Dual-Path Mixed-Domain Residual Threshold Networks for Bearing Fault Diagnosis

Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 69; no. 12; pp. 13462 - 13472
Main Authors Chen, Yongyi, Zhang, Dan, Zhang, Hui, Wang, Qing-Guo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.09\%</tex-math></inline-formula>) accuracy on Gaussian white noise, 99.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.12\%</tex-math></inline-formula>) accuracy on Laplacian noise, and 99.98<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.02\%</tex-math></inline-formula>) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method.
AbstractList Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.09\%</tex-math></inline-formula>) accuracy on Gaussian white noise, 99.87<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.12\%</tex-math></inline-formula>) accuracy on Laplacian noise, and 99.98<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX"> \pm 0.02\%</tex-math></inline-formula>) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method.
Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep learning-based methods have a weak antinoise ability and poor generalization performance in a noisy environment. This article presents a new simple and effective deep attention mechanism network, namely, dual-path mixed-domain residual threshold network (DP-MRTN), which aims to improve the accuracy of the rolling bearing fault diagnosis in a noisy environment. The DP-MRTN combines the channel attention mechanism, spatial attention mechanism, and residual structure. The soft threshold function is used as the nonlinear transformation layer, and the dilated convolution is introduced to establish a dual-path neural network so as to select the important features in the signal without resorting to any signal denoising algorithm. The performance of the DP-MRTN is validated against those state-of-the-art results on the real three-phase asynchronous motor experiment platform in Zhejiang University of Technology. We have achieved 99.97[Formula Omitted] ([Formula Omitted]) accuracy on Gaussian white noise, 99.87[Formula Omitted] ([Formula Omitted]) accuracy on Laplacian noise, and 99.98[Formula Omitted] ([Formula Omitted]) accuracy on real noise. The results show that the proposed method can significantly improve the accuracy of fault diagnosis in a noisy environment compared with the traditional deep learning method.
Author Zhang, Hui
Wang, Qing-Guo
Chen, Yongyi
Zhang, Dan
Author_xml – sequence: 1
  givenname: Yongyi
  orcidid: 0000-0003-4420-7145
  surname: Chen
  fullname: Chen, Yongyi
  email: 2111903247@zjut.edu.cn
  organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Dan
  orcidid: 0000-0002-1183-2166
  surname: Zhang
  fullname: Zhang, Dan
  email: danzhang@zjut.edu.cn
  organization: Department of Automation, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Hui
  orcidid: 0000-0002-2501-712X
  surname: Zhang
  fullname: Zhang, Hui
  email: huizhang285@buaa.edu.cn
  organization: School of Transportation Science and Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Qing-Guo
  orcidid: 0000-0002-3672-3716
  surname: Wang
  fullname: Wang, Qing-Guo
  email: wangqingguo@bnu.edu.cn
  organization: Beijing Normal University at Zhuhai, Zhuhai, China
BookMark eNp9kD1PwzAQhi1UJEphR2KxxJzic-w4HqEfUKkUhMocOYnTuqRxsR0B_55UrRgYmG6493nv9JyjXmMbjdAVkCEAkbfL2WRICaXDGBjjgp6gPnAuIilZ2kN9QkUaEcKSM3Tu_YYQYBx4Hy3GraqjFxXW-Ml86TIa260yDX7V3pTdCi_XTvu1rUu80OHTunePK-vwvVbONCs8VW0d8NioVWO98RfotFK115fHOUBv08ly9BjNnx9mo7t5VFAJIeJ5zOJS5WUuKgDNKikLxrQQIIBXac5IylIAXnAqeRnHSUG1JAnVSZqDECweoJtD787Zj1b7kG1s65ruZEaTNBUEQMZdKjmkCme9d7rKChNUMLYJTpk6A5Lt3WWdu2zvLju660DyB9w5s1Xu-z_k-oAYrfVvXCbdG4zGP12Seck
CODEN ITIED6
CitedBy_id crossref_primary_10_1088_1361_6501_acb074
crossref_primary_10_1088_1742_6596_2528_1_012048
crossref_primary_10_1007_s11760_022_02340_x
crossref_primary_10_1109_TIE_2024_3454488
crossref_primary_10_1007_s11760_023_02800_y
crossref_primary_10_1109_JIOT_2024_3378701
crossref_primary_10_1016_j_knosys_2024_111623
crossref_primary_10_1177_09544062231216877
crossref_primary_10_1109_TMECH_2023_3318373
crossref_primary_10_1016_j_aei_2024_102559
crossref_primary_10_1016_j_engappai_2024_108625
crossref_primary_10_1016_j_aei_2024_102875
crossref_primary_10_1109_JSEN_2023_3326439
crossref_primary_10_1109_TII_2024_3488780
crossref_primary_10_32604_cmc_2025_059295
crossref_primary_10_1016_j_isatra_2023_03_023
crossref_primary_10_1080_23335777_2022_2163705
crossref_primary_10_1016_j_isatra_2022_11_024
crossref_primary_10_1016_j_jfranklin_2024_107005
crossref_primary_10_1016_j_ymssp_2024_111331
crossref_primary_10_1109_TMECH_2023_3239159
crossref_primary_10_1142_S2301385024500249
crossref_primary_10_1016_j_ymssp_2023_111070
crossref_primary_10_1109_TMECH_2023_3243533
crossref_primary_10_1109_TIM_2024_3373062
crossref_primary_10_3390_app13031714
crossref_primary_10_1080_23335777_2023_2177750
crossref_primary_10_3934_math_2024015
crossref_primary_10_1038_s41598_024_77251_7
crossref_primary_10_3934_mbe_2023631
crossref_primary_10_3390_pr11123299
crossref_primary_10_1109_JSEN_2023_3279882
crossref_primary_10_1177_01423312241239380
crossref_primary_10_1016_j_ins_2024_121822
crossref_primary_10_1109_TSMC_2023_3251355
crossref_primary_10_1109_TNNLS_2023_3298648
crossref_primary_10_1016_j_engappai_2023_106181
crossref_primary_10_1016_j_amc_2023_127990
crossref_primary_10_1016_j_isatra_2023_09_020
crossref_primary_10_1177_09544062241256476
crossref_primary_10_1016_j_egyr_2024_01_076
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_1784_insi_2024_66_12_758
crossref_primary_10_1109_TIM_2023_3301863
crossref_primary_10_3390_signals4010007
crossref_primary_10_1007_s12555_022_0340_0
crossref_primary_10_1016_j_aei_2024_103079
crossref_primary_10_1016_j_ymssp_2023_110826
crossref_primary_10_1016_j_isatra_2024_06_009
crossref_primary_10_1016_j_engappai_2024_109584
crossref_primary_10_1016_j_engappai_2023_107441
crossref_primary_10_1109_JSEN_2025_3530972
crossref_primary_10_1109_TAI_2024_3400929
crossref_primary_10_1016_j_ins_2022_10_018
crossref_primary_10_1016_j_rcim_2024_102820
crossref_primary_10_1109_TIE_2023_3265054
crossref_primary_10_1109_TCYB_2023_3286878
crossref_primary_10_1155_2022_6122921
crossref_primary_10_1017_S0890060423000197
crossref_primary_10_1007_s11071_022_07828_2
crossref_primary_10_1016_j_amc_2024_128718
crossref_primary_10_1109_TSMC_2022_3211322
crossref_primary_10_1109_JSEN_2023_3309630
crossref_primary_10_3390_math12020351
crossref_primary_10_1007_s12555_022_0704_5
crossref_primary_10_1109_TPEL_2023_3332959
crossref_primary_10_1007_s11760_023_02922_3
crossref_primary_10_3390_s24144736
crossref_primary_10_1109_TIM_2022_3220269
crossref_primary_10_1142_S0218488524500168
crossref_primary_10_1088_1361_6501_ad1c47
crossref_primary_10_1007_s10845_024_02458_4
crossref_primary_10_1016_j_jmsy_2023_08_014
crossref_primary_10_1016_j_jfranklin_2024_107491
crossref_primary_10_1016_j_isatra_2023_09_007
crossref_primary_10_1002_rnc_6320
crossref_primary_10_3390_act11110307
crossref_primary_10_3390_s24227277
Cites_doi 10.1109/TII.2019.2943898
10.1109/TIE.2017.2762639
10.1109/TIE.2018.2877090
10.1016/j.measurement.2020.108509
10.1109/TIE.2018.2838070
10.3390/s20185112
10.1109/ACCESS.2020.2985617
10.1109/TIE.2020.2970571
10.3390/s17020425
10.1109/CVPR.2016.90
10.1016/j.acha.2007.10.005
10.1016/j.ymssp.2017.06.022
10.1109/CVPR.2018.00745
10.1109/WACV.2018.00163
10.1109/TIE.2009.2026770
10.1016/j.neucom.2020.02.042
10.1109/TIE.2020.2975499
10.1109/TSP.2009.2016892
10.1109/TII.2020.2967557
10.1109/TIE.2019.2931255
10.1016/j.isatra.2018.12.025
10.1109/TIM.2020.3043873
10.1109/TIE.2017.2774777
10.1109/WACV.2017.58
10.1109/TIE.2019.2912763
10.1109/TIE.2017.2745473
10.1088/1361-6501/ab3a59
10.1109/TIE.2019.2950863
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2022.3144572
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 13472
ExternalDocumentID 10_1109_TIE_2022_3144572
9693342
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR22F030003
  funderid: 10.13039/501100004731
– fundername: Science and Technology Innovation in Ningbo City
  grantid: 2019B1003
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-5b343dabdb7f11e4f99c44e771715f8b40848115c5295d336c2e9062e68b17743
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:21:28 EDT 2025
Tue Jul 01 00:16:46 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:14:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5b343dabdb7f11e4f99c44e771715f8b40848115c5295d336c2e9062e68b17743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2501-712X
0000-0002-3672-3716
0000-0002-1183-2166
0000-0003-4420-7145
PQID 2688701193
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_9693342
proquest_journals_2688701193
crossref_citationtrail_10_1109_TIE_2022_3144572
crossref_primary_10_1109_TIE_2022_3144572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
Park (ref19) 2018
ref16
ref18
ref23
Bai (ref24) 2018
ref26
ref25
ref20
ref21
Yu (ref22) 2015
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref32) 2013
References_xml – ident: ref14
  doi: 10.1109/TII.2019.2943898
– ident: ref17
  doi: 10.1109/TIE.2017.2762639
– year: 2018
  ident: ref24
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– ident: ref12
  doi: 10.1109/TIE.2018.2877090
– ident: ref28
  doi: 10.1016/j.measurement.2020.108509
– ident: ref1
  doi: 10.1109/TIE.2018.2838070
– ident: ref15
  doi: 10.3390/s20185112
– ident: ref30
  doi: 10.1109/ACCESS.2020.2985617
– ident: ref4
  doi: 10.1109/TIE.2020.2970571
– ident: ref13
  doi: 10.3390/s17020425
– start-page: 3
  volume-title: Proc. Eur. Conf. Comput. Vis.
  year: 2018
  ident: ref19
  article-title: Bam: Bottleneck attention module
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref21
  doi: 10.1016/j.acha.2007.10.005
– ident: ref25
  doi: 10.1016/j.ymssp.2017.06.022
– ident: ref18
  doi: 10.1109/CVPR.2018.00745
– ident: ref23
  doi: 10.1109/WACV.2018.00163
– ident: ref2
  doi: 10.1109/TIE.2009.2026770
– volume-title: Proc. Int. Conf. Comput. Vis. Pattern Recognit.
  year: 2015
  ident: ref22
  article-title: Multi-scale context aggregation by dilated convolutions
– volume-title: Seeded Fault Test Data, Bearing Data Center
  year: 2013
  ident: ref32
– ident: ref29
  doi: 10.1016/j.neucom.2020.02.042
– ident: ref6
  doi: 10.1109/TIE.2020.2975499
– ident: ref20
  doi: 10.1109/TSP.2009.2016892
– ident: ref31
  doi: 10.1109/TII.2020.2967557
– ident: ref11
  doi: 10.1109/TIE.2019.2931255
– ident: ref26
  doi: 10.1016/j.isatra.2018.12.025
– ident: ref7
  doi: 10.1109/TIM.2020.3043873
– ident: ref8
  doi: 10.1109/TIE.2017.2774777
– ident: ref27
  doi: 10.1109/WACV.2017.58
– ident: ref3
  doi: 10.1109/TIE.2019.2912763
– ident: ref9
  doi: 10.1109/TIE.2017.2745473
– ident: ref10
  doi: 10.1088/1361-6501/ab3a59
– ident: ref5
  doi: 10.1109/TIE.2019.2950863
SSID ssj0014515
Score 2.6485968
Snippet Intelligent bearing fault diagnosis based on deep learning is one of the hotspots in mechanical equipment monitoring applications. However, traditional deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13462
SubjectTerms Accuracy
Algorithms
Asynchronous motors
Convolution
Convolutional neural networks
Deep learning
Dilated convolution
Domains
Fault diagnosis
Feature extraction
Interference
Machine learning
mixed-domain mechanism
Neural networks
Roller bearings
rolling bearings
soft threshold
Task analysis
Vibrations
White noise
Title Dual-Path Mixed-Domain Residual Threshold Networks for Bearing Fault Diagnosis
URI https://ieeexplore.ieee.org/document/9693342
https://www.proquest.com/docview/2688701193
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_Lgi2C3Nb22y6O6jSlsiGzgW2nSFIazE9uC-Nd7adriF-JbH5Ij5JLc_Xp3vyPkHK0SxDp7xhcOs4DLvsXR7Fk-R09uECMIYbreeTrzJgu4e3QfG-SyroVRShXJZ6qrP4tYfrSWuf5V1uMewm_AB3cDgZup1aojBuCabgVMM8Yi6KtCkn3em9-OEAgyhvgUwPXZFxNU9FT58RAX1mW8Q6bVukxSyVM3z0RXvn-jbPzvwnfJdulm0itzLvZIQyX7ZOsT-WCLzIZ5uLLu0QOk0-Wbiqzh-jlcJvRBpUWBFp2jmlMdnaIzkyueUvRw6TXeDRRAx2G-yujQpOot0wOyGI_mNxOr7K5gScbtzHKFA04Uikj4sW0riDmXAMpHfGe78UBAwbRvu1KHAiPH8SRTmtRYeQNNWQXOIWkm60QdEQoRMOH1QfgKgCuUGKHXIQE995CDitukV214IEvqcd0BYxUUEKTPA1RRoFUUlCpqk4t6xouh3fhjbEvveD2u3Ow26VQ6Dcp7mQbMw0dV09w5x7_POiGbWrZJWOmQZvaaq1N0OzJxVpy3D7Zp0Gk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED-rBVxXrcw9eBNM2m0nSPaq1VG2LSAu9hexmA8XaiklA_PXOJmnxhXjLYV_s7O58k5n5BuCMtBLGJnrGlw63UKiGJUjtWb4gJNeMyQjhJt-51_c6Q7wbuaMluFjkwmit8-AzXTOfuS8_mqnM_CqrC4_Mb6QHd4X0vmsX2VoLnwG6Rb0CbjhjyeybOyUboj64vSFTkHOyUBFdn39RQnlVlR9Pca5f2pvQm6-sCCt5qmWprKn3b6SN_136FmyUQJNdFidjG5b0dAfWP9EPVqDfysKJ9UAYkPXGbzqyWrPncDxljzrJU7TYgASdGP8U6xfR4gkjjMuu6HbQAKwdZpOUtYpgvXGyC8P2zeC6Y5X1FSzFhZ1arnTQiUIZST-2bY2xEApR-2Th2W7clJhz7duuMs7AyHE8xbWhNdZe05BWobMHy9PZVO8Dwwi59BoofY0oNI0YEe5QSNg9FKjjKtTnGx6oknzc1MCYBLkR0hABiSgwIgpKEVXhfNHjpSDe-KNtxez4ol252VU4mss0KG9mEnCPnlVDdOcc_N7rFFY7g1436N727w9hzcxThK8cwXL6muljAiGpPMnP3gfCxNOy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Path+Mixed-Domain+Residual+Threshold+Networks+for+Bearing+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Yongyi&rft.au=Zhang%2C+Dan&rft.au=Zhang%2C+Hui&rft.au=Wang%2C+Qing-Guo&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=69&rft.issue=12&rft.spage=13462&rft.epage=13472&rft_id=info:doi/10.1109%2FTIE.2022.3144572&rft.externalDocID=9693342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon