QoE-Driven Adaptive Streaming for Point Clouds
With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to str...
Saved in:
Published in | IEEE transactions on multimedia Vol. 25; pp. 2543 - 2558 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to stream in bandwidth-constrained networks. It is therefore important, yet challenging, to efficiently stream the resource-intensive point clouds, such that the user's quality of experience (QoE) is guaranteed on a high-level but with a low bandwidth consumption. To this end, we propose a QoE-driven adaptive streaming approach for the tile-based point cloud transmission, to maximize the user's QoE while reducing the transmission redundancy. By exploiting the perspective projection, we specifically model the QoE of a 3D tile as a function of the bitrate of its representation, user's view frustum and spatial position, occlusion between tiles, and the resolution of rendering device. Based on this QoE model, we then formulate the QoE-optimized rate adaptation problem as a multiple-choice knapsack problem, which allocates bitrates for different tiles under a given transmission capacity. It is equivalently converted to a submodular function maximization problem subject to knapsack constraints, and solved by a practical greedy-based algorithm with a theoretical worst-case performance guarantee. The proposed algorithm is able to achieve a near-optimal performance, but with a very low computational complexity. Experimental results further demonstrate superiority of the proposed rate adaptation algorithm over existing schemes, in terms of both user's visual quality and transmission efficiency. |
---|---|
AbstractList | With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate in an immersive scene with six degrees of freedom. However, point clouds usually comprise large amounts of data, and are thus difficult to stream in bandwidth-constrained networks. It is therefore important, yet challenging, to efficiently stream the resource-intensive point clouds, such that the user’s quality of experience (QoE) is guaranteed on a high-level but with a low bandwidth consumption. To this end, we propose a QoE-driven adaptive streaming approach for the tile-based point cloud transmission, to maximize the user’s QoE while reducing the transmission redundancy. By exploiting the perspective projection, we specifically model the QoE of a 3D tile as a function of the bitrate of its representation, user’s view frustum and spatial position, occlusion between tiles, and the resolution of rendering device. Based on this QoE model, we then formulate the QoE-optimized rate adaptation problem as a multiple-choice knapsack problem, which allocates bitrates for different tiles under a given transmission capacity. It is equivalently converted to a submodular function maximization problem subject to knapsack constraints, and solved by a practical greedy-based algorithm with a theoretical worst-case performance guarantee. The proposed algorithm is able to achieve a near-optimal performance, but with a very low computational complexity. Experimental results further demonstrate superiority of the proposed rate adaptation algorithm over existing schemes, in terms of both user’s visual quality and transmission efficiency. |
Author | Wang, Lisha Zou, Junni Xiong, Hongkai Li, Shaohui Dai, Wenrui Li, Chenglin |
Author_xml | – sequence: 1 givenname: Lisha orcidid: 0000-0002-8340-7441 surname: Wang fullname: Wang, Lisha email: wang_lisha@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Chenglin orcidid: 0000-0003-2888-594X surname: Li fullname: Li, Chenglin email: lcl1985@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Wenrui orcidid: 0000-0003-2522-5778 surname: Dai fullname: Dai, Wenrui email: daiwenrui@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Shaohui orcidid: 0000-0002-9650-8874 surname: Li fullname: Li, Shaohui email: lishaohui@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Junni orcidid: 0000-0002-9694-9880 surname: Zou fullname: Zou, Junni email: zoujunni@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Hongkai orcidid: 0000-0003-4552-0029 surname: Xiong fullname: Xiong, Hongkai email: xionghongkai@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNp9kEtLAzEUhYNUsK3uBTcDrme8eU0my1LrAywq1nVIJ4mktJOapIL_3iktLly4umdxvnPhG6FBFzqL0CWGCmOQN4v5vCJASEUxa3jDT9AQS4ZLACEGfeYESkkwnKFRSisAzDiIIapew6y8jf7LdsXE6G3uU_GWo9Ub330ULsTiJfguF9N12Jl0jk6dXid7cbxj9H43W0wfyqfn-8fp5KlsicS55LLm2jDjqONAmcCWOImFoWJZt6xm1Jiltlxg2VIqpdSMGdly4VogzhhOx-j6sLuN4XNnU1arsItd_1KRhgpMaUP2rfrQamNIKVqnWp919qHLUfu1wqD2blTvRu3dqKObHoQ_4Db6jY7f_yFXB8Rba3_rUkBNOKc_b3du8w |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_MCOM_001_2400053 crossref_primary_10_1109_ACCESS_2023_3326374 crossref_primary_10_1186_s13640_024_00655_y crossref_primary_10_1109_TMC_2024_3399398 crossref_primary_10_1109_TCE_2024_3423830 crossref_primary_10_1109_JIOT_2024_3424977 |
Cites_doi | 10.1109/TMM.2018.2859591 10.1002/bltj.20538 10.1145/3394171.3413535 10.1109/ICC40277.2020.9148922 10.1145/3204949.3204978 10.1109/IROS40897.2019.8968513 10.1145/3152434.3152443 10.1109/JETCAS.2018.2885981 10.1109/TMM.2020.3037481 10.1109/JSTSP.2019.2956716 10.1109/JETCAS.2019.2898622 10.1145/3343031.3351021 10.1109/MSP.2019.2900721 10.1016/0377-2217(87)90165-2 10.1016/j.cor.2004.09.016 10.1109/ICASSP39728.2021.9414121 10.1145/2814347.2814348 10.1109/TMM.2020.3023294 10.1145/1281192.1281239 10.1017/ATSIP.2019.20 10.1017/ATSIP.2020.12 10.1109/TBC.2019.2957652 10.1007/978-3-540-24777-7 10.1145/3210424.3210429 10.1057/palgrave.jors.2601796 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2022.3148585 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 2558 |
ExternalDocumentID | 10_1109_TMM_2022_3148585 9706255 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61931023; 61831018; 61871267; 61972256; 62125109; T2122024; 6211001027 funderid: 10.13039/501100001809 – fundername: Shanghai Rising-Star Program grantid: 20QA1404600 funderid: 10.13039/501100013105 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-5965ad4df3f503471e2f917d37b6c4643ddbae5719c33999a44d9c57fc02fdd53 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Mon Jun 30 02:34:41 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Tue Jul 01 01:54:38 EDT 2025 Wed Aug 27 02:18:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5965ad4df3f503471e2f917d37b6c4643ddbae5719c33999a44d9c57fc02fdd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8340-7441 0000-0002-9694-9880 0000-0003-4552-0029 0000-0003-2522-5778 0000-0002-9650-8874 0000-0003-2888-594X |
PQID | 2837133825 |
PQPubID | 75737 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TMM_2022_3148585 proquest_journals_2837133825 crossref_citationtrail_10_1109_TMM_2022_3148585 ieee_primary_9706255 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref18) 0 ref12 ref34 ref37 ref30 ref2 ref1 (ref5) 0 ref17 ref16 ref38 ref19 (ref31) 0 hooft (ref11) 0 d’eon (ref4) 0 ref24 ref23 ref26 krause (ref33) 2011; 3 ref25 ref20 ref22 ref21 (ref36) 0 hosseini (ref10) 2019 (ref6) 0 ref28 krivoku?a (ref35) 2018 foley (ref14) 1994 ref27 (ref32) 0 ref29 ref8 ref7 ref9 ref3 bjontegaard (ref39) 0 baker (ref15) 1997 |
References_xml | – ident: ref16 doi: 10.1109/TMM.2018.2859591 – ident: ref21 doi: 10.1002/bltj.20538 – ident: ref1 doi: 10.1145/3394171.3413535 – ident: ref12 doi: 10.1109/ICC40277.2020.9148922 – ident: ref24 doi: 10.1145/3204949.3204978 – year: 0 ident: ref31 article-title: LINGO 18 – ident: ref26 doi: 10.1109/IROS40897.2019.8968513 – ident: ref23 doi: 10.1145/3152434.3152443 – year: 0 ident: ref18 article-title: Call for proposals for point cloud compression v2 publication-title: document ISO/IEC JTC1/SC29 WG11 Doc N16763 – year: 1994 ident: ref14 publication-title: Introduction to Computer Graphics – year: 0 ident: ref6 article-title: Common test conditions for point cloud compression publication-title: ISO/IEC JTC1/SC29/WG11 MPEG Document N8459 – year: 0 ident: ref32 article-title: ILOG CPLEX Optimization Studio – year: 0 ident: ref4 article-title: 8i Voxelized Full Bodies, version 2-A Voxelized Point Cloud Dataset publication-title: ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m40059/M74006 – ident: ref7 doi: 10.1109/JETCAS.2018.2885981 – ident: ref38 doi: 10.1109/TMM.2020.3037481 – ident: ref8 doi: 10.1109/JSTSP.2019.2956716 – ident: ref13 doi: 10.1109/JETCAS.2019.2898622 – year: 1997 ident: ref15 publication-title: Computer Graphics C Version – ident: ref3 doi: 10.1145/3343031.3351021 – ident: ref20 doi: 10.1109/MSP.2019.2900721 – ident: ref30 doi: 10.1016/0377-2217(87)90165-2 – ident: ref28 doi: 10.1016/j.cor.2004.09.016 – year: 0 ident: ref36 article-title: MPEG-PCC-TMC13 – year: 0 ident: ref39 article-title: Calculation of average PSNR differences between rd-curves publication-title: Proc ITU-T Video Coding Experts Group 13th Meeting – ident: ref25 doi: 10.1109/ICASSP39728.2021.9414121 – ident: ref22 doi: 10.1145/2814347.2814348 – ident: ref17 doi: 10.1109/TMM.2020.3023294 – start-page: 2405 year: 0 ident: ref11 article-title: Towards 6DoF HTTP adaptive streaming through point cloud compression publication-title: Proc ACM Multimedia – year: 2018 ident: ref35 article-title: 8i Voxelized Surface Light Field (8ivslf) Dataset – ident: ref34 doi: 10.1145/1281192.1281239 – year: 2019 ident: ref10 article-title: Adaptive rate allocation for view-aware point-cloud streaming – ident: ref37 doi: 10.1017/ATSIP.2019.20 – ident: ref19 doi: 10.1017/ATSIP.2020.12 – ident: ref2 doi: 10.1109/TBC.2019.2957652 – ident: ref27 doi: 10.1007/978-3-540-24777-7 – ident: ref9 doi: 10.1145/3210424.3210429 – volume: 3 start-page: 71 year: 2011 ident: ref33 article-title: Submodular function maximization publication-title: Tractability – ident: ref29 doi: 10.1057/palgrave.jors.2601796 – year: 0 ident: ref5 article-title: Why MPEG made two codecs for point cloud compression publication-title: MPEG 3D Graph |
SSID | ssj0014507 |
Score | 2.5123663 |
Snippet | With increasing popularity of virtual reality and augmented reality, application of point clouds is in critical demand as it enables users to freely navigate... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2543 |
SubjectTerms | Adaptation Algorithms Augmented reality Bandwidth Bandwidths Bit rate Cloud computing Constraints Greedy algorithms Knapsack problem Measurement MPEG G-PCC Occlusion Optimization perspective projection Point cloud compression Point clouds Quality of experience rate adaptation Redundancy submodular function maximization Three-dimensional displays Tiles Transmission efficiency User experience Videos Virtual reality |
Title | QoE-Driven Adaptive Streaming for Point Clouds |
URI | https://ieeexplore.ieee.org/document/9706255 https://www.proquest.com/docview/2837133825 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHrwIppvm0Zqj-ECEFYVd8FbaPEDUdlnbi7_eSR-LL8RbIQmkM8nM92WSGYBjF2dco9siWjBHRG4jkjPOCTWWyrPE-ZQj_rbFXXwzEbeP8nEBTudvYay1zeUzG_rPJpZvSl37o7KhSijCdbkIi0jc2rda84iBkM3TaHRHlCjkMX1IkqrheDRCIsgY8lPhw2BfXFBTU-WHIW68y_UajPp5tZdKnsO6ykP9_i1l438nvg6rHcwMztt1sQELttiEtb6EQ9Dt6E1Y-ZSPcAvCh_KKXM68AQzOTTb1pjDwcevsFdsDxLfBfflUVMHFS1mbt22YXF-NL25IV1CBaKaiikgVy8wI47iTlKNbsswhXTM8yWMtEJsYk2dWJpHSHIGLyoQwSsvEacqcMZLvwFJRFnYXgkwbabii3EZOOG0V4l53FjtEU_ivwg5g2Ms41V22cV_04iVtWAdVKWol9VpJO60M4GQ-Ytpm2vij75YX8rxfJ98BHPRqTLut-Jb69D6eiDO59_uofVj2NeTbc5UDWKpmtT1EpFHlR80S-wBsOc0V |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHyirKmgMXJNw6sZ3Ux4pFZSkCqUjcosSLhIAGtemFr2ecpWIT4hbJtuTM2DNvPBvAkQ0TplBtEcUDS3hqfJIGjBGqDRXdyLqSIy7a4jbsP_CrR_E4ByezXBhjTBF8Ztrus_Dl60xN3VNZR0YU4bqYhwXU-8Ivs7VmPgMuiuRoVEiUSLRkaqcklZ3hYICmYBCghcqdI-yLEiq6qvwQxYV-uWjCoN5ZGVby3J7maVu9fyva-N-tr8JKBTS9Xnky1mDOjNahWTdx8Ko7vQ7LnyoSbkD7PjsnZ2MnAr2eTt6cMPSc5zp5xXEPEa53lz2Ncu_0JZvqySY8XJwPT_ukaqlAVCD9nAgZikRzbZkVlKFiMoFFg02zKA0VR3SidZoYEflSMYQuMuFcSyUiq2hgtRZsCxqjbGS2wUuUFppJyoxvuVVGIvK13dAinsJ_5aYFnZrGsarqjbu2Fy9xYXdQGSNXYseVuOJKC45nK97KWht_zN1wRJ7Nq-jbgr2ajXF1GSexK_DjTPFA7Py-6hAW-8PBTXxzeXu9C0uuo3z5yrIHjXw8NfuIO_L0oDhuH0270F4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoE-Driven+Adaptive+Streaming+for+Point+Clouds&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Wang%2C+Lisha&rft.au=Li%2C+Chenglin&rft.au=Dai%2C+Wenrui&rft.au=Li%2C+Shaohui&rft.date=2023&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=25&rft.spage=2543&rft.epage=2558&rft_id=info:doi/10.1109%2FTMM.2022.3148585&rft.externalDocID=9706255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |