QoE-Driven Adaptive Streaming for Point Clouds

With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to str...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 25; pp. 2543 - 2558
Main Authors Wang, Lisha, Li, Chenglin, Dai, Wenrui, Li, Shaohui, Zou, Junni, Xiong, Hongkai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to stream in bandwidth-constrained networks. It is therefore important, yet challenging, to efficiently stream the resource-intensive point clouds, such that the user's quality of experience (QoE) is guaranteed on a high-level but with a low bandwidth consumption. To this end, we propose a QoE-driven adaptive streaming approach for the tile-based point cloud transmission, to maximize the user's QoE while reducing the transmission redundancy. By exploiting the perspective projection, we specifically model the QoE of a 3D tile as a function of the bitrate of its representation, user's view frustum and spatial position, occlusion between tiles, and the resolution of rendering device. Based on this QoE model, we then formulate the QoE-optimized rate adaptation problem as a multiple-choice knapsack problem, which allocates bitrates for different tiles under a given transmission capacity. It is equivalently converted to a submodular function maximization problem subject to knapsack constraints, and solved by a practical greedy-based algorithm with a theoretical worst-case performance guarantee. The proposed algorithm is able to achieve a near-optimal performance, but with a very low computational complexity. Experimental results further demonstrate superiority of the proposed rate adaptation algorithm over existing schemes, in terms of both user's visual quality and transmission efficiency.
AbstractList With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to stream in bandwidth-constrained networks. It is therefore important, yet challenging, to efficiently stream the resource-intensive point clouds, such that the user’s quality of experience (QoE) is guaranteed on a high-level but with a low bandwidth consumption. To this end, we propose a QoE-driven adaptive streaming approach for the tile-based point cloud transmission, to maximize the user’s QoE while reducing the transmission redundancy. By exploiting the perspective projection, we specifically model the QoE of a 3D tile as a function of the bitrate of its representation, user’s view frustum and spatial position, occlusion between tiles, and the resolution of rendering device. Based on this QoE model, we then formulate the QoE-optimized rate adaptation problem as a multiple-choice knapsack problem, which allocates bitrates for different tiles under a given transmission capacity. It is equivalently converted to a submodular function maximization problem subject to knapsack constraints, and solved by a practical greedy-based algorithm with a theoretical worst-case performance guarantee. The proposed algorithm is able to achieve a near-optimal performance, but with a very low computational complexity. Experimental results further demonstrate superiority of the proposed rate adaptation algorithm over existing schemes, in terms of both user’s visual quality and transmission efficiency.
Author Wang, Lisha
Zou, Junni
Xiong, Hongkai
Li, Shaohui
Dai, Wenrui
Li, Chenglin
Author_xml – sequence: 1
  givenname: Lisha
  orcidid: 0000-0002-8340-7441
  surname: Wang
  fullname: Wang, Lisha
  email: wang_lisha@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Chenglin
  orcidid: 0000-0003-2888-594X
  surname: Li
  fullname: Li, Chenglin
  email: lcl1985@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Wenrui
  orcidid: 0000-0003-2522-5778
  surname: Dai
  fullname: Dai, Wenrui
  email: daiwenrui@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Shaohui
  orcidid: 0000-0002-9650-8874
  surname: Li
  fullname: Li, Shaohui
  email: lishaohui@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Junni
  orcidid: 0000-0002-9694-9880
  surname: Zou
  fullname: Zou, Junni
  email: zoujunni@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Hongkai
  orcidid: 0000-0003-4552-0029
  surname: Xiong
  fullname: Xiong, Hongkai
  email: xionghongkai@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kEtLAzEUhYNUsK3uBTcDrme8eU0my1LrAywq1nVIJ4mktJOapIL_3iktLly4umdxvnPhG6FBFzqL0CWGCmOQN4v5vCJASEUxa3jDT9AQS4ZLACEGfeYESkkwnKFRSisAzDiIIapew6y8jf7LdsXE6G3uU_GWo9Ub330ULsTiJfguF9N12Jl0jk6dXid7cbxj9H43W0wfyqfn-8fp5KlsicS55LLm2jDjqONAmcCWOImFoWJZt6xm1Jiltlxg2VIqpdSMGdly4VogzhhOx-j6sLuN4XNnU1arsItd_1KRhgpMaUP2rfrQamNIKVqnWp919qHLUfu1wqD2blTvRu3dqKObHoQ_4Db6jY7f_yFXB8Rba3_rUkBNOKc_b3du8w
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_MCOM_001_2400053
crossref_primary_10_1109_ACCESS_2023_3326374
crossref_primary_10_1186_s13640_024_00655_y
crossref_primary_10_1109_TMC_2024_3399398
crossref_primary_10_1109_TCE_2024_3423830
crossref_primary_10_1109_JIOT_2024_3424977
Cites_doi 10.1109/TMM.2018.2859591
10.1002/bltj.20538
10.1145/3394171.3413535
10.1109/ICC40277.2020.9148922
10.1145/3204949.3204978
10.1109/IROS40897.2019.8968513
10.1145/3152434.3152443
10.1109/JETCAS.2018.2885981
10.1109/TMM.2020.3037481
10.1109/JSTSP.2019.2956716
10.1109/JETCAS.2019.2898622
10.1145/3343031.3351021
10.1109/MSP.2019.2900721
10.1016/0377-2217(87)90165-2
10.1016/j.cor.2004.09.016
10.1109/ICASSP39728.2021.9414121
10.1145/2814347.2814348
10.1109/TMM.2020.3023294
10.1145/1281192.1281239
10.1017/ATSIP.2019.20
10.1017/ATSIP.2020.12
10.1109/TBC.2019.2957652
10.1007/978-3-540-24777-7
10.1145/3210424.3210429
10.1057/palgrave.jors.2601796
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3148585
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 2558
ExternalDocumentID 10_1109_TMM_2022_3148585
9706255
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61931023; 61831018; 61871267; 61972256; 62125109; T2122024; 6211001027
  funderid: 10.13039/501100001809
– fundername: Shanghai Rising-Star Program
  grantid: 20QA1404600
  funderid: 10.13039/501100013105
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5965ad4df3f503471e2f917d37b6c4643ddbae5719c33999a44d9c57fc02fdd53
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 02:34:41 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Jul 01 01:54:38 EDT 2025
Wed Aug 27 02:18:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5965ad4df3f503471e2f917d37b6c4643ddbae5719c33999a44d9c57fc02fdd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8340-7441
0000-0002-9694-9880
0000-0003-4552-0029
0000-0003-2522-5778
0000-0002-9650-8874
0000-0003-2888-594X
PQID 2837133825
PQPubID 75737
PageCount 16
ParticipantIDs crossref_primary_10_1109_TMM_2022_3148585
proquest_journals_2837133825
crossref_citationtrail_10_1109_TMM_2022_3148585
ieee_primary_9706255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref18) 0
ref12
ref34
ref37
ref30
ref2
ref1
(ref5) 0
ref17
ref16
ref38
ref19
(ref31) 0
hooft (ref11) 0
d’eon (ref4) 0
ref24
ref23
ref26
krause (ref33) 2011; 3
ref25
ref20
ref22
ref21
(ref36) 0
hosseini (ref10) 2019
(ref6) 0
ref28
krivoku?a (ref35) 2018
foley (ref14) 1994
ref27
(ref32) 0
ref29
ref8
ref7
ref9
ref3
bjontegaard (ref39) 0
baker (ref15) 1997
References_xml – ident: ref16
  doi: 10.1109/TMM.2018.2859591
– ident: ref21
  doi: 10.1002/bltj.20538
– ident: ref1
  doi: 10.1145/3394171.3413535
– ident: ref12
  doi: 10.1109/ICC40277.2020.9148922
– ident: ref24
  doi: 10.1145/3204949.3204978
– year: 0
  ident: ref31
  article-title: LINGO 18
– ident: ref26
  doi: 10.1109/IROS40897.2019.8968513
– ident: ref23
  doi: 10.1145/3152434.3152443
– year: 0
  ident: ref18
  article-title: Call for proposals for point cloud compression v2
  publication-title: document ISO/IEC JTC1/SC29 WG11 Doc N16763
– year: 1994
  ident: ref14
  publication-title: Introduction to Computer Graphics
– year: 0
  ident: ref6
  article-title: Common test conditions for point cloud compression
  publication-title: ISO/IEC JTC1/SC29/WG11 MPEG Document N8459
– year: 0
  ident: ref32
  article-title: ILOG CPLEX Optimization Studio
– year: 0
  ident: ref4
  article-title: 8i Voxelized Full Bodies, version 2-A Voxelized Point Cloud Dataset
  publication-title: ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059/M74006
– ident: ref7
  doi: 10.1109/JETCAS.2018.2885981
– ident: ref38
  doi: 10.1109/TMM.2020.3037481
– ident: ref8
  doi: 10.1109/JSTSP.2019.2956716
– ident: ref13
  doi: 10.1109/JETCAS.2019.2898622
– year: 1997
  ident: ref15
  publication-title: Computer Graphics C Version
– ident: ref3
  doi: 10.1145/3343031.3351021
– ident: ref20
  doi: 10.1109/MSP.2019.2900721
– ident: ref30
  doi: 10.1016/0377-2217(87)90165-2
– ident: ref28
  doi: 10.1016/j.cor.2004.09.016
– year: 0
  ident: ref36
  article-title: MPEG-PCC-TMC13
– year: 0
  ident: ref39
  article-title: Calculation of average PSNR differences between rd-curves
  publication-title: Proc ITU-T Video Coding Experts Group 13th Meeting
– ident: ref25
  doi: 10.1109/ICASSP39728.2021.9414121
– ident: ref22
  doi: 10.1145/2814347.2814348
– ident: ref17
  doi: 10.1109/TMM.2020.3023294
– start-page: 2405
  year: 0
  ident: ref11
  article-title: Towards 6DoF HTTP adaptive streaming through point cloud compression
  publication-title: Proc ACM Multimedia
– year: 2018
  ident: ref35
  article-title: 8i Voxelized Surface Light Field (8ivslf) Dataset
– ident: ref34
  doi: 10.1145/1281192.1281239
– year: 2019
  ident: ref10
  article-title: Adaptive rate allocation for view-aware point-cloud streaming
– ident: ref37
  doi: 10.1017/ATSIP.2019.20
– ident: ref19
  doi: 10.1017/ATSIP.2020.12
– ident: ref2
  doi: 10.1109/TBC.2019.2957652
– ident: ref27
  doi: 10.1007/978-3-540-24777-7
– ident: ref9
  doi: 10.1145/3210424.3210429
– volume: 3
  start-page: 71
  year: 2011
  ident: ref33
  article-title: Submodular function maximization
  publication-title: Tractability
– ident: ref29
  doi: 10.1057/palgrave.jors.2601796
– year: 0
  ident: ref5
  article-title: Why MPEG made two codecs for point cloud compression
  publication-title: MPEG 3D Graph
SSID ssj0014507
Score 2.5123663
Snippet With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2543
SubjectTerms Adaptation
Algorithms
Augmented reality
Bandwidth
Bandwidths
Bit rate
Cloud computing
Constraints
Greedy algorithms
Knapsack problem
Measurement
MPEG G-PCC
Occlusion
Optimization
perspective projection
Point cloud compression
Point clouds
Quality of experience
rate adaptation
Redundancy
submodular function maximization
Three-dimensional displays
Tiles
Transmission efficiency
User experience
Videos
Virtual reality
Title QoE-Driven Adaptive Streaming for Point Clouds
URI https://ieeexplore.ieee.org/document/9706255
https://www.proquest.com/docview/2837133825
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHrwIppvm0Zqj-ECEFYVd8FbaPEDUdlnbi7_eSR-LL8RbIQmkM8nM92WSGYBjF2dco9siWjBHRG4jkjPOCTWWyrPE-ZQj_rbFXXwzEbeP8nEBTudvYay1zeUzG_rPJpZvSl37o7KhSijCdbkIi0jc2rda84iBkM3TaHRHlCjkMX1IkqrheDRCIsgY8lPhw2BfXFBTU-WHIW68y_UajPp5tZdKnsO6ykP9_i1l438nvg6rHcwMztt1sQELttiEtb6EQ9Dt6E1Y-ZSPcAvCh_KKXM68AQzOTTb1pjDwcevsFdsDxLfBfflUVMHFS1mbt22YXF-NL25IV1CBaKaiikgVy8wI47iTlKNbsswhXTM8yWMtEJsYk2dWJpHSHIGLyoQwSsvEacqcMZLvwFJRFnYXgkwbabii3EZOOG0V4l53FjtEU_ivwg5g2Ms41V22cV_04iVtWAdVKWol9VpJO60M4GQ-Ytpm2vij75YX8rxfJ98BHPRqTLut-Jb69D6eiDO59_uofVj2NeTbc5UDWKpmtT1EpFHlR80S-wBsOc0V
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHyirKmgMXJNw6sZ3Ux4pFZSkCqUjcosSLhIAGtemFr2ecpWIT4hbJtuTM2DNvPBvAkQ0TplBtEcUDS3hqfJIGjBGqDRXdyLqSIy7a4jbsP_CrR_E4ByezXBhjTBF8Ztrus_Dl60xN3VNZR0YU4bqYhwXU-8Ivs7VmPgMuiuRoVEiUSLRkaqcklZ3hYICmYBCghcqdI-yLEiq6qvwQxYV-uWjCoN5ZGVby3J7maVu9fyva-N-tr8JKBTS9Xnky1mDOjNahWTdx8Ko7vQ7LnyoSbkD7PjsnZ2MnAr2eTt6cMPSc5zp5xXEPEa53lz2Ncu_0JZvqySY8XJwPT_ukaqlAVCD9nAgZikRzbZkVlKFiMoFFg02zKA0VR3SidZoYEflSMYQuMuFcSyUiq2hgtRZsCxqjbGS2wUuUFppJyoxvuVVGIvK13dAinsJ_5aYFnZrGsarqjbu2Fy9xYXdQGSNXYseVuOJKC45nK97KWht_zN1wRJ7Nq-jbgr2ajXF1GSexK_DjTPFA7Py-6hAW-8PBTXxzeXu9C0uuo3z5yrIHjXw8NfuIO_L0oDhuH0270F4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoE-Driven+Adaptive+Streaming+for+Point+Clouds&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Wang%2C+Lisha&rft.au=Li%2C+Chenglin&rft.au=Dai%2C+Wenrui&rft.au=Li%2C+Shaohui&rft.date=2023&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=25&rft.spage=2543&rft.epage=2558&rft_id=info:doi/10.1109%2FTMM.2022.3148585&rft.externalDocID=9706255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon