X-Secure T-Private Federated Submodel Learning With Elastic Dropout Resilience

Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 68; no. 8; pp. 5418 - 5439
Main Authors Jia, Zhuqing, Jafar, Syed Ali
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2022.3165400

Cover

Loading…
Abstract Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that are stored across <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> distributed servers according to an <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula>-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations.
AbstractList Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of [Formula Omitted] files (submodels) that are stored across [Formula Omitted] distributed servers according to an [Formula Omitted]-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to [Formula Omitted] colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for [Formula Omitted]-secure [Formula Omitted]-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations.
Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database comprised of <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> files (submodels) that are stored across <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> distributed servers according to an <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure threshold secret sharing scheme. One after another, various users wish to retrieve their desired file, locally process the information and then update the file in the distributed database while keeping the identity of their desired file private from any set of up to <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> colluding servers. The availability of servers changes over time, so elastic dropout resilience is required. The main contribution of this work is an adaptive scheme, called ACSA-RW, that takes advantage of all currently available servers to reduce its communication costs, fully updates the database after each write operation even though the database is only partially accessible due to server dropouts, and ensures a memoryless operation of the network in the sense that the storage structure is preserved and future users may remain oblivious of the past history of server dropouts. The ACSA-RW construction builds upon cross-subspace alignment (CSA) codes that were originally introduced for <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-secure <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula>-private information retrieval and have been shown to be natural solutions for secure distributed batch matrix multiplication problems. ACSA-RW achieves the desired private read and write functionality with elastic dropout resilience, matches the best results for private-read from PIR literature, improves significantly upon available baselines for private-write, reveals a striking symmetry between upload and download costs, and exploits storage redundancy to accommodate arbitrary read and write dropout servers up to certain threshold values. It also answers in the affirmative an open question by Kairouz et al. for the case of partially colluding servers (i.e., tolerating collusion up to a threshold) by exploiting synergistic gains from the joint design of private read and write operations.
Author Jia, Zhuqing
Jafar, Syed Ali
Author_xml – sequence: 1
  givenname: Zhuqing
  orcidid: 0000-0002-8329-9911
  surname: Jia
  fullname: Jia, Zhuqing
  email: zhuqingj@bupt.edu.cn
  organization: School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Syed Ali
  orcidid: 0000-0003-2038-2977
  surname: Jafar
  fullname: Jafar, Syed Ali
  email: syed@uci.edu
  organization: Department of Electrical Engineering and Computer Science, Center for Pervasive Communications and Computing, University of California at Irvine, Irvine, CA, USA
BookMark eNp9kMFLwzAUh4MouE3vgpeA586XtEmbo8xNB0PFTfRW0vRVM7p2Jqngf2_HhgcPnt77we97D74hOW7aBgm5YDBmDNT1ar4ac-B8HDMpEoAjMmBCpJHq0zEZALAsUkmSnZKh9-s-JoLxAXl4i5ZoOod0FT05-6UD0hmW6PqlpMuu2LQl1nSB2jW2eaevNnzQaa19sIbeunbbdoE-o7e1xcbgGTmpdO3x_DBH5GU2XU3uo8Xj3Xxys4gMVyxEImNKl2kluc50KRVTWWFkmcaoYhUDIMoKdYEplhoMq2JeGAUCdFrIREIZj8jV_u7WtZ8d-pCv2841_cucyyyTSkqR9i25bxnXeu-wyo0NOti2CU7bOmeQ79zlvbt85y4_uOtB-ANund1o9_0fcrlHLCL-1lUqgAGPfwBxQHtI
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_MBITS_2023_3322972
crossref_primary_10_1109_TIT_2023_3344717
crossref_primary_10_1109_JSAC_2022_3142352
crossref_primary_10_1109_TIFS_2024_3524160
crossref_primary_10_1109_JSAC_2022_3142358
crossref_primary_10_1109_TIT_2024_3388597
crossref_primary_10_1109_TCOMM_2024_3403475
crossref_primary_10_1109_TIT_2023_3292187
crossref_primary_10_1109_TIT_2023_3339450
crossref_primary_10_1109_MBITS_2024_3368349
crossref_primary_10_1109_TIT_2024_3397642
crossref_primary_10_1109_TIT_2024_3506990
crossref_primary_10_1109_JSAIT_2023_3320068
Cites_doi 10.1007/BF02242355
10.1109/TIT.2017.2777490
10.1007/s13748-012-0030-x
10.1109/JSAIT.2021.3052934
10.1109/TIT.2017.2779454
10.1109/TIT.2020.2964762
10.1109/TIT.2021.3064827
10.1137/16M1102562
10.1109/JSAIT.2021.3053481
10.1109/TIT.2020.3023016
10.1016/0377-0427(89)90302-6
10.1109/TIT.2017.2736066
10.1109/TIFS.2018.2833050
10.1007/s10994-011-5256-5
10.1109/TIT.2019.2918207
10.1109/INFOCOM42981.2021.9488815
10.1109/TIT.2020.2977082
10.1561/2200000083
10.1515/tmmp-2016-0031
10.1109/TIT.2020.2977919
10.1109/TIT.2019.2916079
10.1109/TIT.2018.2884891
10.1145/3339474
10.1016/j.icte.2022.02.008
10.1109/SFCS.1995.492461
10.1109/TIT.2018.2789426
10.1109/TIT.2018.2888494
10.1007/978-1-4612-0129-8
10.1109/TIT.2018.2890285
10.1109/TIT.2018.2848977
10.1109/TIT.2017.2725273
10.1109/TIT.2018.2869154
10.1109/ITW.2018.8613532
10.1109/TIT.2017.2689028
10.1109/TIT.2020.3013152
10.1109/TIT.2021.3112952
10.1109/FOCS.2018.00056
10.1109/TIT.2020.2977073
10.1109/TCOMM.2021.3054764
10.1109/MSP.2020.2975749
10.1109/ISIT.2019.8849275
10.1109/TIT.2018.2883302
10.1109/ISIT.2017.8006861
10.1109/ISIT.2018.8437545
10.1109/TIT.2021.3125006
10.1109/ALLERTON.2017.8262857
10.1145/293347.293350
10.1145/2976749.2978318
10.1109/ITW.2017.8277997
10.1109/TIT.2019.2936023
10.1109/TIT.2018.2828310
10.3390/info10120372
10.1109/TIT.2018.2791994
10.1145/3372224.3419188
10.1109/TIT.2020.3011053
10.1016/0024-3795(93)90431-M
10.1007/978-3-642-36594-2_22
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2022.3165400
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5439
ExternalDocumentID 10_1109_TIT_2022_3165400
9750102
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research (ONR)
  grantid: N00014-21-1-2386
  funderid: 10.13039/100000006
– fundername: NSF
  grantid: CCF-1907053
  funderid: 10.13039/100000001
– fundername: Army Research Office (ARO)
  grantid: W911NF1910344
  funderid: 10.13039/100000183
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5819ad7f62a8ad69198bc6d73e939300ee6feabe7eda0c1f32bc9050a7b6460d3
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 12:35:41 EDT 2025
Tue Jul 01 02:16:20 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Aug 27 02:25:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5819ad7f62a8ad69198bc6d73e939300ee6feabe7eda0c1f32bc9050a7b6460d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8329-9911
0000-0003-2038-2977
PQID 2688696657
PQPubID 36024
PageCount 22
ParticipantIDs proquest_journals_2688696657
crossref_citationtrail_10_1109_TIT_2022_3165400
crossref_primary_10_1109_TIT_2022_3165400
ieee_primary_9750102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref15
ref58
ref14
ref55
ref54
ref10
ref16
ref18
ref51
ref50
wang (ref22) 2018
ref45
ref48
ref47
ref42
ref41
ref44
ref43
kadhe (ref53) 2020
ref49
wang (ref19) 2017
sohn (ref57) 2020; 33
ref7
ref9
hua (ref17) 2019; 65
ref3
yang (ref4) 2019; 10
ref6
ref5
mirmohseni (ref46) 2017
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
mcmahan (ref1) 2017; 54
bagdasaryan (ref11) 2020; 108
kushilevitz (ref52) 2018
chen (ref56) 2018; 80
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
mcmahan (ref8) 2018
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref59
  doi: 10.1007/BF02242355
– ident: ref16
  doi: 10.1109/TIT.2017.2777490
– ident: ref7
  doi: 10.1007/s13748-012-0030-x
– ident: ref64
  doi: 10.1109/JSAIT.2021.3052934
– ident: ref26
  doi: 10.1109/TIT.2017.2779454
– ident: ref31
  doi: 10.1109/TIT.2020.2964762
– ident: ref58
  doi: 10.1109/TIT.2021.3064827
– ident: ref25
  doi: 10.1137/16M1102562
– ident: ref49
  doi: 10.1109/JSAIT.2021.3053481
– year: 2018
  ident: ref22
  article-title: The $\epsilon$ -error capacity of symmetric PIR with Byzantine adversaries
  publication-title: arXiv 1809 03988
– ident: ref33
  doi: 10.1109/TIT.2020.3023016
– ident: ref63
  doi: 10.1016/0377-0427(89)90302-6
– ident: ref54
  doi: 10.1109/TIT.2017.2736066
– ident: ref29
  doi: 10.1109/TIFS.2018.2833050
– ident: ref6
  doi: 10.1007/s10994-011-5256-5
– ident: ref44
  doi: 10.1109/TIT.2019.2918207
– ident: ref55
  doi: 10.1109/INFOCOM42981.2021.9488815
– ident: ref47
  doi: 10.1109/TIT.2020.2977082
– ident: ref2
  doi: 10.1561/2200000083
– ident: ref62
  doi: 10.1515/tmmp-2016-0031
– ident: ref38
  doi: 10.1109/TIT.2020.2977919
– ident: ref30
  doi: 10.1109/TIT.2019.2916079
– ident: ref18
  doi: 10.1109/TIT.2018.2884891
– volume: 10
  start-page: 1
  year: 2019
  ident: ref4
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3339474
– ident: ref12
  doi: 10.1016/j.icte.2022.02.008
– ident: ref13
  doi: 10.1109/SFCS.1995.492461
– ident: ref39
  doi: 10.1109/TIT.2018.2789426
– ident: ref45
  doi: 10.1109/TIT.2018.2888494
– ident: ref65
  doi: 10.1007/978-1-4612-0129-8
– start-page: 1
  year: 2018
  ident: ref8
  article-title: Learning differentially private recurrent language models
  publication-title: Proc ICLR
– ident: ref21
  doi: 10.1109/TIT.2018.2890285
– volume: 65
  start-page: 322
  year: 2019
  ident: ref17
  article-title: The capacity of symmetric private information retrieval
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2018.2848977
– ident: ref67
  doi: 10.1109/TIT.2017.2725273
– ident: ref20
  doi: 10.1109/TIT.2018.2869154
– volume: 54
  start-page: 1273
  year: 2017
  ident: ref1
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref61
  doi: 10.1109/ITW.2018.8613532
– year: 2020
  ident: ref53
  article-title: FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning
  publication-title: arXiv 2009 11248
– volume: 80
  start-page: 903
  year: 2018
  ident: ref56
  article-title: DRACO: Byzantine-resilient distributed training via redundant gradients
  publication-title: Proc 35th Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TIT.2017.2689028
– ident: ref27
  doi: 10.1109/TIT.2020.3013152
– ident: ref50
  doi: 10.1109/TIT.2021.3112952
– ident: ref10
  doi: 10.1109/FOCS.2018.00056
– ident: ref28
  doi: 10.1109/TIT.2020.2977073
– volume: 33
  start-page: 14615
  year: 2020
  ident: ref57
  article-title: Election coding for distributed learning: Protecting SignSGD against Byzantine attacks
  publication-title: Advances in neural information processing systems
– ident: ref42
  doi: 10.1109/TCOMM.2021.3054764
– ident: ref3
  doi: 10.1109/MSP.2020.2975749
– ident: ref40
  doi: 10.1109/ISIT.2019.8849275
– volume: 108
  start-page: 2938
  year: 2020
  ident: ref11
  article-title: How to backdoor federated learning
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref34
  doi: 10.1109/TIT.2018.2883302
– ident: ref23
  doi: 10.1109/ISIT.2017.8006861
– year: 2017
  ident: ref19
  article-title: Secure private information retrieval from colluding databases with eavesdroppers
  publication-title: arXiv 1710 01190
– ident: ref36
  doi: 10.1109/ISIT.2018.8437545
– ident: ref43
  doi: 10.1109/TIT.2021.3125006
– ident: ref35
  doi: 10.1109/ALLERTON.2017.8262857
– year: 2017
  ident: ref46
  article-title: Private function retrieval
  publication-title: arXiv 1711 04677
– ident: ref14
  doi: 10.1145/293347.293350
– ident: ref9
  doi: 10.1145/2976749.2978318
– year: 2018
  ident: ref52
  article-title: Sub-logarithmic distributed oblivious RAM with small block size
  publication-title: arXiv 1802 05145
– ident: ref24
  doi: 10.1109/ITW.2017.8277997
– ident: ref37
  doi: 10.1109/TIT.2019.2936023
– ident: ref41
  doi: 10.1109/TIT.2018.2828310
– ident: ref32
  doi: 10.3390/info10120372
– ident: ref60
  doi: 10.1109/TIT.2018.2791994
– ident: ref5
  doi: 10.1145/3372224.3419188
– ident: ref48
  doi: 10.1109/TIT.2020.3011053
– ident: ref66
  doi: 10.1016/0024-3795(93)90431-M
– ident: ref51
  doi: 10.1007/978-3-642-36594-2_22
SSID ssj0014512
Score 2.5266623
Snippet Motivated by recent interest in federated submodel learning, this work explores the fundamental problem of privately reading from and writing to a database...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5418
SubjectTerms Costs
Data models
Distributed databases
Downloading
Dropouts
Federated learning
Information retrieval
Learning
Multiplication
Privacy
Redundancy
Resilience
security
Servers
Training data
Title X-Secure T-Private Federated Submodel Learning With Elastic Dropout Resilience
URI https://ieeexplore.ieee.org/document/9750102
https://www.proquest.com/docview/2688696657
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB2xnOCwQAFtWUA-cEHatLaT2vFxBVSAVIRQEb1FiT2BClQQpBd-PWMnqZYPrbj5YDtWnj_eeMZvAA5KzKV1_l5DKB4lSW6j1NgiKmyKQpfGYOkfCo8u1Ol1cj4ZTJbgz-ItDCKG4DPs-WLw5btHO_dXZX1Dx5vwypE_yHCr32otPAbJQNTK4IIWMNkcrUuSm_74bEyGoJRknyoiKPzdERRyqnzaiMPpMlyDUTuuOqjkvjevip59_SDZ-N2Br8PPhmayv_W82IAlnHVgrU3hwJoV3YHVf_QIN-FiEoX7d2Tj6PLZ5z1DNvRqE1RwjPaYkDeHNZqst-xmWt2xE-Lf9BV27PMtzCt2hS_Th9D9FlwPT8ZHp1GTcCGy0ogqGhA9yJ0ulczT3CkjTFpY5XSMJjYx54iKsC1Qo8u5FWUsC2v4gOe6UIniLt6G5dnjDH8By7WRQlntYuJoWiGxHkvsymmnEydL14V-i0FmGzVynxTjIQtWCTcZoZZ51LIGtS4cLlo81Uoc_6m76UFY1Gv-fxd2W5izZqm-ZFKlqTLeAbXzdavfsOL7rqP-dmG5ep7jHjGRqtgPU_ANMcLZwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5C7MA4rBsMrQw2H3aZtLS2k9rxcRpU5UerCQWttyixXxgaKoiml_31e3aSio0JccvBTqx8tt_33rO_B_CpwkJa5-MaQvEoSQobpcaWUWlTFLoyBit_UXg6U5PL5HQ-mm_Al_VdGEQMh89w4B9DLt_d2pUPlQ0NmTfhlSNfkN1PTHNba50zSEai0QYXtITJ6-iSktwMs5OMXEEpyUNVRFH4X0YoVFV5tBUH-zLuwbQbWXOs5NdgVZcD-_sf0cbnDv01vGqJJvvazIw3sIGLHeh1RRxYu6Z3YPuBIuEuzOZRiMAjy6Lv977yGbKx15ugB8dolwmVc1irynrFflzXP9kxMXD6CjvyFRdWNbvA5fVNeP1buBwfZ98mUVtyIbLSiDoaEUEonK6ULNLCKSNMWlrldIwmNjHniIrQLVGjK7gVVSxLa_iIF7pUieIu3oPNxe0C3wErtJFCWe1iYmlaIfEeS_zKaacTJyvXh2GHQW5bPXJfFuMmD34JNzmhlnvU8ha1Pnxe97hrtDieaLvrQVi3a_9_Hw46mPN2sS5zqdJUGZ-C2v9_r4-wNcmm5_n5yezsPbyUfoaFKMwBbNb3KzwkXlKXH8J0_APK2d0P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X+-Secure+T+-Private+Federated+Submodel+Learning+With+Elastic+Dropout+Resilience&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Zhuqing+Jia&rft.au=Syed+Ali+Jafar&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=68&rft.issue=8&rft.spage=5418&rft_id=info:doi/10.1109%2FTIT.2022.3165400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon