Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies

Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 67; no. 7; pp. 1216 - 1240
Main Author Fleetwood, Daniel M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9499
1558-1578
DOI10.1109/TNS.2020.2971861

Cover

Loading…
Abstract Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO 2 ) to 1 Mrad(SiO 2 ) or higher. Oxygen vacancies in SiO 2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO 2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of GaN-based HEMTs and thin metal lines are illustrated for comparison.
AbstractList Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO 2 ) to 1 Mrad(SiO 2 ) or higher. Oxygen vacancies in SiO 2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO 2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/<inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> noise of GaN-based HEMTs and thin metal lines are illustrated for comparison.
Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in emerging MOS technologies. When isolation oxides of digital and analog MOS devices and ICs exhibit satisfactory performance, failure doses often are 100 krad(SiO2) to 1 Mrad(SiO2) or higher. Oxygen vacancies in SiO2 and/or high-K gate dielectrics and/or O-vacancy complexes with hydrogen are typically the dominant border traps before and after irradiation. Low-frequency noise measurements can provide significant insight into effective border-trap microstructures, densities, and energy distributions, especially when combined with complementary measurements and density-functional theory calculations. Illustrative examples are presented for past, present, and emerging MOS technologies with SiO2 and/or high-K gate dielectrics. These include FinFETs, MOS devices with alternative channels to Si, MOS devices based on 2-D materials, and SiC MOS devices. Traps in regions of MOS isolation oxides under strong gate control can also contribute to low-frequency noise, especially for multifinger, multiedge devices irradiated to high doses. The effects of defects on the 1/[Formula Omitted] noise of GaN-based HEMTs and thin metal lines are illustrated for comparison.
Author Fleetwood, Daniel M.
Author_xml – sequence: 1
  givenname: Daniel M.
  orcidid: 0000-0003-4257-7142
  surname: Fleetwood
  fullname: Fleetwood, Daniel M.
  email: dan.fleetwood@vanderbilt.edu
  organization: Electrical Engineering and Computer Science Department, Vanderbilt University, Nashville, TN, USA
BookMark eNp9kMFPwjAUhxuDiYDeTbws8eqg7dpuPSqikiAcGOeldm9YMlpsx0H_ekswHjx4evklv--9l2-AetZZQOia4BEhWI7LxWpEMcUjKnNSCHKG-oTzIiU8L3qojzEpUsmkvECDELYxMo55H61L16k2nTlrvozdpI8uQDJtGtBduEsenK_BJ6VX-5iUrRMybpKFM7FkbDLdgd9EKnldrpIS9Lt1rdsYCJfovFFtgKufOUTrp2k5eUnny-fZ5H6eaipJl3KtNOj6raC5Aowpq2va1JzUuaw51kw0hcg0YKA4a3LIsGBUCCmoygVjTGVDdHvau_fu4wChq7bu4G08WVFGuSAM5zS2xKmlvQvBQ1Np06nOONt5ZdqK4OqosIoKq6PC6kdhBPEfcO_NTvnP_5CbE2IA4LdeyCJ-LrNvn7B8Gg
CODEN IETNAE
CitedBy_id crossref_primary_10_1109_TED_2022_3170539
crossref_primary_10_1016_j_sse_2024_108882
crossref_primary_10_1103_PhysRevApplied_21_064065
crossref_primary_10_1109_TNS_2024_3487524
crossref_primary_10_1109_TNS_2022_3146318
crossref_primary_10_1109_TNS_2021_3066612
crossref_primary_10_1109_TNS_2024_3384767
crossref_primary_10_1109_TNS_2021_3065563
crossref_primary_10_1109_TNS_2023_3242267
crossref_primary_10_1109_TNS_2023_3298063
crossref_primary_10_1109_TDMR_2023_3240976
crossref_primary_10_1109_LED_2022_3176238
crossref_primary_10_1109_TNS_2021_3076977
crossref_primary_10_1021_acsaelm_3c01646
crossref_primary_10_1109_TNS_2021_3053424
crossref_primary_10_3390_ma15124052
crossref_primary_10_1109_TNS_2023_3346834
crossref_primary_10_1088_1748_0221_19_06_P06045
crossref_primary_10_1063_5_0203047
crossref_primary_10_1016_j_nima_2022_166727
crossref_primary_10_1109_TNS_2020_2981881
crossref_primary_10_1109_TNS_2021_3138077
crossref_primary_10_1109_TNS_2023_3236625
crossref_primary_10_1002_aelm_202100619
crossref_primary_10_1080_10420150_2022_2039928
crossref_primary_10_1063_5_0105173
crossref_primary_10_1109_TNS_2022_3177269
crossref_primary_10_1149_2162_8777_adb685
crossref_primary_10_1109_TNS_2021_3059594
crossref_primary_10_1109_TNS_2023_3334997
crossref_primary_10_1016_j_snb_2023_133551
crossref_primary_10_1134_S102745102402023X
crossref_primary_10_1007_s00339_021_04313_2
crossref_primary_10_1016_j_apsusc_2022_155257
crossref_primary_10_1016_j_microrel_2022_114636
crossref_primary_10_1016_j_measurement_2023_112772
crossref_primary_10_1109_TNS_2022_3147771
crossref_primary_10_3390_electronics13071214
crossref_primary_10_1109_TNS_2021_3140204
crossref_primary_10_1039_D3NR02427J
crossref_primary_10_1109_TNS_2024_3431436
crossref_primary_10_3390_nano12234344
crossref_primary_10_31857_S1028096024060137
crossref_primary_10_1109_TNS_2023_3323548
crossref_primary_10_3390_chips4010012
crossref_primary_10_1016_j_sse_2020_107951
crossref_primary_10_3390_electronics12112398
crossref_primary_10_1109_TNS_2025_3527445
crossref_primary_10_31857_S1028096023010053
crossref_primary_10_1134_S1027451023010056
crossref_primary_10_1016_j_physe_2022_115264
crossref_primary_10_1063_5_0147587
crossref_primary_10_1016_j_nanoen_2022_107452
crossref_primary_10_3390_mi15111292
crossref_primary_10_1109_TNS_2023_3326481
crossref_primary_10_1109_TNS_2020_3048669
crossref_primary_10_1109_TED_2024_3403984
crossref_primary_10_1063_5_0230997
crossref_primary_10_1109_TNS_2023_3280432
crossref_primary_10_1016_j_microrel_2023_114927
crossref_primary_10_1109_TNS_2019_2960815
crossref_primary_10_1109_TNS_2023_3242644
crossref_primary_10_1109_TED_2023_3347212
crossref_primary_10_3390_mi13111860
crossref_primary_10_1109_TNS_2023_3237179
crossref_primary_10_1080_10420150_2023_2240934
crossref_primary_10_1109_TNS_2023_3346178
crossref_primary_10_1063_5_0222225
crossref_primary_10_1109_TNS_2023_3336836
crossref_primary_10_1016_j_microrel_2020_114016
crossref_primary_10_1109_TNS_2022_3142385
crossref_primary_10_2139_ssrn_4069758
crossref_primary_10_1063_5_0146549
crossref_primary_10_1109_TNS_2021_3138020
crossref_primary_10_1109_TNS_2021_3128835
crossref_primary_10_1109_TNS_2021_3055694
crossref_primary_10_1109_TNS_2021_3125769
crossref_primary_10_1109_TNS_2022_3144204
crossref_primary_10_1109_TNS_2021_3133407
crossref_primary_10_1109_TNS_2024_3349956
crossref_primary_10_1109_TNS_2023_3239844
crossref_primary_10_3390_mi14030602
crossref_primary_10_1109_TED_2023_3342768
crossref_primary_10_1109_TNS_2023_3346825
crossref_primary_10_1109_TED_2023_3265939
crossref_primary_10_1109_TNS_2022_3219432
crossref_primary_10_1109_TNS_2023_3235648
crossref_primary_10_1016_j_microrel_2023_115125
crossref_primary_10_1063_5_0147563
Cites_doi 10.1109/TNS.2019.2897278
10.1109/TNS.2006.884351
10.1109/16.333839
10.1109/23.124147
10.1109/23.556849
10.1016/j.microrel.2018.03.014
10.1063/1.3281027
10.1201/9781420043778.ch7
10.1063/1.1361065
10.1109/TNS.2018.2827675
10.1109/TNS.2015.2497090
10.1039/C5TC01484K
10.1016/j.microrel.2017.12.021
10.1109/16.333811
10.1063/1.110275
10.1016/0038-1101(91)90087-F
10.1103/PhysRevLett.61.889
10.1109/23.510713
10.1063/1.4947582
10.1109/23.488768
10.1109/TNS.2017.2761747
10.1063/1.100378
10.1109/TNS.2020.2981881
10.1063/1.4876920
10.1103/PhysRevLett.64.579
10.1063/1.431090
10.1063/1.2424441
10.1109/TNS.2011.2170854
10.1109/23.685206
10.1103/RevModPhys.53.497
10.1109/TNS.2017.2705118
10.1109/TNS.2005.860671
10.1109/TNS.2004.839201
10.1109/23.45374
10.1109/LED.2015.2407195
10.1051/anphys/193711070071
10.1109/TNS.2011.2170433
10.1063/1.99828
10.1109/23.736456
10.1109/23.983177
10.1038/ncomms5458
10.1147/rd.504.0387
10.1126/science.aah4698
10.1109/16.333810
10.1109/TNS.2016.2619060
10.1109/16.47770
10.1109/23.277495
10.1109/23.25465
10.1109/TNS.2008.921935
10.1109/LED.2018.2841899
10.1103/PhysRevB.33.4898
10.1016/j.mee.2006.01.271
10.1109/TNS.2010.2086478
10.1016/S0022-3093(98)00720-0
10.1109/TNS.2012.2189894
10.1103/PhysRevB.31.1157
10.1109/23.45373
10.1109/TED.2011.2164543
10.1103/RevModPhys.60.537
10.1109/TNS.2015.2414426
10.1109/TCSI.2009.2028411
10.1109/TDMR.2016.2611533
10.1103/PhysRevB.38.10371
10.1109/LED.2012.2228161
10.1109/TNS.2010.2042613
10.1063/1.126596
10.1063/1.4801497
10.1109/16.55763
10.1038/srep08989
10.1109/23.211421
10.1063/1.1651995
10.1109/23.45393
10.1063/1.3544310
10.1109/TNS.1987.4337445
10.1063/1.3662041
10.1109/TNS.2011.2167519
10.1109/TNS.2018.2876943
10.1109/TNS.2012.2221479
10.1109/TED.2012.2231867
10.1109/TNS.1975.4328095
10.1109/TNS.2017.2760629
10.1109/TNS.2014.2365522
10.1109/TNS.2003.812928
10.1109/23.736501
10.1109/TNS.2014.2367157
10.1109/TED.2019.2907816
10.1109/TNS.2006.880943
10.1109/TNS.2002.805408
10.1109/23.25437
10.1109/TED.2013.2263426
10.1063/1.4784114
10.1109/TNS.2013.2259260
10.1109/TNS.1987.4337513
10.1109/23.124145
10.1063/1.106807
10.1080/00018738900101122
10.1103/PhysRevLett.89.285505
10.1109/TNS.2015.2405852
10.1063/1.359365
10.1109/TNS.2018.2828080
10.1063/1.353348
10.1109/TNS.2003.813130
10.1109/TNS.2005.860698
10.1116/1.590301
10.1016/S0026-2714(99)00225-5
10.1109/TNS.2007.908461
10.1063/1.5093549
10.1063/1.349348
10.1016/j.tsf.2005.08.175
10.1063/1.3554428
10.1016/0022-3093(95)00138-7
10.1109/23.101173
10.1109/TNS.2011.2169279
10.1063/1.3524185
10.1007/s11214-012-9908-y
10.1109/TNS.2013.2255313
10.1063/1.1703105
10.1016/j.microrel.2003.12.005
10.1109/TNS.2017.2761904
10.1109/TNS.2017.2776326
10.1063/1.111943
10.1021/nn501723y
10.1109/TNS.2007.892116
10.1109/TNS.2014.2367036
10.1109/TNS.1980.4331084
10.1016/0920-2307(91)90005-8
10.1109/23.101181
10.1109/TNS.2019.2957028
10.1109/TED.2009.2036297
10.1109/23.488774
10.1109/LED.2012.2184520
10.1016/j.mee.2011.03.099
10.1063/1.1721637
10.1109/TNS.2018.2878105
10.1109/TNS.2019.2960815
10.1016/j.microrel.2017.11.007
10.1109/TNS.2015.2498539
10.1109/TNS.1984.4333529
10.1109/TNS.2005.860667
10.1109/TNS.2008.2005410
10.1063/1.1866507
10.1109/23.45391
10.1109/T-ED.1984.21472
10.1109/TNS.2008.2001040
10.1109/TNS.2016.2636123
10.1038/nnano.2010.279
10.1109/23.211419
10.1109/TDMR.2018.2847338
10.1109/TED.2006.870287
10.1109/TNS.2013.2254722
10.1063/1.111757
10.1021/nl2018178
10.1016/S0065-2539(08)60768-4
10.1063/1.2119425
10.1109/TNS.2017.2786140
10.1103/PhysRevLett.83.372
10.1109/TNS.2006.885952
10.1109/23.273535
10.1109/TNS.2017.2761298
10.1016/S0026-2714(02)00025-2
10.1109/23.101179
10.1016/j.mee.2007.04.094
10.1109/TNS.2003.812927
10.1109/TED.2004.826877
10.1016/j.microrel.2011.09.002
10.1063/1.1641521
10.1109/TNS.1985.4334126
10.1109/TNS.2013.2281771
10.1109/TNS.2010.2049584
10.1109/23.856489
10.1038/nnano.2014.35
10.1103/PhysRevB.47.10509
10.1109/23.658947
10.1109/16.992869
10.1109/23.211380
10.1038/nature10677
10.1016/0038-1101(68)90100-7
10.1109/TNS.2015.2492778
10.1109/TNS.2003.812930
10.1109/TDMR.2007.911379
10.1063/1.353777
10.1103/RevModPhys.77.1083
10.1103/PhysRevLett.52.228
10.1016/0026-2714(95)93068-L
10.1103/PhysRevLett.17.956
10.1103/PhysRevB.36.4479
10.1109/TNS.2007.908375
10.1109/TNS.2018.2885751
10.1109/TNS.1984.4333525
10.1109/TNS.2018.2885649
10.1109/TNS.2014.2362918
10.1109/TDMR.2009.2020406
10.1038/386587a0
10.1109/TNS.1985.4334049
10.1016/S0026-2714(02)00019-7
10.1016/S0038-1101(98)00322-0
10.1109/TNS.2006.885841
10.1109/TNS.2002.805407
10.1109/23.903763
10.1109/T-ED.1984.21687
10.1063/1.332937
10.1016/j.mee.2011.03.117
10.1109/23.124108
10.1109/REDW.2015.7336740
10.1109/LED.2011.2105241
10.1109/TNS.2003.820763
10.1109/TNS.2015.2488650
10.1109/LED.2006.880640
10.1109/16.293349
10.1109/TED.2007.908895
10.1109/23.490892
10.1007/s00706-009-0149-z
10.1109/23.819140
10.1088/0034-4885/69/2/R02
10.1103/PhysRevLett.59.381
10.1109/LED.2003.808844
10.1109/TED.2008.926672
10.1063/1.361002
10.1109/23.903774
10.1063/1.2820380
10.1109/LED.2002.805000
10.1109/TNS.2016.2634538
10.1063/1.2236466
10.1109/TED.2011.2165725
10.1109/TNS.2008.2000480
10.1109/FREQ.1979.200297
10.1109/23.659030
10.1109/TNS.2007.911423
10.1109/23.340515
10.1038/ncomms2018
10.1103/PhysRevB.81.085119
10.1109/TNS.2009.2034155
10.1016/0038-1098(74)90840-0
10.1063/1.345199
10.1109/IRPS.2014.6860643
10.1109/TNS.2019.2909720
10.1021/am506351u
10.1109/TNS.2012.2237522
10.1109/TNS.2015.2470665
10.1016/j.sse.2012.05.035
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
DOI 10.1109/TNS.2020.2971861
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 1240
ExternalDocumentID 10_1109_TNS_2020_2971861
8984269
Genre orig-research
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: 10.13039/100000181
– fundername: Defense Threat Reduction Agency
  funderid: 10.13039/100000774
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
RIG
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
ID FETCH-LOGICAL-c291t-5cacecdb827ae0024dd2fd51d79d50c46f863ce0e203f7e3064266962a76444a3
IEDL.DBID RIE
ISSN 0018-9499
IngestDate Mon Jun 30 08:48:32 EDT 2025
Tue Jul 01 03:45:59 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Wed Aug 27 02:35:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5cacecdb827ae0024dd2fd51d79d50c46f863ce0e203f7e3064266962a76444a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4257-7142
PQID 2425614072
PQPubID 85457
PageCount 25
ParticipantIDs crossref_citationtrail_10_1109_TNS_2020_2971861
ieee_primary_8984269
proquest_journals_2425614072
crossref_primary_10_1109_TNS_2020_2971861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref206
ref53
ref203
ref52
ref204
ref55
ref201
ref202
tuttle (ref115) 2010; 57
fleetwood (ref54) 1988; 35
ref209
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
(ref38) 0
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref40
ref220
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
cartier (ref61) 2011
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref200
ref249
ref129
ref97
ref126
ref247
ref96
ref127
ref248
ref99
ref124
ref245
ref98
ref125
ref246
ref93
ref133
ref92
ref95
ref131
ref94
ref132
nicklaw (ref167) 2002; 49
ref250
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref229
ref108
ref78
ref109
ref227
ref106
ref228
ref107
ref75
ref225
ref104
ref74
ref226
ref105
ref223
ref102
ref76
ref224
ref71
ref232
ref111
ref70
ref233
ref112
ref73
ref230
ref72
ref231
ref110
ref68
ref119
ref67
ref117
ref69
ref239
ref118
ref64
ref236
ref63
ref237
ref116
ref66
ref234
ref113
ref65
ref235
ref114
grasser (ref103) 2014
ref60
ref243
ref122
ref244
ref123
ref62
ref241
ref120
ref242
ref121
ref240
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
waldron (ref192) 2014
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref164
ref165
ref162
ref163
ref160
ref161
dasgupta (ref77) 2010; 57
ref13
ref12
ref15
ref14
ref11
ref10
press (ref128) 1978; 7
mcwhorter (ref134) 1957
ref17
ref16
ref19
ref18
gaillardin (ref27) 2018
ref2
ref1
ref191
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
roy (ref238) 2010; 57
References_xml – ident: ref47
  doi: 10.1109/TNS.2019.2897278
– ident: ref49
  doi: 10.1109/TNS.2006.884351
– ident: ref241
  doi: 10.1109/16.333839
– ident: ref138
  doi: 10.1109/23.124147
– ident: ref31
  doi: 10.1109/23.556849
– ident: ref46
  doi: 10.1016/j.microrel.2018.03.014
– ident: ref195
  doi: 10.1063/1.3281027
– ident: ref34
  doi: 10.1201/9781420043778.ch7
– ident: ref64
  doi: 10.1063/1.1361065
– ident: ref70
  doi: 10.1109/TNS.2018.2827675
– ident: ref203
  doi: 10.1109/TNS.2015.2497090
– ident: ref209
  doi: 10.1039/C5TC01484K
– ident: ref105
  doi: 10.1016/j.microrel.2017.12.021
– ident: ref123
  doi: 10.1109/16.333811
– ident: ref163
  doi: 10.1063/1.110275
– ident: ref242
  doi: 10.1016/0038-1101(91)90087-F
– ident: ref248
  doi: 10.1103/PhysRevLett.61.889
– ident: ref68
  doi: 10.1109/23.510713
– ident: ref244
  doi: 10.1063/1.4947582
– ident: ref153
  doi: 10.1109/23.488768
– ident: ref227
  doi: 10.1109/TNS.2017.2761747
– ident: ref183
  doi: 10.1063/1.100378
– ident: ref58
  doi: 10.1109/TNS.2020.2981881
– year: 2018
  ident: ref27
  publication-title: Process variations and radiation effects in advanced transistors
– ident: ref201
  doi: 10.1063/1.4876920
– ident: ref158
  doi: 10.1103/PhysRevLett.64.579
– start-page: 207
  year: 1957
  ident: ref134
  article-title: 1/f noise and germanium surface properties
  publication-title: Semiconductor Surface Physics
– ident: ref126
  doi: 10.1063/1.431090
– ident: ref175
  doi: 10.1063/1.2424441
– ident: ref23
  doi: 10.1109/TNS.2011.2170854
– ident: ref14
  doi: 10.1109/23.685206
– ident: ref129
  doi: 10.1103/RevModPhys.53.497
– ident: ref24
  doi: 10.1109/TNS.2017.2705118
– ident: ref19
  doi: 10.1109/TNS.2005.860671
– ident: ref17
  doi: 10.1109/TNS.2004.839201
– ident: ref149
  doi: 10.1109/23.45374
– ident: ref210
  doi: 10.1109/LED.2015.2407195
– start-page: 18.4.1
  year: 2011
  ident: ref61
  article-title: Fundamental aspects of HfO?-based high-k metal gate stack reliability and implications on tinv-scaling
  publication-title: IEDM Tech Dig
– ident: ref132
  doi: 10.1051/anphys/193711070071
– ident: ref239
  doi: 10.1109/TNS.2011.2170433
– ident: ref30
  doi: 10.1063/1.99828
– ident: ref176
  doi: 10.1109/23.736456
– ident: ref213
  doi: 10.1109/23.983177
– ident: ref208
  doi: 10.1038/ncomms5458
– ident: ref63
  doi: 10.1147/rd.504.0387
– ident: ref217
  doi: 10.1126/science.aah4698
– ident: ref143
  doi: 10.1109/16.333810
– ident: ref177
  doi: 10.1109/TNS.2016.2619060
– ident: ref141
  doi: 10.1109/16.47770
– ident: ref66
  doi: 10.1109/23.277495
– volume: 35
  start-page: 1361
  year: 1988
  ident: ref54
  article-title: total-dose hardness assurance issues for soi mosfets
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/23.25465
– ident: ref189
  doi: 10.1109/TNS.2008.921935
– ident: ref204
  doi: 10.1109/LED.2018.2841899
– ident: ref139
  doi: 10.1103/PhysRevB.33.4898
– ident: ref62
  doi: 10.1016/j.mee.2006.01.271
– ident: ref25
  doi: 10.1109/TNS.2010.2086478
– ident: ref106
  doi: 10.1016/S0022-3093(98)00720-0
– ident: ref147
  doi: 10.1109/TNS.2012.2189894
– ident: ref246
  doi: 10.1103/PhysRevB.31.1157
– ident: ref94
  doi: 10.1109/23.45373
– ident: ref98
  doi: 10.1109/TED.2011.2164543
– ident: ref131
  doi: 10.1103/RevModPhys.60.537
– ident: ref33
  doi: 10.1109/TNS.2015.2414426
– ident: ref32
  doi: 10.1109/TCSI.2009.2028411
– ident: ref125
  doi: 10.1109/TDMR.2016.2611533
– ident: ref247
  doi: 10.1103/PhysRevB.38.10371
– ident: ref229
  doi: 10.1109/LED.2012.2228161
– ident: ref22
  doi: 10.1109/TNS.2010.2042613
– ident: ref133
  doi: 10.1063/1.126596
– ident: ref200
  doi: 10.1063/1.4801497
– ident: ref144
  doi: 10.1109/16.55763
– ident: ref211
  doi: 10.1038/srep08989
– ident: ref162
  doi: 10.1109/23.211421
– ident: ref136
  doi: 10.1063/1.1651995
– ident: ref35
  doi: 10.1109/23.45393
– ident: ref196
  doi: 10.1063/1.3544310
– ident: ref110
  doi: 10.1109/TNS.1987.4337445
– ident: ref234
  doi: 10.1063/1.3662041
– ident: ref224
  doi: 10.1109/TNS.2011.2167519
– ident: ref57
  doi: 10.1109/TNS.2018.2876943
– ident: ref225
  doi: 10.1109/TNS.2012.2221479
– ident: ref198
  doi: 10.1109/TED.2012.2231867
– ident: ref86
  doi: 10.1109/TNS.1975.4328095
– ident: ref56
  doi: 10.1109/TNS.2017.2760629
– ident: ref220
  doi: 10.1109/TNS.2014.2365522
– ident: ref2
  doi: 10.1109/TNS.2003.812928
– ident: ref13
  doi: 10.1109/23.736501
– ident: ref42
  doi: 10.1109/TNS.2014.2367157
– ident: ref178
  doi: 10.1109/TED.2019.2907816
– ident: ref59
  doi: 10.1109/TNS.2006.880943
– volume: 49
  start-page: 2667
  year: 2002
  ident: ref167
  article-title: The structure, properties, and dynamics of oxygen vacancies in amorphous SiO?
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2002.805408
– ident: ref93
  doi: 10.1109/23.25437
– ident: ref232
  doi: 10.1109/TED.2013.2263426
– ident: ref206
  doi: 10.1063/1.4784114
– ident: ref5
  doi: 10.1109/TNS.2013.2259260
– ident: ref76
  doi: 10.1109/TNS.1987.4337513
– ident: ref36
  doi: 10.1109/23.124145
– ident: ref151
  doi: 10.1063/1.106807
– ident: ref184
  doi: 10.1080/00018738900101122
– ident: ref166
  doi: 10.1103/PhysRevLett.89.285505
– ident: ref97
  doi: 10.1109/TNS.2015.2405852
– ident: ref165
  doi: 10.1063/1.359365
– ident: ref124
  doi: 10.1109/TNS.2018.2828080
– ident: ref112
  doi: 10.1063/1.353348
– ident: ref39
  doi: 10.1109/TNS.2003.813130
– volume: 57
  start-page: 3060
  year: 2010
  ident: ref238
  article-title: Process dependence of proton-induced degradation in GaN HEMTs
  publication-title: IEEE Trans Nucl Sci
– ident: ref18
  doi: 10.1109/TNS.2005.860698
– ident: ref107
  doi: 10.1116/1.590301
– ident: ref10
  doi: 10.1016/S0026-2714(99)00225-5
– ident: ref20
  doi: 10.1109/TNS.2007.908461
– ident: ref245
  doi: 10.1063/1.5093549
– ident: ref90
  doi: 10.1063/1.349348
– ident: ref173
  doi: 10.1016/j.tsf.2005.08.175
– ident: ref230
  doi: 10.1063/1.3554428
– ident: ref159
  doi: 10.1016/0022-3093(95)00138-7
– ident: ref111
  doi: 10.1109/23.101173
– ident: ref78
  doi: 10.1109/TNS.2011.2169279
– ident: ref235
  doi: 10.1063/1.3524185
– ident: ref11
  doi: 10.1007/s11214-012-9908-y
– ident: ref52
  doi: 10.1109/TNS.2013.2255313
– ident: ref85
  doi: 10.1063/1.1703105
– volume: 57
  start-page: 3463
  year: 2010
  ident: ref77
  article-title: Dose enhancement and reduction in SiO? and high-? MOS insulators
  publication-title: IEEE Trans Nucl Sci
– ident: ref71
  doi: 10.1016/j.microrel.2003.12.005
– ident: ref119
  doi: 10.1109/TNS.2017.2761904
– start-page: 21.1.1
  year: 2014
  ident: ref103
  article-title: On the microscopic structure of hole traps in pMOSFETs
  publication-title: IEDM Tech Dig
– ident: ref53
  doi: 10.1109/TNS.2017.2776326
– year: 0
  ident: ref38
  publication-title: ESCC Basic Specification No 22900
– ident: ref164
  doi: 10.1063/1.111943
– ident: ref219
  doi: 10.1021/nn501723y
– ident: ref80
  doi: 10.1109/TNS.2007.892116
– ident: ref226
  doi: 10.1109/TNS.2014.2367036
– ident: ref28
  doi: 10.1109/TNS.1980.4331084
– ident: ref243
  doi: 10.1016/0920-2307(91)90005-8
– ident: ref89
  doi: 10.1109/23.101181
– ident: ref205
  doi: 10.1109/TNS.2019.2957028
– ident: ref146
  doi: 10.1109/TED.2009.2036297
– ident: ref101
  doi: 10.1109/23.488774
– volume: 57
  start-page: 3046
  year: 2010
  ident: ref115
  article-title: Defect interactions of H? in SiO?: Implications for ELDRS and latent interface trap buildup
  publication-title: IEEE Trans Nucl Sci
– ident: ref218
  doi: 10.1109/LED.2012.2184520
– ident: ref222
  doi: 10.1016/j.mee.2011.03.099
– ident: ref180
  doi: 10.1063/1.1721637
– ident: ref41
  doi: 10.1109/TNS.2018.2878105
– ident: ref179
  doi: 10.1109/TNS.2019.2960815
– ident: ref69
  doi: 10.1016/j.microrel.2017.11.007
– ident: ref26
  doi: 10.1109/TNS.2015.2498539
– ident: ref150
  doi: 10.1109/TNS.1984.4333529
– ident: ref72
  doi: 10.1109/TNS.2005.860667
– ident: ref190
  doi: 10.1109/TNS.2008.2005410
– ident: ref169
  doi: 10.1063/1.1866507
– ident: ref155
  doi: 10.1109/23.45391
– ident: ref154
  doi: 10.1109/T-ED.1984.21472
– ident: ref4
  doi: 10.1109/TNS.2008.2001040
– ident: ref145
  doi: 10.1109/TNS.2016.2636123
– ident: ref215
  doi: 10.1038/nnano.2010.279
– ident: ref152
  doi: 10.1109/23.211419
– ident: ref237
  doi: 10.1109/TDMR.2018.2847338
– ident: ref170
  doi: 10.1109/TED.2006.870287
– ident: ref40
  doi: 10.1109/TNS.2013.2254722
– ident: ref148
  doi: 10.1063/1.111757
– ident: ref214
  doi: 10.1021/nl2018178
– volume: 7
  start-page: 103
  year: 1978
  ident: ref128
  article-title: Flicker noises in astronomy and elsewhere
  publication-title: Comments Astrophys
– ident: ref121
  doi: 10.1016/S0065-2539(08)60768-4
– ident: ref172
  doi: 10.1063/1.2119425
– ident: ref6
  doi: 10.1109/TNS.2017.2786140
– ident: ref108
  doi: 10.1103/PhysRevLett.83.372
– ident: ref3
  doi: 10.1109/TNS.2006.885952
– ident: ref100
  doi: 10.1109/23.273535
– ident: ref120
  doi: 10.1109/TNS.2017.2761298
– ident: ref122
  doi: 10.1016/S0026-2714(02)00025-2
– ident: ref156
  doi: 10.1109/23.101179
– ident: ref193
  doi: 10.1016/j.mee.2007.04.094
– ident: ref1
  doi: 10.1109/TNS.2003.812927
– ident: ref168
  doi: 10.1109/TED.2004.826877
– ident: ref102
  doi: 10.1016/j.microrel.2011.09.002
– ident: ref75
  doi: 10.1063/1.1641521
– ident: ref79
  doi: 10.1109/TNS.1985.4334126
– ident: ref236
  doi: 10.1109/TNS.2013.2281771
– ident: ref60
  doi: 10.1109/TNS.2010.2049584
– ident: ref48
  doi: 10.1109/23.856489
– ident: ref207
  doi: 10.1038/nnano.2014.35
– ident: ref250
  doi: 10.1103/PhysRevB.47.10509
– ident: ref160
  doi: 10.1109/23.658947
– ident: ref186
  doi: 10.1109/16.992869
– ident: ref37
  doi: 10.1109/23.211380
– ident: ref191
  doi: 10.1038/nature10677
– ident: ref137
  doi: 10.1016/0038-1101(68)90100-7
– ident: ref55
  doi: 10.1109/TNS.2015.2492778
– ident: ref16
  doi: 10.1109/TNS.2003.812930
– ident: ref109
  doi: 10.1109/TDMR.2007.911379
– ident: ref67
  doi: 10.1063/1.353777
– start-page: 26
  year: 2014
  ident: ref192
  article-title: An InGaAs/InP quantum well FinFET using the replacement fin process integrated in an RMG flow on 300 mm Si substrates
  publication-title: Symp VLSI Technol Dig Tech Papers
– ident: ref91
  doi: 10.1103/RevModPhys.77.1083
– ident: ref182
  doi: 10.1103/PhysRevLett.52.228
– ident: ref82
  doi: 10.1016/0026-2714(95)93068-L
– ident: ref135
  doi: 10.1103/PhysRevLett.17.956
– ident: ref249
  doi: 10.1103/PhysRevB.36.4479
– ident: ref188
  doi: 10.1109/TNS.2007.908375
– ident: ref221
  doi: 10.1109/TNS.2018.2885751
– ident: ref99
  doi: 10.1109/TNS.1984.4333525
– ident: ref12
  doi: 10.1109/TNS.2018.2885649
– ident: ref74
  doi: 10.1109/TNS.2014.2362918
– ident: ref194
  doi: 10.1109/TDMR.2009.2020406
– ident: ref87
  doi: 10.1038/386587a0
– ident: ref29
  doi: 10.1109/TNS.1985.4334049
– ident: ref114
  doi: 10.1016/S0026-2714(02)00019-7
– ident: ref185
  doi: 10.1016/S0038-1101(98)00322-0
– ident: ref50
  doi: 10.1109/TNS.2006.885841
– ident: ref96
  doi: 10.1109/TNS.2002.805407
– ident: ref113
  doi: 10.1109/23.903763
– ident: ref140
  doi: 10.1109/T-ED.1984.21687
– ident: ref117
  doi: 10.1063/1.332937
– ident: ref212
  doi: 10.1016/j.mee.2011.03.117
– ident: ref157
  doi: 10.1109/23.124108
– ident: ref43
  doi: 10.1109/REDW.2015.7336740
– ident: ref118
  doi: 10.1109/LED.2011.2105241
– ident: ref228
  doi: 10.1109/TNS.2003.820763
– ident: ref233
  doi: 10.1109/TNS.2015.2488650
– ident: ref181
  doi: 10.1109/LED.2006.880640
– ident: ref92
  doi: 10.1109/16.293349
– ident: ref187
  doi: 10.1109/TED.2007.908895
– ident: ref7
  doi: 10.1109/23.490892
– ident: ref88
  doi: 10.1007/s00706-009-0149-z
– ident: ref9
  doi: 10.1109/23.819140
– ident: ref65
  doi: 10.1088/0034-4885/69/2/R02
– ident: ref130
  doi: 10.1103/PhysRevLett.59.381
– ident: ref171
  doi: 10.1109/LED.2003.808844
– ident: ref231
  doi: 10.1109/TED.2008.926672
– ident: ref83
  doi: 10.1063/1.361002
– ident: ref15
  doi: 10.1109/23.903774
– ident: ref116
  doi: 10.1063/1.2820380
– ident: ref81
  doi: 10.1109/LED.2002.805000
– ident: ref44
  doi: 10.1109/TNS.2016.2634538
– ident: ref174
  doi: 10.1063/1.2236466
– ident: ref197
  doi: 10.1109/TED.2011.2165725
– ident: ref21
  doi: 10.1109/TNS.2008.2000480
– ident: ref127
  doi: 10.1109/FREQ.1979.200297
– ident: ref8
  doi: 10.1109/23.659030
– ident: ref73
  doi: 10.1109/TNS.2007.911423
– ident: ref95
  doi: 10.1109/23.340515
– ident: ref216
  doi: 10.1038/ncomms2018
– ident: ref223
  doi: 10.1103/PhysRevB.81.085119
– ident: ref51
  doi: 10.1109/TNS.2009.2034155
– ident: ref161
  doi: 10.1016/0038-1098(74)90840-0
– ident: ref84
  doi: 10.1063/1.345199
– ident: ref104
  doi: 10.1109/IRPS.2014.6860643
– ident: ref45
  doi: 10.1109/TNS.2019.2909720
– ident: ref202
  doi: 10.1021/am506351u
– ident: ref199
  doi: 10.1109/TNS.2012.2237522
– ident: ref240
  doi: 10.1109/TNS.2015.2470665
– ident: ref142
  doi: 10.1016/j.sse.2012.05.035
SSID ssj0014505
Score 2.5709596
Snippet Subthreshold leakage currents and threshold-voltage shifts due to total-ionizing-dose (TID) irradiation are reviewed briefly for highly scaled devices in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1216
SubjectTerms Border traps
Couplings
defects
Density functional theory
Dielectrics
Electrostatics
High electron mobility transistors
high-K dielectrics
hydrogen
interface traps
Irradiation
Leakage current
LF noise
Logic gates
MOS
MOS devices
MOSFET
Noise
oxide traps
Oxides
Radiation dosage
Semiconductor devices
Silicon carbide
Silicon dioxide
total ionizing dose (TID)
Two dimensional materials
Vacancies
Title Total-Ionizing-Dose Effects, Border Traps, and 1/f Noise in Emerging MOS Technologies
URI https://ieeexplore.ieee.org/document/8984269
https://www.proquest.com/docview/2425614072
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHliQ6sRx87BHngKkloFW6hYltiNVoATRduHXc3bSiJcQmxOdE8tn--7z2d8BnIlQGR1GjBaSa2oDhlQqI2mS5QiHVKCEo8wfDOO7cfgwiSYd6LV3YYwx7vCZ8WzRxfJ1pRZ2q8wXUtiblyuwgsCtvqvVRgzwf022ApzA6MYvQ5JM-qPhEwJBzjwucSWOgy8myOVU-bEQO-tyuwmDZbvqQyXP3mKee-r9G2Xjfxu-BRuNm0ku6nGxDR1T7sD6J_LBXRiPKnS86T1O6nd8Qa-rmSE1mfGsRy4dJydBU_aKT1mpSeAXZFhNUWhaEruXZdMbkcHjE2m35xF178H49mZ0dUebJAtUcRnMaaQyZZTOBU8yYy221rzQUaATqSOmwrgQcV8ZZjjrF4lxgCWOZcyzBF2pMOvvw2pZleYACEqKvsq1CsIsxJJkKC6jKNeh0KJQXfCX_Z6qhoHcJsJ4SR0SYTJFTaVWU2mjqS6ctzVea_aNP2R3bce3ck2fd-F4qdq0mZ6z1OIs9EtYwg9_r3UEa_bb9bncY1idvy3MCXof8_zUDbsPIGbULw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBBwq3jZrGPbFULtBxoJW5RYjsSAiWIthe-nrGTRmxC3JxoLFse27N53gCcCF8Z7QeMZpJragOGVCojaZSkaA4pTwkHmd8fhN2Rf_MYPM7BWZ0LY4xxj89M0zZdLF8XampdZS0hhc28nIfFwCbjltladcwAR6zqFeARRkV-FpRksjUcPKApyFmTS7yLQ--LEHJVVX5cxU6-dNagP5tZ-azkuTmdpE31_g208b9TX4fVStEk5-XO2IA5k2_Cyif4wS0YDQtUvWkPj_U7_qBXxdiQEs54fEYuHConQWH2il9JronXysigeEKip5xYb5YtcET69w-kdtCj3b0No8718LJLqzILVHHpTWigEmWUTgWPEmNlttY804GnI6kDpvwwE2FbGWY4a2eRcSZLGMqQJxEqU37S3oGFvMjNLhCkFG2VauX5iY8tyZBcBkGqfaFFphrQmq17rCoMclsK4yV2tgiTMXIqtpyKK0414LTu8Vrib_xBu2UXvqar1rwBBzPWxtUBHcfW0kLNhEV87_dex7DUHfbv4rve4HYflu045SvdA1iYvE3NIeoik_TIbcEPXD7Xdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total-Ionizing-Dose+Effects%2C+Border+Traps%2C+and+1%2F+f+Noise+in+Emerging+MOS+Technologies&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Fleetwood%2C+Daniel+M.&rft.date=2020-07-01&rft.issn=0018-9499&rft.eissn=1558-1578&rft.volume=67&rft.issue=7&rft.spage=1216&rft.epage=1240&rft_id=info:doi/10.1109%2FTNS.2020.2971861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNS_2020_2971861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon