Dual-Path Mixed-Domain Residual Threshold Networks for Bearing Fault Diagnosis
Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new si...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 69; no. 12; pp. 13462 - 13472 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.09\%</tex-math></inline-formula>) accuracy on Gaussian white noise, 99.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.12\%</tex-math></inline-formula>) accuracy on Laplacian noise, and 99.98<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.02\%</tex-math></inline-formula>) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method. |
---|---|
AbstractList | Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.09\%</tex-math></inline-formula>) accuracy on Gaussian white noise, 99.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.12\%</tex-math></inline-formula>) accuracy on Laplacian noise, and 99.98<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.02\%</tex-math></inline-formula>) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method. Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97[Formula Omitted] ([Formula Omitted]) accuracy on Gaussian white noise, 99.87[Formula Omitted] ([Formula Omitted]) accuracy on Laplacian noise, and 99.98[Formula Omitted] ([Formula Omitted]) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method. |
Author | Zhang, Hui Wang, Qing-Guo Chen, Yongyi Zhang, Dan |
Author_xml | – sequence: 1 givenname: Yongyi orcidid: 0000-0003-4420-7145 surname: Chen fullname: Chen, Yongyi email: 2111903247@zjut.edu.cn organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Dan orcidid: 0000-0002-1183-2166 surname: Zhang fullname: Zhang, Dan email: danzhang@zjut.edu.cn organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Hui orcidid: 0000-0002-2501-712X surname: Zhang fullname: Zhang, Hui email: huizhang285@buaa.edu.cn organization: School of Transportation Science and Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Qing-Guo orcidid: 0000-0002-3672-3716 surname: Wang fullname: Wang, Qing-Guo email: wangqingguo@bnu.edu.cn organization: Beijing Normal University at Zhuhai, Zhuhai, China |
BookMark | eNp9kD1PwzAQhi1UJEphR2KxxJzic-w4HqEfUKkUhMocOYnTuqRxsR0B_55UrRgYmG6493nv9JyjXmMbjdAVkCEAkbfL2WRICaXDGBjjgp6gPnAuIilZ2kN9QkUaEcKSM3Tu_YYQYBx4Hy3GraqjFxXW-Ml86TIa260yDX7V3pTdCi_XTvu1rUu80OHTunePK-vwvVbONCs8VW0d8NioVWO98RfotFK115fHOUBv08ly9BjNnx9mo7t5VFAJIeJ5zOJS5WUuKgDNKikLxrQQIIBXac5IylIAXnAqeRnHSUG1JAnVSZqDECweoJtD787Zj1b7kG1s65ruZEaTNBUEQMZdKjmkCme9d7rKChNUMLYJTpk6A5Lt3WWdu2zvLju660DyB9w5s1Xu-z_k-oAYrfVvXCbdG4zGP12Seck |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1088_1361_6501_acb074 crossref_primary_10_1088_1742_6596_2528_1_012048 crossref_primary_10_1007_s11760_022_02340_x crossref_primary_10_1109_TIE_2024_3454488 crossref_primary_10_1007_s11760_023_02800_y crossref_primary_10_1109_JIOT_2024_3378701 crossref_primary_10_1016_j_knosys_2024_111623 crossref_primary_10_1177_09544062231216877 crossref_primary_10_1109_TMECH_2023_3318373 crossref_primary_10_1016_j_aei_2024_102559 crossref_primary_10_1016_j_engappai_2024_108625 crossref_primary_10_1016_j_aei_2024_102875 crossref_primary_10_1109_JSEN_2023_3326439 crossref_primary_10_1109_TII_2024_3488780 crossref_primary_10_32604_cmc_2025_059295 crossref_primary_10_1016_j_isatra_2023_03_023 crossref_primary_10_1080_23335777_2022_2163705 crossref_primary_10_1016_j_isatra_2022_11_024 crossref_primary_10_1016_j_jfranklin_2024_107005 crossref_primary_10_1016_j_ymssp_2024_111331 crossref_primary_10_1109_TMECH_2023_3239159 crossref_primary_10_1142_S2301385024500249 crossref_primary_10_1016_j_ymssp_2023_111070 crossref_primary_10_1109_TMECH_2023_3243533 crossref_primary_10_1109_TIM_2024_3373062 crossref_primary_10_3390_app13031714 crossref_primary_10_1080_23335777_2023_2177750 crossref_primary_10_3934_math_2024015 crossref_primary_10_1038_s41598_024_77251_7 crossref_primary_10_3934_mbe_2023631 crossref_primary_10_3390_pr11123299 crossref_primary_10_1109_JSEN_2023_3279882 crossref_primary_10_1177_01423312241239380 crossref_primary_10_1016_j_ins_2024_121822 crossref_primary_10_1109_TSMC_2023_3251355 crossref_primary_10_1109_TNNLS_2023_3298648 crossref_primary_10_1016_j_engappai_2023_106181 crossref_primary_10_1016_j_amc_2023_127990 crossref_primary_10_1016_j_isatra_2023_09_020 crossref_primary_10_1177_09544062241256476 crossref_primary_10_1016_j_egyr_2024_01_076 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_1784_insi_2024_66_12_758 crossref_primary_10_1109_TIM_2023_3301863 crossref_primary_10_3390_signals4010007 crossref_primary_10_1007_s12555_022_0340_0 crossref_primary_10_1016_j_aei_2024_103079 crossref_primary_10_1016_j_ymssp_2023_110826 crossref_primary_10_1016_j_isatra_2024_06_009 crossref_primary_10_1016_j_engappai_2024_109584 crossref_primary_10_1016_j_engappai_2023_107441 crossref_primary_10_1109_JSEN_2025_3530972 crossref_primary_10_1109_TAI_2024_3400929 crossref_primary_10_1016_j_ins_2022_10_018 crossref_primary_10_1016_j_rcim_2024_102820 crossref_primary_10_1109_TIE_2023_3265054 crossref_primary_10_1109_TCYB_2023_3286878 crossref_primary_10_1155_2022_6122921 crossref_primary_10_1017_S0890060423000197 crossref_primary_10_1007_s11071_022_07828_2 crossref_primary_10_1016_j_amc_2024_128718 crossref_primary_10_1109_TSMC_2022_3211322 crossref_primary_10_1109_JSEN_2023_3309630 crossref_primary_10_3390_math12020351 crossref_primary_10_1007_s12555_022_0704_5 crossref_primary_10_1109_TPEL_2023_3332959 crossref_primary_10_1007_s11760_023_02922_3 crossref_primary_10_3390_s24144736 crossref_primary_10_1109_TIM_2022_3220269 crossref_primary_10_1142_S0218488524500168 crossref_primary_10_1088_1361_6501_ad1c47 crossref_primary_10_1007_s10845_024_02458_4 crossref_primary_10_1016_j_jmsy_2023_08_014 crossref_primary_10_1016_j_jfranklin_2024_107491 crossref_primary_10_1016_j_isatra_2023_09_007 crossref_primary_10_1002_rnc_6320 crossref_primary_10_3390_act11110307 crossref_primary_10_3390_s24227277 |
Cites_doi | 10.1109/TII.2019.2943898 10.1109/TIE.2017.2762639 10.1109/TIE.2018.2877090 10.1016/j.measurement.2020.108509 10.1109/TIE.2018.2838070 10.3390/s20185112 10.1109/ACCESS.2020.2985617 10.1109/TIE.2020.2970571 10.3390/s17020425 10.1109/CVPR.2016.90 10.1016/j.acha.2007.10.005 10.1016/j.ymssp.2017.06.022 10.1109/CVPR.2018.00745 10.1109/WACV.2018.00163 10.1109/TIE.2009.2026770 10.1016/j.neucom.2020.02.042 10.1109/TIE.2020.2975499 10.1109/TSP.2009.2016892 10.1109/TII.2020.2967557 10.1109/TIE.2019.2931255 10.1016/j.isatra.2018.12.025 10.1109/TIM.2020.3043873 10.1109/TIE.2017.2774777 10.1109/WACV.2017.58 10.1109/TIE.2019.2912763 10.1109/TIE.2017.2745473 10.1088/1361-6501/ab3a59 10.1109/TIE.2019.2950863 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2022.3144572 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 13472 |
ExternalDocumentID | 10_1109_TIE_2022_3144572 9693342 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LR22F030003 funderid: 10.13039/501100004731 – fundername: Science and Technology Innovation in Ningbo City grantid: 2019B1003 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-5b343dabdb7f11e4f99c44e771715f8b40848115c5295d336c2e9062e68b17743 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:21:28 EDT 2025 Tue Jul 01 00:16:46 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:14:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5b343dabdb7f11e4f99c44e771715f8b40848115c5295d336c2e9062e68b17743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2501-712X 0000-0002-3672-3716 0000-0002-1183-2166 0000-0003-4420-7145 |
PQID | 2688701193 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9693342 proquest_journals_2688701193 crossref_citationtrail_10_1109_TIE_2022_3144572 crossref_primary_10_1109_TIE_2022_3144572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 Park (ref19) 2018 ref16 ref18 ref23 Bai (ref24) 2018 ref26 ref25 ref20 ref21 Yu (ref22) 2015 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref32) 2013 |
References_xml | – ident: ref14 doi: 10.1109/TII.2019.2943898 – ident: ref17 doi: 10.1109/TIE.2017.2762639 – year: 2018 ident: ref24 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – ident: ref12 doi: 10.1109/TIE.2018.2877090 – ident: ref28 doi: 10.1016/j.measurement.2020.108509 – ident: ref1 doi: 10.1109/TIE.2018.2838070 – ident: ref15 doi: 10.3390/s20185112 – ident: ref30 doi: 10.1109/ACCESS.2020.2985617 – ident: ref4 doi: 10.1109/TIE.2020.2970571 – ident: ref13 doi: 10.3390/s17020425 – start-page: 3 volume-title: Proc. Eur. Conf. Comput. Vis. year: 2018 ident: ref19 article-title: Bam: Bottleneck attention module – ident: ref16 doi: 10.1109/CVPR.2016.90 – ident: ref21 doi: 10.1016/j.acha.2007.10.005 – ident: ref25 doi: 10.1016/j.ymssp.2017.06.022 – ident: ref18 doi: 10.1109/CVPR.2018.00745 – ident: ref23 doi: 10.1109/WACV.2018.00163 – ident: ref2 doi: 10.1109/TIE.2009.2026770 – volume-title: Proc. Int. Conf. Comput. Vis. Pattern Recognit. year: 2015 ident: ref22 article-title: Multi-scale context aggregation by dilated convolutions – volume-title: Seeded Fault Test Data, Bearing Data Center year: 2013 ident: ref32 – ident: ref29 doi: 10.1016/j.neucom.2020.02.042 – ident: ref6 doi: 10.1109/TIE.2020.2975499 – ident: ref20 doi: 10.1109/TSP.2009.2016892 – ident: ref31 doi: 10.1109/TII.2020.2967557 – ident: ref11 doi: 10.1109/TIE.2019.2931255 – ident: ref26 doi: 10.1016/j.isatra.2018.12.025 – ident: ref7 doi: 10.1109/TIM.2020.3043873 – ident: ref8 doi: 10.1109/TIE.2017.2774777 – ident: ref27 doi: 10.1109/WACV.2017.58 – ident: ref3 doi: 10.1109/TIE.2019.2912763 – ident: ref9 doi: 10.1109/TIE.2017.2745473 – ident: ref10 doi: 10.1088/1361-6501/ab3a59 – ident: ref5 doi: 10.1109/TIE.2019.2950863 |
SSID | ssj0014515 |
Score | 2.6485968 |
Snippet | Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13462 |
SubjectTerms | Accuracy Algorithms Asynchronous motors Convolution Convolutional neural networks Deep learning Dilated convolution Domains Fault diagnosis Feature extraction Interference Machine learning mixed-domain mechanism Neural networks Roller bearings rolling bearings soft threshold Task analysis Vibrations White noise |
Title | Dual-Path Mixed-Domain Residual Threshold Networks for Bearing Fault Diagnosis |
URI | https://ieeexplore.ieee.org/document/9693342 https://www.proquest.com/docview/2688701193 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_Lgi2C3Nb22y6O6jSlsiGzgW2nSFIazE9uC-Nd7adriF-JbH5Ij5JLc_Xp3vyPkHK0SxDp7xhcOs4DLvsXR7Fk-R09uECMIYbreeTrzJgu4e3QfG-SyroVRShXJZ6qrP4tYfrSWuf5V1uMewm_AB3cDgZup1aojBuCabgVMM8Yi6KtCkn3em9-OEAgyhvgUwPXZFxNU9FT58RAX1mW8Q6bVukxSyVM3z0RXvn-jbPzvwnfJdulm0itzLvZIQyX7ZOsT-WCLzIZ5uLLu0QOk0-Wbiqzh-jlcJvRBpUWBFp2jmlMdnaIzkyueUvRw6TXeDRRAx2G-yujQpOot0wOyGI_mNxOr7K5gScbtzHKFA04Uikj4sW0riDmXAMpHfGe78UBAwbRvu1KHAiPH8SRTmtRYeQNNWQXOIWkm60QdEQoRMOH1QfgKgCuUGKHXIQE995CDitukV214IEvqcd0BYxUUEKTPA1RRoFUUlCpqk4t6xouh3fhjbEvveD2u3Ow26VQ6Dcp7mQbMw0dV09w5x7_POiGbWrZJWOmQZvaaq1N0OzJxVpy3D7Zp0Gk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED-rBVxXrcw9eBNM2m0nSPaq1VG2LSAu9hexmA8XaiklA_PXOJmnxhXjLYV_s7O58k5n5BuCMtBLGJnrGlw63UKiGJUjtWb4gJNeMyQjhJt-51_c6Q7wbuaMluFjkwmit8-AzXTOfuS8_mqnM_CqrC4_Mb6QHd4X0vmsX2VoLnwG6Rb0CbjhjyeybOyUboj64vSFTkHOyUBFdn39RQnlVlR9Pca5f2pvQm6-sCCt5qmWprKn3b6SN_136FmyUQJNdFidjG5b0dAfWP9EPVqDfysKJ9UAYkPXGbzqyWrPncDxljzrJU7TYgASdGP8U6xfR4gkjjMuu6HbQAKwdZpOUtYpgvXGyC8P2zeC6Y5X1FSzFhZ1arnTQiUIZST-2bY2xEApR-2Th2W7clJhz7duuMs7AyHE8xbWhNdZe05BWobMHy9PZVO8Dwwi59BoofY0oNI0YEe5QSNg9FKjjKtTnGx6oknzc1MCYBLkR0hABiSgwIgpKEVXhfNHjpSDe-KNtxez4ol252VU4mss0KG9mEnCPnlVDdOcc_N7rFFY7g1436N727w9hzcxThK8cwXL6muljAiGpPMnP3gfCxNOy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Path+Mixed-Domain+Residual+Threshold+Networks+for+Bearing+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Yongyi&rft.au=Zhang%2C+Dan&rft.au=Zhang%2C+Hui&rft.au=Wang%2C+Qing-Guo&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=69&rft.issue=12&rft.spage=13462&rft.epage=13472&rft_id=info:doi/10.1109%2FTIE.2022.3144572&rft.externalDocID=9693342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |