Proactive Load Balancing Through Constrained Policy Optimization for Ultra-Dense Networks

Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small cove...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 26; no. 10; pp. 2415 - 2419
Main Authors Huang, Miaona, Chen, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small coverage of cells in ultra-dense networks (UDNs), the network load usually becomes unbalanced, leading to deteriorated network performance, such as low throughput, radio link failure, and poor user experience. Therefore, the technique of mobility load balancing (MLB) is critical to ensuring a seamless user experience among cells. This letter proposes an active and interactive MLB strategy for UDNs, which transforms the original reactive MLB into a forward-aware and active one. In particular, user mobility is first predicted based on the Bayesian additive regression tree (BART). Then, with the mobility predictions, the joint mobility robust optimization and MLB problem subject to users' rate constraint is solved via safe reinforcement learning. The pertaining simulation results show that the proposed method can improve the network performance and realize intelligent mobile management for future UDNs.
AbstractList Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive self-organizing model of the traditional network needs to be transformed into an active and interactive one. Due to the user mobility and small coverage of cells in ultra-dense networks (UDNs), the network load usually becomes unbalanced, leading to deteriorated network performance, such as low throughput, radio link failure, and poor user experience. Therefore, the technique of mobility load balancing (MLB) is critical to ensuring a seamless user experience among cells. This letter proposes an active and interactive MLB strategy for UDNs, which transforms the original reactive MLB into a forward-aware and active one. In particular, user mobility is first predicted based on the Bayesian additive regression tree (BART). Then, with the mobility predictions, the joint mobility robust optimization and MLB problem subject to users’ rate constraint is solved via safe reinforcement learning. The pertaining simulation results show that the proposed method can improve the network performance and realize intelligent mobile management for future UDNs.
Author Chen, Jun
Huang, Miaona
Author_xml – sequence: 1
  givenname: Miaona
  surname: Huang
  fullname: Huang, Miaona
  email: huangmn@dgut.edu.cn
  organization: School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-0069-0235
  surname: Chen
  fullname: Chen, Jun
  email: chenjun0789@163.com
  organization: Huawei Technologies, Shenzhen, China
BookMark eNp9kEtPAjEUhRuDiYD-Ad00cT3YB8O0Sx2fySAsYOFqUvqA4tBiO2jw1zs84sKFm3vv4px77v06oOW80wBcYtTDGPGbIh8Nhz2CCOlRzBFh_RPQxmnKEtKUVjMjxpMs4-wMdGJcIoQYSXEbvI2DF7K2nxoWXih4JyrhpHVzOFkEv5kvYO5drIOwTis49pWVWzha13Zlv0VtvYPGBzitGkVyr13U8FXXXz68x3NwakQV9cWxd8H08WGSPyfF6Oklvy0SSTiuk3SgB5IrYzRCQtEZ44ohysVA9okUGEmksszI5nRMDBMGKT5TlBFmJNK4r2gXXB_2roP_2OhYl0u_Ca6JLElGKOOcU9KoyEElg48xaFOug12JsC0xKncIyz3CcoewPCJsTOyPSdp6__UOSPW_9epgtVrr3yzOCM8Ioz8JVIIw
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_TWC_2024_3391426
crossref_primary_10_1016_j_comcom_2024_107985
crossref_primary_10_1109_TMC_2024_3407979
crossref_primary_10_1109_MNET_2024_3353301
Cites_doi 10.1007/s11276-016-1331-y
10.1214/09-aoas285
10.1002/sim.8347
10.1109/LCOMM.2015.2500584
10.1109/TWC.2020.2984504
10.1109/MNET.2017.1600301
10.1016/j.pmcj.2020.101133
10.1016/j.dcan.2022.04.011
10.26599/BDMA.2018.9020010
10.1109/TWC.2018.2789902
10.1109/TVT.2020.2966725
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2022.3190284
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 2419
ExternalDocumentID 10_1109_LCOMM_2022_3190284
9829728
Genre orig-research
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515110269
  funderid: 10.13039/501100021171
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-56e6c9dffe00ad3b89d8039a6c42ca10c0d77fc77912f8af0d9bd3828fc0e14d3
IEDL.DBID RIE
ISSN 1089-7798
IngestDate Mon Jun 30 10:24:18 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Tue Jul 01 02:38:31 EDT 2025
Wed Aug 27 02:18:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-56e6c9dffe00ad3b89d8039a6c42ca10c0d77fc77912f8af0d9bd3828fc0e14d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0069-0235
PQID 2723899932
PQPubID 85419
PageCount 5
ParticipantIDs proquest_journals_2723899932
ieee_primary_9829728
crossref_primary_10_1109_LCOMM_2022_3190284
crossref_citationtrail_10_1109_LCOMM_2022_3190284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev LCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref11
ref10
ref2
Wang (ref12) 2019; 36
Achiam (ref13) 2017
ref8
ref7
García (ref14) 2015; 16
ref9
ref4
ref3
ref6
Bugel (ref1) 2020
ref5
References_xml – ident: ref3
  doi: 10.1007/s11276-016-1331-y
– ident: ref10
  doi: 10.1214/09-aoas285
– ident: ref11
  doi: 10.1002/sim.8347
– year: 2017
  ident: ref13
  article-title: Constrained policy optimization
  publication-title: arXiv:1705.10528
– year: 2020
  ident: ref1
  article-title: Ericsson mobility report
– ident: ref8
  doi: 10.1109/LCOMM.2015.2500584
– ident: ref9
  doi: 10.1109/TWC.2020.2984504
– ident: ref4
  doi: 10.1109/MNET.2017.1600301
– volume: 36
  start-page: 461
  issue: 4
  year: 2019
  ident: ref12
  article-title: RS-BART: A novel technique to boost the prediction ability of Bayesian additive regression trees
  publication-title: Chin. J. Eng. Math.
– ident: ref5
  doi: 10.1016/j.pmcj.2020.101133
– ident: ref7
  doi: 10.1016/j.dcan.2022.04.011
– ident: ref15
  doi: 10.26599/BDMA.2018.9020010
– ident: ref2
  doi: 10.1109/TWC.2018.2789902
– volume: 16
  start-page: 1437
  issue: 1
  year: 2015
  ident: ref14
  article-title: A comprehensive survey on safe reinforcement learning
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.1109/TVT.2020.2966725
SSID ssj0008251
Score 2.4050112
Snippet Designing an intelligent self-organizing network (SON) architecture is challenging for future wireless networks. To meet the needs of SON, the reactive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2415
SubjectTerms Bayesian additive regression tree
constrained policy optimization
Constraints
Handover
Load balancing
Load management
Load modeling
mobility load balancing
Optimization
Quality of service
Regression analysis
Regression tree analysis
Reinforcement learning
ultra-dense networks
User experience
Wireless networks
Title Proactive Load Balancing Through Constrained Policy Optimization for Ultra-Dense Networks
URI https://ieeexplore.ieee.org/document/9829728
https://www.proquest.com/docview/2723899932
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sAGaR3n6ZFXVaG2MFCpTJFjOwulRbRd-PXcxWnFS4gtUuzI8Tnn-5z77gM4U1RCnU7uY1kIL1Rae7lF4IqRQRjYQGht6byjP4i7w_BuFI1qcLHiwlhry-Qz26LL8l--meoFHZW1JfFARboGawjcHFdr5XWJgumS6SVGjDJdEmS4bPeu7_t9hIJCIEKlaiXhl02oVFX54YrL_aWzBf3lyFxayXNrMc9b-v1b0cb_Dn0bNqtAk126lbEDNTvZhY1P5Qf34OmB6FTk71hvqgy7ojRHjbfYo1PvYSTnWYpIWMNcBWF2jz7mpSJvMox42XCMLbwbhMOWDVxS-Wwfhp3bx-uuV0kteFpIf-5FsY21NEVhOVcmyFNpUh5IFetQaOVzzU2SFBon1hdFqgpuZG4CRGuF5tYPTXAA9cl0Yg-BpSbCqCRIogSxWlKQ5JUKid6qI4Xdkgb4y7nPdFWHnN5knJV4hMustFdG9soqezXgfNXn1VXh-LP1Hhlg1bKa-wY0lybOqg91lgkSXcMgORBHv_c6hnV6tsvfa0J9_rawJxiHzPPTcgF-AGRQ2N8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB216YFygEKpCC1lD3BCTtfrzz30UPqhlDoph0QKJ7PeXV-aJhVJhOC39K_0v3XG61hQKm6RuFnyri3vjGbnree9AXivSEKdTu5jWQovVFp7hUXgiplBGNhAaG3pvKPXj7vD8PMoGq3BbcOFsdZWxWe2Q5fVv3wz1Qs6KjuQxAMVaV1CeWF__kCANjs8P0FrfhDi7HRw3PXqHgKeFtKfe1FsYy1NWVrOlQmKVJqUB1LFOhRa-VxzkySlThLpizJVJTeyMAHCkFJz64cmwOeuwwbmGZFw7LAmzhPp05XvS8xRZbqk5HB5kB1f9noIPoVATEz6KOEf217Vx-Wv4F_taGfP4W65Fq6Q5aqzmBcd_euBTOT_ulhb8KxOpdmR8_0XsGYnL-HpbwKL2_D1CxHGKKKzbKoM-0SFnBpvsYHrT8SoYWnVJsMa5jSS2SVG0euansowp2fDMY7wThDwW9Z3ZfOzVzBcybftQGsyndjXwFITYd4VJFGCaDQpqamXConAqyOF05I2-Etb57pWWqcvGecV4uIyr_wjJ__Ia_9ow8dmzo3TGfnn6G0yeDOytnUb9pYuldehaJYLaiuHMCAQbx6f9Q6edAe9LM_O-xe7sEnvcdWKe9Caf1_Yt5h1zYv9yvkZfFu1A90DbOU4aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proactive+Load+Balancing+Through+Constrained+Policy+Optimization+for+Ultra-Dense+Networks&rft.jtitle=IEEE+communications+letters&rft.au=Huang%2C+Miaona&rft.au=Chen%2C+Jun&rft.date=2022-10-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=26&rft.issue=10&rft.spage=2415&rft.epage=2419&rft_id=info:doi/10.1109%2FLCOMM.2022.3190284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2022_3190284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon