X-Secure T-Private Federated Submodel Learning With Elastic Dropout Resilience
Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that...
Saved in:
Published in | IEEE transactions on information theory Vol. 68; no. 8; pp. 5418 - 5439 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2022.3165400 |
Cover
Loading…
Abstract | Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that are stored across <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> distributed servers according to an <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula>-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations. |
---|---|
AbstractList | Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of [Formula Omitted] files (submodels) that are stored across [Formula Omitted] distributed servers according to an [Formula Omitted]-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to [Formula Omitted] colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for [Formula Omitted]-secure [Formula Omitted]-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations. Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that are stored across <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> distributed servers according to an <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula>-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations. |
Author | Jia, Zhuqing Jafar, Syed Ali |
Author_xml | – sequence: 1 givenname: Zhuqing orcidid: 0000-0002-8329-9911 surname: Jia fullname: Jia, Zhuqing email: zhuqingj@bupt.edu.cn organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Syed Ali orcidid: 0000-0003-2038-2977 surname: Jafar fullname: Jafar, Syed Ali email: syed@uci.edu organization: Department of Electrical Engineering and Computer Science, Center for Pervasive Communications and Computing, University of California at Irvine, Irvine, CA, USA |
BookMark | eNp9kMFLwzAUh4MouE3vgpeA586XtEmbo8xNB0PFTfRW0vRVM7p2Jqngf2_HhgcPnt77we97D74hOW7aBgm5YDBmDNT1ar4ac-B8HDMpEoAjMmBCpJHq0zEZALAsUkmSnZKh9-s-JoLxAXl4i5ZoOod0FT05-6UD0hmW6PqlpMuu2LQl1nSB2jW2eaevNnzQaa19sIbeunbbdoE-o7e1xcbgGTmpdO3x_DBH5GU2XU3uo8Xj3Xxys4gMVyxEImNKl2kluc50KRVTWWFkmcaoYhUDIMoKdYEplhoMq2JeGAUCdFrIREIZj8jV_u7WtZ8d-pCv2841_cucyyyTSkqR9i25bxnXeu-wyo0NOti2CU7bOmeQ79zlvbt85y4_uOtB-ANund1o9_0fcrlHLCL-1lUqgAGPfwBxQHtI |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_MBITS_2023_3322972 crossref_primary_10_1109_TIT_2023_3344717 crossref_primary_10_1109_JSAC_2022_3142352 crossref_primary_10_1109_TIFS_2024_3524160 crossref_primary_10_1109_JSAC_2022_3142358 crossref_primary_10_1109_TIT_2024_3388597 crossref_primary_10_1109_TCOMM_2024_3403475 crossref_primary_10_1109_TIT_2023_3292187 crossref_primary_10_1109_TIT_2023_3339450 crossref_primary_10_1109_MBITS_2024_3368349 crossref_primary_10_1109_TIT_2024_3397642 crossref_primary_10_1109_TIT_2024_3506990 crossref_primary_10_1109_JSAIT_2023_3320068 |
Cites_doi | 10.1007/BF02242355 10.1109/TIT.2017.2777490 10.1007/s13748-012-0030-x 10.1109/JSAIT.2021.3052934 10.1109/TIT.2017.2779454 10.1109/TIT.2020.2964762 10.1109/TIT.2021.3064827 10.1137/16M1102562 10.1109/JSAIT.2021.3053481 10.1109/TIT.2020.3023016 10.1016/0377-0427(89)90302-6 10.1109/TIT.2017.2736066 10.1109/TIFS.2018.2833050 10.1007/s10994-011-5256-5 10.1109/TIT.2019.2918207 10.1109/INFOCOM42981.2021.9488815 10.1109/TIT.2020.2977082 10.1561/2200000083 10.1515/tmmp-2016-0031 10.1109/TIT.2020.2977919 10.1109/TIT.2019.2916079 10.1109/TIT.2018.2884891 10.1145/3339474 10.1016/j.icte.2022.02.008 10.1109/SFCS.1995.492461 10.1109/TIT.2018.2789426 10.1109/TIT.2018.2888494 10.1007/978-1-4612-0129-8 10.1109/TIT.2018.2890285 10.1109/TIT.2018.2848977 10.1109/TIT.2017.2725273 10.1109/TIT.2018.2869154 10.1109/ITW.2018.8613532 10.1109/TIT.2017.2689028 10.1109/TIT.2020.3013152 10.1109/TIT.2021.3112952 10.1109/FOCS.2018.00056 10.1109/TIT.2020.2977073 10.1109/TCOMM.2021.3054764 10.1109/MSP.2020.2975749 10.1109/ISIT.2019.8849275 10.1109/TIT.2018.2883302 10.1109/ISIT.2017.8006861 10.1109/ISIT.2018.8437545 10.1109/TIT.2021.3125006 10.1109/ALLERTON.2017.8262857 10.1145/293347.293350 10.1145/2976749.2978318 10.1109/ITW.2017.8277997 10.1109/TIT.2019.2936023 10.1109/TIT.2018.2828310 10.3390/info10120372 10.1109/TIT.2018.2791994 10.1145/3372224.3419188 10.1109/TIT.2020.3011053 10.1016/0024-3795(93)90431-M 10.1007/978-3-642-36594-2_22 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2022.3165400 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 5439 |
ExternalDocumentID | 10_1109_TIT_2022_3165400 9750102 |
Genre | orig-research |
GrantInformation_xml | – fundername: Office of Naval Research (ONR) grantid: N00014-21-1-2386 funderid: 10.13039/100000006 – fundername: NSF grantid: CCF-1907053 funderid: 10.13039/100000001 – fundername: Army Research Office (ARO) grantid: W911NF1910344 funderid: 10.13039/100000183 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-5819ad7f62a8ad69198bc6d73e939300ee6feabe7eda0c1f32bc9050a7b6460d3 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Sun Jun 29 12:35:41 EDT 2025 Tue Jul 01 02:16:20 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Aug 27 02:25:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-5819ad7f62a8ad69198bc6d73e939300ee6feabe7eda0c1f32bc9050a7b6460d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8329-9911 0000-0003-2038-2977 |
PQID | 2688696657 |
PQPubID | 36024 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2688696657 crossref_citationtrail_10_1109_TIT_2022_3165400 crossref_primary_10_1109_TIT_2022_3165400 ieee_primary_9750102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref59 ref15 ref58 ref14 ref55 ref54 ref10 ref16 ref18 ref51 ref50 wang (ref22) 2018 ref45 ref48 ref47 ref42 ref41 ref44 ref43 kadhe (ref53) 2020 ref49 wang (ref19) 2017 sohn (ref57) 2020; 33 ref7 ref9 hua (ref17) 2019; 65 ref3 yang (ref4) 2019; 10 ref6 ref5 mirmohseni (ref46) 2017 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 mcmahan (ref1) 2017; 54 bagdasaryan (ref11) 2020; 108 kushilevitz (ref52) 2018 chen (ref56) 2018; 80 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref63 ref66 mcmahan (ref8) 2018 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref59 doi: 10.1007/BF02242355 – ident: ref16 doi: 10.1109/TIT.2017.2777490 – ident: ref7 doi: 10.1007/s13748-012-0030-x – ident: ref64 doi: 10.1109/JSAIT.2021.3052934 – ident: ref26 doi: 10.1109/TIT.2017.2779454 – ident: ref31 doi: 10.1109/TIT.2020.2964762 – ident: ref58 doi: 10.1109/TIT.2021.3064827 – ident: ref25 doi: 10.1137/16M1102562 – ident: ref49 doi: 10.1109/JSAIT.2021.3053481 – year: 2018 ident: ref22 article-title: The $\epsilon$ -error capacity of symmetric PIR with Byzantine adversaries publication-title: arXiv 1809 03988 – ident: ref33 doi: 10.1109/TIT.2020.3023016 – ident: ref63 doi: 10.1016/0377-0427(89)90302-6 – ident: ref54 doi: 10.1109/TIT.2017.2736066 – ident: ref29 doi: 10.1109/TIFS.2018.2833050 – ident: ref6 doi: 10.1007/s10994-011-5256-5 – ident: ref44 doi: 10.1109/TIT.2019.2918207 – ident: ref55 doi: 10.1109/INFOCOM42981.2021.9488815 – ident: ref47 doi: 10.1109/TIT.2020.2977082 – ident: ref2 doi: 10.1561/2200000083 – ident: ref62 doi: 10.1515/tmmp-2016-0031 – ident: ref38 doi: 10.1109/TIT.2020.2977919 – ident: ref30 doi: 10.1109/TIT.2019.2916079 – ident: ref18 doi: 10.1109/TIT.2018.2884891 – volume: 10 start-page: 1 year: 2019 ident: ref4 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3339474 – ident: ref12 doi: 10.1016/j.icte.2022.02.008 – ident: ref13 doi: 10.1109/SFCS.1995.492461 – ident: ref39 doi: 10.1109/TIT.2018.2789426 – ident: ref45 doi: 10.1109/TIT.2018.2888494 – ident: ref65 doi: 10.1007/978-1-4612-0129-8 – start-page: 1 year: 2018 ident: ref8 article-title: Learning differentially private recurrent language models publication-title: Proc ICLR – ident: ref21 doi: 10.1109/TIT.2018.2890285 – volume: 65 start-page: 322 year: 2019 ident: ref17 article-title: The capacity of symmetric private information retrieval publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2018.2848977 – ident: ref67 doi: 10.1109/TIT.2017.2725273 – ident: ref20 doi: 10.1109/TIT.2018.2869154 – volume: 54 start-page: 1273 year: 2017 ident: ref1 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – ident: ref61 doi: 10.1109/ITW.2018.8613532 – year: 2020 ident: ref53 article-title: FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning publication-title: arXiv 2009 11248 – volume: 80 start-page: 903 year: 2018 ident: ref56 article-title: DRACO: Byzantine-resilient distributed training via redundant gradients publication-title: Proc 35th Int Conf Mach Learn – ident: ref15 doi: 10.1109/TIT.2017.2689028 – ident: ref27 doi: 10.1109/TIT.2020.3013152 – ident: ref50 doi: 10.1109/TIT.2021.3112952 – ident: ref10 doi: 10.1109/FOCS.2018.00056 – ident: ref28 doi: 10.1109/TIT.2020.2977073 – volume: 33 start-page: 14615 year: 2020 ident: ref57 article-title: Election coding for distributed learning: Protecting SignSGD against Byzantine attacks publication-title: Advances in neural information processing systems – ident: ref42 doi: 10.1109/TCOMM.2021.3054764 – ident: ref3 doi: 10.1109/MSP.2020.2975749 – ident: ref40 doi: 10.1109/ISIT.2019.8849275 – volume: 108 start-page: 2938 year: 2020 ident: ref11 article-title: How to backdoor federated learning publication-title: Proc Int Conf Artif Intell Statist – ident: ref34 doi: 10.1109/TIT.2018.2883302 – ident: ref23 doi: 10.1109/ISIT.2017.8006861 – year: 2017 ident: ref19 article-title: Secure private information retrieval from colluding databases with eavesdroppers publication-title: arXiv 1710 01190 – ident: ref36 doi: 10.1109/ISIT.2018.8437545 – ident: ref43 doi: 10.1109/TIT.2021.3125006 – ident: ref35 doi: 10.1109/ALLERTON.2017.8262857 – year: 2017 ident: ref46 article-title: Private function retrieval publication-title: arXiv 1711 04677 – ident: ref14 doi: 10.1145/293347.293350 – ident: ref9 doi: 10.1145/2976749.2978318 – year: 2018 ident: ref52 article-title: Sub-logarithmic distributed oblivious RAM with small block size publication-title: arXiv 1802 05145 – ident: ref24 doi: 10.1109/ITW.2017.8277997 – ident: ref37 doi: 10.1109/TIT.2019.2936023 – ident: ref41 doi: 10.1109/TIT.2018.2828310 – ident: ref32 doi: 10.3390/info10120372 – ident: ref60 doi: 10.1109/TIT.2018.2791994 – ident: ref5 doi: 10.1145/3372224.3419188 – ident: ref48 doi: 10.1109/TIT.2020.3011053 – ident: ref66 doi: 10.1016/0024-3795(93)90431-M – ident: ref51 doi: 10.1007/978-3-642-36594-2_22 |
SSID | ssj0014512 |
Score | 2.5266623 |
Snippet | Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5418 |
SubjectTerms | Costs Data models Distributed databases Downloading Dropouts Federated learning Information retrieval Learning Multiplication Privacy Redundancy Resilience security Servers Training data |
Title | X-Secure T-Private Federated Submodel Learning With Elastic Dropout Resilience |
URI | https://ieeexplore.ieee.org/document/9750102 https://www.proquest.com/docview/2688696657 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB2xnOCwQAFtWUA-cEHatLaT2vFxBVSAVIRQEb1FiT2BClQQpBd-PWMnqZYPrbj5YDtWnj_eeMZvAA5KzKV1_l5DKB4lSW6j1NgiKmyKQpfGYOkfCo8u1Ol1cj4ZTJbgz-ItDCKG4DPs-WLw5btHO_dXZX1Dx5vwypE_yHCr32otPAbJQNTK4IIWMNkcrUuSm_74bEyGoJRknyoiKPzdERRyqnzaiMPpMlyDUTuuOqjkvjevip59_SDZ-N2Br8PPhmayv_W82IAlnHVgrU3hwJoV3YHVf_QIN-FiEoX7d2Tj6PLZ5z1DNvRqE1RwjPaYkDeHNZqst-xmWt2xE-Lf9BV27PMtzCt2hS_Th9D9FlwPT8ZHp1GTcCGy0ogqGhA9yJ0ulczT3CkjTFpY5XSMJjYx54iKsC1Qo8u5FWUsC2v4gOe6UIniLt6G5dnjDH8By7WRQlntYuJoWiGxHkvsymmnEydL14V-i0FmGzVynxTjIQtWCTcZoZZ51LIGtS4cLlo81Uoc_6m76UFY1Gv-fxd2W5izZqm-ZFKlqTLeAbXzdavfsOL7rqP-dmG5ep7jHjGRqtgPU_ANMcLZwQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5C7MA4rBsMrQw2H3aZtLS2k9rxcRpU5UerCQWttyixXxgaKoiml_31e3aSio0JccvBTqx8tt_33rO_B_CpwkJa5-MaQvEoSQobpcaWUWlTFLoyBit_UXg6U5PL5HQ-mm_Al_VdGEQMh89w4B9DLt_d2pUPlQ0NmTfhlSNfkN1PTHNba50zSEai0QYXtITJ6-iSktwMs5OMXEEpyUNVRFH4X0YoVFV5tBUH-zLuwbQbWXOs5NdgVZcD-_sf0cbnDv01vGqJJvvazIw3sIGLHeh1RRxYu6Z3YPuBIuEuzOZRiMAjy6Lv977yGbKx15ugB8dolwmVc1irynrFflzXP9kxMXD6CjvyFRdWNbvA5fVNeP1buBwfZ98mUVtyIbLSiDoaEUEonK6ULNLCKSNMWlrldIwmNjHniIrQLVGjK7gVVSxLa_iIF7pUieIu3oPNxe0C3wErtJFCWe1iYmlaIfEeS_zKaacTJyvXh2GHQW5bPXJfFuMmD34JNzmhlnvU8ha1Pnxe97hrtDieaLvrQVi3a_9_Hw46mPN2sS5zqdJUGZ-C2v9_r4-wNcmm5_n5yezsPbyUfoaFKMwBbNb3KzwkXlKXH8J0_APK2d0P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X+-Secure+T+-Private+Federated+Submodel+Learning+With+Elastic+Dropout+Resilience&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Zhuqing+Jia&rft.au=Syed+Ali+Jafar&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=8&rft.spage=5418&rft_id=info:doi/10.1109%2FTIT.2022.3165400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |