Proactive Load Balancing Through Constrained Policy Optimization for Ultra-Dense Networks
Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small cove...
Saved in:
Published in | IEEE communications letters Vol. 26; no. 10; pp. 2415 - 2419 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small coverage of cells in ultra-dense networks (UDNs), the network load usually becomes unbalanced, leading to deteriorated network performance, such as low throughput, radio link failure, and poor user experience. Therefore, the technique of mobility load balancing (MLB) is critical to ensuring a seamless user experience among cells. This letter proposes an active and interactive MLB strategy for UDNs, which transforms the original reactive MLB into a forward-aware and active one. In particular, user mobility is first predicted based on the Bayesian additive regression tree (BART). Then, with the mobility predictions, the joint mobility robust optimization and MLB problem subject to users' rate constraint is solved via safe reinforcement learning. The pertaining simulation results show that the proposed method can improve the network performance and realize intelligent mobile management for future UDNs. |
---|---|
AbstractList | Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small coverage of cells in ultra-dense networks (UDNs), the network load usually becomes unbalanced, leading to deteriorated network performance, such as low throughput, radio link failure, and poor user experience. Therefore, the technique of mobility load balancing (MLB) is critical to ensuring a seamless user experience among cells. This letter proposes an active and interactive MLB strategy for UDNs, which transforms the original reactive MLB into a forward-aware and active one. In particular, user mobility is first predicted based on the Bayesian additive regression tree (BART). Then, with the mobility predictions, the joint mobility robust optimization and MLB problem subject to users’ rate constraint is solved via safe reinforcement learning. The pertaining simulation results show that the proposed method can improve the network performance and realize intelligent mobile management for future UDNs. |
Author | Chen, Jun Huang, Miaona |
Author_xml | – sequence: 1 givenname: Miaona surname: Huang fullname: Huang, Miaona email: huangmn@dgut.edu.cn organization: School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, China – sequence: 2 givenname: Jun orcidid: 0000-0003-0069-0235 surname: Chen fullname: Chen, Jun email: chenjun0789@163.com organization: Huawei Technologies, Shenzhen, China |
BookMark | eNp9kEtPAjEUhRuDiYD-Ad00cT3YB8O0Sx2fySAsYOFqUvqA4tBiO2jw1zs84sKFm3vv4px77v06oOW80wBcYtTDGPGbIh8Nhz2CCOlRzBFh_RPQxmnKEtKUVjMjxpMs4-wMdGJcIoQYSXEbvI2DF7K2nxoWXih4JyrhpHVzOFkEv5kvYO5drIOwTis49pWVWzha13Zlv0VtvYPGBzitGkVyr13U8FXXXz68x3NwakQV9cWxd8H08WGSPyfF6Oklvy0SSTiuk3SgB5IrYzRCQtEZ44ohysVA9okUGEmksszI5nRMDBMGKT5TlBFmJNK4r2gXXB_2roP_2OhYl0u_Ca6JLElGKOOcU9KoyEElg48xaFOug12JsC0xKncIyz3CcoewPCJsTOyPSdp6__UOSPW_9epgtVrr3yzOCM8Ioz8JVIIw |
CODEN | ICLEF6 |
CitedBy_id | crossref_primary_10_1109_TWC_2024_3391426 crossref_primary_10_1016_j_comcom_2024_107985 crossref_primary_10_1109_TMC_2024_3407979 crossref_primary_10_1109_MNET_2024_3353301 |
Cites_doi | 10.1007/s11276-016-1331-y 10.1214/09-aoas285 10.1002/sim.8347 10.1109/LCOMM.2015.2500584 10.1109/TWC.2020.2984504 10.1109/MNET.2017.1600301 10.1016/j.pmcj.2020.101133 10.1016/j.dcan.2022.04.011 10.26599/BDMA.2018.9020010 10.1109/TWC.2018.2789902 10.1109/TVT.2020.2966725 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/LCOMM.2022.3190284 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2558 |
EndPage | 2419 |
ExternalDocumentID | 10_1109_LCOMM_2022_3190284 9829728 |
Genre | orig-research |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515110269 funderid: 10.13039/501100021171 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-56e6c9dffe00ad3b89d8039a6c42ca10c0d77fc77912f8af0d9bd3828fc0e14d3 |
IEDL.DBID | RIE |
ISSN | 1089-7798 |
IngestDate | Mon Jun 30 10:24:18 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Tue Jul 01 02:38:31 EDT 2025 Wed Aug 27 02:18:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-56e6c9dffe00ad3b89d8039a6c42ca10c0d77fc77912f8af0d9bd3828fc0e14d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0069-0235 |
PQID | 2723899932 |
PQPubID | 85419 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2723899932 ieee_primary_9829728 crossref_primary_10_1109_LCOMM_2022_3190284 crossref_citationtrail_10_1109_LCOMM_2022_3190284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE communications letters |
PublicationTitleAbbrev | LCOMM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref11 ref10 ref2 Wang (ref12) 2019; 36 Achiam (ref13) 2017 ref8 ref7 García (ref14) 2015; 16 ref9 ref4 ref3 ref6 Bugel (ref1) 2020 ref5 |
References_xml | – ident: ref3 doi: 10.1007/s11276-016-1331-y – ident: ref10 doi: 10.1214/09-aoas285 – ident: ref11 doi: 10.1002/sim.8347 – year: 2017 ident: ref13 article-title: Constrained policy optimization publication-title: arXiv:1705.10528 – year: 2020 ident: ref1 article-title: Ericsson mobility report – ident: ref8 doi: 10.1109/LCOMM.2015.2500584 – ident: ref9 doi: 10.1109/TWC.2020.2984504 – ident: ref4 doi: 10.1109/MNET.2017.1600301 – volume: 36 start-page: 461 issue: 4 year: 2019 ident: ref12 article-title: RS-BART: A novel technique to boost the prediction ability of Bayesian additive regression trees publication-title: Chin. J. Eng. Math. – ident: ref5 doi: 10.1016/j.pmcj.2020.101133 – ident: ref7 doi: 10.1016/j.dcan.2022.04.011 – ident: ref15 doi: 10.26599/BDMA.2018.9020010 – ident: ref2 doi: 10.1109/TWC.2018.2789902 – volume: 16 start-page: 1437 issue: 1 year: 2015 ident: ref14 article-title: A comprehensive survey on safe reinforcement learning publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.1109/TVT.2020.2966725 |
SSID | ssj0008251 |
Score | 2.4050112 |
Snippet | Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2415 |
SubjectTerms | Bayesian additive regression tree constrained policy optimization Constraints Handover Load balancing Load management Load modeling mobility load balancing Optimization Quality of service Regression analysis Regression tree analysis Reinforcement learning ultra-dense networks User experience Wireless networks |
Title | Proactive Load Balancing Through Constrained Policy Optimization for Ultra-Dense Networks |
URI | https://ieeexplore.ieee.org/document/9829728 https://www.proquest.com/docview/2723899932 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sAGaR3n6ZFXVaG2MFCpTJFjOwulRbRd-PXcxWnFS4gtUuzI8Tnn-5z77gM4U1RCnU7uY1kIL1Rae7lF4IqRQRjYQGht6byjP4i7w_BuFI1qcLHiwlhry-Qz26LL8l--meoFHZW1JfFARboGawjcHFdr5XWJgumS6SVGjDJdEmS4bPeu7_t9hIJCIEKlaiXhl02oVFX54YrL_aWzBf3lyFxayXNrMc9b-v1b0cb_Dn0bNqtAk126lbEDNTvZhY1P5Qf34OmB6FTk71hvqgy7ojRHjbfYo1PvYSTnWYpIWMNcBWF2jz7mpSJvMox42XCMLbwbhMOWDVxS-Wwfhp3bx-uuV0kteFpIf-5FsY21NEVhOVcmyFNpUh5IFetQaOVzzU2SFBon1hdFqgpuZG4CRGuF5tYPTXAA9cl0Yg-BpSbCqCRIogSxWlKQ5JUKid6qI4Xdkgb4y7nPdFWHnN5knJV4hMustFdG9soqezXgfNXn1VXh-LP1Hhlg1bKa-wY0lybOqg91lgkSXcMgORBHv_c6hnV6tsvfa0J9_rawJxiHzPPTcgF-AGRQ2N8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB216YFygEKpCC1lD3BCTtfrzz30UPqhlDoph0QKJ7PeXV-aJhVJhOC39K_0v3XG61hQKm6RuFnyri3vjGbnree9AXivSEKdTu5jWQovVFp7hUXgiplBGNhAaG3pvKPXj7vD8PMoGq3BbcOFsdZWxWe2Q5fVv3wz1Qs6KjuQxAMVaV1CeWF__kCANjs8P0FrfhDi7HRw3PXqHgKeFtKfe1FsYy1NWVrOlQmKVJqUB1LFOhRa-VxzkySlThLpizJVJTeyMAHCkFJz64cmwOeuwwbmGZFw7LAmzhPp05XvS8xRZbqk5HB5kB1f9noIPoVATEz6KOEf217Vx-Wv4F_taGfP4W65Fq6Q5aqzmBcd_euBTOT_ulhb8KxOpdmR8_0XsGYnL-HpbwKL2_D1CxHGKKKzbKoM-0SFnBpvsYHrT8SoYWnVJsMa5jSS2SVG0euansowp2fDMY7wThDwW9Z3ZfOzVzBcybftQGsyndjXwFITYd4VJFGCaDQpqamXConAqyOF05I2-Etb57pWWqcvGecV4uIyr_wjJ__Ia_9ow8dmzo3TGfnn6G0yeDOytnUb9pYuldehaJYLaiuHMCAQbx6f9Q6edAe9LM_O-xe7sEnvcdWKe9Caf1_Yt5h1zYv9yvkZfFu1A90DbOU4aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proactive+Load+Balancing+Through+Constrained+Policy+Optimization+for+Ultra-Dense+Networks&rft.jtitle=IEEE+communications+letters&rft.au=Huang%2C+Miaona&rft.au=Chen%2C+Jun&rft.date=2022-10-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=26&rft.issue=10&rft.spage=2415&rft.epage=2419&rft_id=info:doi/10.1109%2FLCOMM.2022.3190284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2022_3190284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |