3ck2fd-F4qdq0mZ6z1OIs9EtYwg9_r3UEa_bb9bncY1idvy3MCXof8_zUDbsPIGbULw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBBwq3jZrGPbFULtBxoJW5RYjsSAiWIthe-nrGTRmxC3JxoLFse27N53gCcCF8Z7QeMZpJragOGVCojaZSkaA4pTwkHmd8fhN2Rf_MYPM7BWZ0LY4xxj89M0zZdLF8XampdZS0hhc28nIfFwCbjltladcwAR6zqFeARRkV-FpRksjUcPKApyFmTS7yLQ--LEHJVVX5cxU6-dNagP5tZ-azkuTmdpE31_g208b9TX4fVStEk5-XO2IA5k2_Cyif4wS0YDQtUvWkPj_U7_qBXxdiQEs54fEYuHConQWH2il9JronXysigeEKip5xYb5YtcET69w-kdtCj3b0No8718LJLqzILVHHpTWigEmWUTgWPEmNlttY804GnI6kDpvwwE2FbGWY4a2eRcSZLGMqQJxEqU37S3oGFvMjNLhCkFG2VauX5iY8tyZBcBkGqfaFFphrQmq17rCoMclsK4yV2tgiTMXIqtpyKK0414LTu8Vrib_xBu2UXvqar1rwBBzPWxtUBHcfW0kLNhEV87_dex7DUHfbv4rve4HYflu045SvdA1iYvE3NIeoik_TIbcEPXD7Xdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total-Ionizing-Dose+Effects%2C+Border+Traps%2C+and+1%2F+f+Noise+in+Emerging+MOS+Technologies&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Fleetwood%2C+Daniel+M.&rft.date=2020-07-01&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=67&rft.issue=7&rft.spage=1216&rft.epage=1240&rft_id=info:doi/10.1109%2FTNS.2020.2971861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNS_2020_2971861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |